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1. Determinants

1.1. The inverse of a 2× 2-matrix. For a 2× 2-matrix A ∈M2×2(F ), given as

A =

(
a b
c d

)
we define its determinant by the formula

det(A) = ad− bc.
Its importance can be seen from the following

Lemma 1.1. The 2 × 2-matrix A is invertible if and only if det(A) 6= 0. In this case, the
inverse is given by

A−1 =
1

det(A)

(
d −b
−c a

)
.

Proof. Let

B =

(
d −b
−c a

)
.

By carrying out the matrix multiplication, we see that

AB = det(A) I

where I is the identity matrix. If det(A) 6= 0, this verifies that det(A)−1B is a matrix inverse
of A. If det(A) = 0, the identity becomes AB = 0. If A were invertible, then this would give
B = A−1(AB) = A0 = 0. Hence, all matrix entries d,−b,−c, a of B are zero, which means
that A = 0, a contradiction. So, A cannot be invertible. �

Note: This is a formula that you should (and I’m sorry to say this) memorize!!! Namely:
A−1 = det(A)−1B; to get B from A, switch the diagonal entries and put minus signs for the
off-diagonal ones.

Example 1.2. Problem: Solve the system of equations

2x1 + 3x2 = 4

2x1 + x2 = 3

Solution: Invert the coefficient matrix, and apply to the column vector on th right side:(
x1
x2

)
=

(
2 3
2 1

)−1(
4
3

)
=

1

−4

(
1 −3
−2 2

)(
4
3

)
= −1

4

(
−5
−2

)
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so x1 = 5
4 , x2 = 1

2 .

1.2. Interpretion of the determinant. What’s the meaning of the mysterious expression
det(A) = ad− bc? Consider temporarily the case F = R. Let v1, v2 ∈ R2 be vectors v1, v2, and

vol(v1, v2) ∈ R

the signed area of the parallelogram spanned by the two vectors. (We write vol, since we will
soon generalize to higher dimensions, where one speaks of ‘volume’) Here the sign is taken to
be positive if the positively oriented angle from v1 to v2 is between 0 and π, and negative if it
is between π and 2π. The following facts are known (mostly from high school geometry).

P1. vol(av1, v2) = a vol(v1, v2) = vol(v1, av2),
P2. vol(v1 + av2, v2) = vol(v1, v2) = vol(v1, v2 + a vol v2),

for all vectors v1, v2 and scalars a. Note that this implies vol(v1, v2) = 0 if one of v1, v2 is zero,
and also

vol(v, v) = 0, v ∈ V
by taking v1 = 0, v2 = v, a = 1 in the second property. Furthermore, we can derive:

Lemma 1.3. The map vol : R2×R2 → R is bi-linear (i.e., linear in each arguments separately)

Proof. We have to show that

vol(v1 + v′1, v2) = vol(v1, v2) + vol(v′1, v2)

for all vectors v1, v
′
1, v2. If v2 = 0 this is clear, and if v1 or v′1 is a multiple a v2 it follows from

P2. Thus, we may assume that v1, v2 are a basis. Write v′1 = λv1 + µv2, and simplify

vol(v1 + v′1, v2) = vol((1 + λ)v1 + µv2, v2)

= vol((1 + λ)v1, v2)

= (1 + λ) vol(v1, v2)

= vol(v1, v2) + vol(v′1, v2).

Thus vol is linear in the first argument , similarly it’s also linear in the second argument. �

Remark 1.4. Using the bi-linearity, together with P1 we also see now that

0 = vol(v1+v2, v1+v2) = vol(v1, v1)+vol(v2, v2)+vol(v1, v2)+vol(v2, v1) = vol(v1, v2)+vol(v2, v1)

thus

vol(v1, v2) = − vol(v2, v1).

We can now calculate the volume of a parallelogram, using these formal properties of vol
and the fact that the volume of a square is

vol(e1, e2) = 1

for e1, e2 the standard basis of R2.

Proposition 1.5. Let v1, v2 ∈ R2 be the column vectors of a matrix A. Then

vol(v1, v2) = det(A).
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Proof. Write

v1 =

(
a
c

)
= ae1 + ce2, v2 =

(
b
d

)
= be1 + de2.

Using bi-linearity to expand, we find

vol(v1, v2) = a vol(e1, v2) + c vol(e2, v2)

= ac vol(e1, e1) + ad vol(e1, e2) + cb vol(e2, e1) + cd vol(e2, e2)

= ad− bc
= det(A). �

Although this interpretation as an area only works for F = R, we can generalize the definition
of vol to arbitrary F – although it seems reasonable now to rename it as det.

Namely, we see that there is a unique bi-linear functional

det : F 2 × F 2 → F, (v1, v2) 7→ det(v1, v2)

such that det(v, v) = 0 for all v ∈ F 2, and with det(e1, e2) = 1 for the standard basis. In fact,
the calculation above shows that det(v1, v2) = det(A) = ad− bc.

Remark 1.6. If φ : V × V → F 2 is a bilinear functional on a vector space V , then

φ(v, v) = 0 for allv ∈ V ⇒ φ(v1, v2) = −φ(v2, v1) for all v1, v2 ∈ V.

Is this an equivalence? Only if the characteristic of the field is 6= 2. In fact we have

φ(v1, v2) = −φ(v2, v1) for all v1, v2 ∈ V ⇒ 2φ(v, v) = 0 for allv ∈ V

(this follows by putting v1, v2 = v). Thus, if 2 6= 0 in F we can divide by 2, and we recover
φ(v, v) = 0. On the other hand, if 2 = 0 in F , this conclusion is wrong in general. E.g., the
bilinear functional

φ
((

a
c

)(
b
d

))
= ab+ cd

(dot product) on F 2 is symmetric. If 2 = 0 in F , then 1 = −1, and so symmetric forms are
also skew-symmetric. But it does not satisfy φ(v, v) = 0 for all v.

1.3. Generalization to higher dimensions. In Rn, we consider the signed volume of the
parallelepiped spanned by v1, . . . , vn, denoted vol(v1, . . . , vn). If the vi are the standard basis
vectors, we get the volume of the unit cube: vol(e1, . . . , en) = 1. As above, we find that this
is linear in each argument. For general fields, we use these properties to define a ‘volume
function’. Generalizing to arbitrary fields, we have

Theorem 1.7. There exists a unique multi-linear functional

det : Fn × · · · × Fn → F

with the property that det(v1, . . . , vn) = 0 whenever two of the vi’s coincide, and with

det(e1, . . . , en) = 1,

for the standard ordered basis e1, . . . , en of Fn.
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Here, multi-linear means that det is linear in each argument, keeping the others fixed. E.g.,

det(v1, . . . , vi−1, vi+v′i, vi+1, . . .) = det(v1, . . . , vi−1, v
′
i, vi+1, . . .) + det(v1, . . . , vi−1, v

′
i, vi+1, . . .).

and

det(v1, . . . , vi−1, avi, vi+1, . . .) = adet(v1, . . . , vi−1, vi, vi+1, . . .).

Before proving the theorem, a few facts about permutations.

Definition 1.8. A permutation of {1, . . . , n} is an invertible map, σ from this set to itself. The
permutation is called even (resp. odd) if the number of pairs (i1, i2) such that i1 < i2 but
σ(i1) > σ(i2) is even (resp. odd) . One writes sign(σ) = 1 resp. −1 depending on whether the
permutation is even or odd.

Example 1.9. Here n = 4. The permutation

σ(1) = 4, σ(2) = 3, σ(3) = 1, σ(4) = 2,

depicted as

(4, 3, 1, 2),

is odd; sign(σ) = −1, because there are five pairs of indices in wrong order,

(4, 3), (4, 1), (4, 2), (3, 1), (3, 2).

Note that if one modifies a permutation by interchanging two adjacent elements, then the
parity of σ changes. Namely, the ordering of that pair changes from right to wring or the other
way; whereas all other orderings are preserved.

Example 1.10. In the example above, the permutation σ′ written as (4, 1, 3, 2) (obtained by
switching 1 and 3 in σ) is even: sign(σ′) = 1.

By induction, we conclude that for any permutation σ, we have that sign(σ) = (−1)N if one
can put the elements back into their original order by N transpositions of adjacent elements.

Example 1.11.

(4, 3, 1, 2)→ (4, 1, 3, 2)→ (1, 4, 3, 2)→ (1, 4, 2, 3)→ (1, 2, 4, 3)→ (1, 2, 3, 4).

Here N = 5, so we recover that sign(σ) = −1.

Actually, one can speed up calculations a bit using the following

Exercise. Show that if σ′ is obtained from σ by interchanging two elements (not necessariy
adjacent), then σ′, σ have opposite parity.

Example 1.12.

(4, 3, 1, 2)→ (1, 3, 4, 2)→ (1, 2, 4, 3)→ (1, 2, 3, 4)

Here N = 3 so sign(σ) = −1.

Let us return to the proof of the theorem.
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Proof. We start with the uniqueness proof (assuming existence.) Any multi-linear functional is
uniquely determined by its values on n-tuples of basis vectors, since the general formula then
follows by multi-linearity. Thus, we need to specify

det(ei1 , . . . , ein)

for arbitrary i1, . . . , in ∈ {1, . . . , n}. By assumption, this has to be zero if two of the indices
coincide. So, the only case one gets something non-zero is if

i1 = σ(1), i1 = σ(2), . . . , in = σ(n)

for some permutation of the indices. In that case, we can put eσ(1), . . . , eσ(n) into the right
order by a finite number of interchanges (‘transposition’) of indices. As in the case n = 2, we
see that the interchange of any two arguments of det gives a minus sign. Thus we must have

det(eσ(1), . . . , eσ(n)) = sign(σ) det(e1, . . . , en) = sign(σ).

Consider now general vectors vj ∈ Fn, expressed in terms of the basis as

vj =
∑
i

Aijei.

By multi-linearity,

det(v1, . . . , vn) =
∑
i1···in

det(Ai1,1ei1 , · · · , Ain,nein)

=
∑
i1···in

Ai1,1 · · ·Ain,n det(ei1 , . . . , ein)

As we just mentioned, the summand are zero unlessi1, . . . , in are a permutation of 1, . . . , n. We
thus obtain

det(v1, . . . , vn) =
∑
σ

sign(σ) Aσ(1),1 · · ·Aσ(n),n.

This explicit formula shows that det is uniquely determined by its properties.
For existence, we use this formula as a definition of a multi-linear functional. Clearly,

with this definition det(e1, . . . , en) = 1, because in this case Aij = δij and only the trivial
permutation σ = id contributes.

We have to show that det(v1, . . . , vn) vanishes whenever vr = vs for some r < s. In this case
we have that Air = Ais for all i = 1, . . . , n. Note that for given r < s, the permutations come
in pairs: For any permutation σ there is a unique permutation σ′ such that

σ′(r) = σ(s), σ′(s) = σ(r), σ′(j) = σ(j) for j 6= r, s.

Since σ′ is obtained from σ by interchanging the values of σ(r)mσ(s), we have that

sign(σ′) = − sign(σ).

On the other hand, since

Aσ(r),rAσ(s),s = Aσ(r),sAσ(s),r = Aσ′(r),rAσ′(s),s

we have
Aσ(1),1 · · ·Aσ(n),n = Aσ′(1),1 · · ·Aσ′(n),n.

We conclude that in the sum over all permutations, the terms corresponding to σ, σ′ cancel
out. We conclude det(v1, . . . , vn) = 0 whenever vr = vs for r < s.. �
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After all this hard work, we can finally define:

Definition 1.13. The determinant of a square matrix A ∈Mn×n(F ) is defined as

det(A) = det(v1, . . . , vn),

where v1, . . . , vn are the columns of A.

The proof above gave us a formula for the determinant:

det(A) =
∑
σ

sign(σ) Aσ(1)1 · · ·Aσ(n)n.

If n = 2 we have two permutations (1, 2), (2, 1), and we recover the formula det(A) = A11A22−
A21A12. If n = 3 there are six permutations (123), (132), (231), (213), (312), (321), of signs
+,−,+,−,+,−, and we obtain

det(A) = A11A22A33 −A11A32A23 +A21A32A13 −A21A12A33 +A31A12A23 −A31A22A13.

In general, the number of terms in the formula is the number of permutations {1, . . . , n},
namely n!. This indicates that for large matrices, the formula is not efficient at all. We’ll soon
see much simpler ways of computing determinants. One special case where the formula applies
directly is:

Proposition 1.14. If A ∈Mn×n(F ) is upper triangular (or lower triangular), then det(A) is
the product over diagonal entries.

Proof. Upper triangular means that Aij = 0 whenever i > j. Hence, the permutations σ does
not contribute to the sum unless σ(1) ≤ 1, σ(2) ≤ 2, . . .. But this just means σ(1) = 1, σ(2) =
2, . . ., so σ is the trivial identity permutation σ = id. We conclude

det(A) = A11A22 · · ·Ann.
�

Theorem 1.15 (Properties of the determinant). Let A,B ∈Mn×n(F ).

(a) The determinant det(A) vanishes if and only if the columns of A are linearly dependent.
(b) If A′ is obtained from A by interchange of two columns, then det(A′) = −det(A).
(c) If A′ is obtained from A by taking the c-th multiple of one column, then det(A′) =

cdet(A).
(d) If A′ s obtained from A by adding a scalar multiple of one column to another column,

then det(A′) = det(A).
(e) det(At) = det(A); hence the above statements also hold for columns replaced with rows.

Proof. By construction, the determinant function A 7→ det(A) is linear in the columns of A,
and vanishes whenever two columns coincide. This already implies (c), as well as (d). As in
the case n = 2, the fact that det(A) vanishes whenever two of the columns are equal, implies
that it changes sign under exchange of two columns, i.e. (b).

Using column operations, we may bring A into reduced column echelon form A′ (which
amounts to using row operations on At to bring At to reduced row echelon form). By (b),(c),(d)
this changes the determinant by a non-zero scalar. If rank(A) < n, it then follows that some
column of A′ is zero, hence det(A′) = 0 by linearity. We then conclude det(A) = 0. If
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rank(A) = n, then A′ is the identity matrix, hence det(A′) = 1. We conclude det(A) 6= 0. This
proves (a).

Property (e) follows from the explicit ‘complicated formula’, using

Aσ(1)1 · · ·Aσ(n)n = A1σ−1(1) · · ·Anσ−1(n)

(on the left side, we arrange the elements according to their column index. On the right side,
we arrange them according to the row index). Since sign(σ−1) = sign(σ), this means

sign(σ)Aσ(1)1 · · ·Aσ(n)n = sign(σ−1)Atσ−1(1)1 · · ·A
t
σ−1(n)n

As σ runs through all permutations, σ−1 also runs through all permutations. Thus, summing
over σ we obtain det(A) = det(At). �

Theorem 1.16. For A,B ∈Mn×n(F ),

det(AB) = det(A) det(B).

In particular, det(A−1) = det(A)−1.

Proof. If A is not invertible, then AB is also not invertible, and both sides are zero. Hence we
may assume that A is invertible, i.e. det(A) 6= 0. The multilinear functional

φ : Fn × · · · × Fn → F,

φ(w1, . . . , wn) =
det(Aw1, . . . , Awn)

det(A)

vanishes if any two of the wi coincide, and φ(e1, . . . , en) = 1 (since vj = Aej are the columns
of A). Hence, by the uniqueness part of the Theorem 1.7, φ(w1, . . . , wn) = det(w1, . . . , wn) for
all wj ’s. Now take wj = Bej , the columns of B. Then

φ(w1, . . . , wn) = det(w1, . . . , wn) = det(B),

det(Aw1, . . . Awn) = det(AB(e1), . . . , AB(en)) = det(AB).

We conclude det(B) = det(AB)/det(A). �

Calculating determinants

The behaviour of determinants under row and column operations can be used for rather
effective calculations: Once the matrix has been brought into uper (or lower) triangular form,
the determinant is just the product of eigenvalues.

A useful fact is:

Lemma 1.17. Suppose A ∈Mn×n(F ) has ‘block upper triangular diagonal form’

A =

(
A′ ∗
0 A′′

)
where A′ ∈Mk×k(F ) and A′′ ∈Ml×l(F ). Then

det(A) = det(A′) det(A′′).
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(It’s common notation to denote by ∗ ‘some entries, possibly non-zero’.)

Proof. Consider first the case that A′′ = Il×l is the l × l identity matrix. Then

det

(
A′ ∗
0 Il×l

)
= det

(
A′ 0
0 Il×l

)
= det(A′).

where we used row operations to get rid of the upper right block, and then used (e.g.) the
‘complicated formula’ for the determinant. In general, write(

A′ ∗
0 A′′

)
=

(
Ik×k 0

0 A′′

)(
A′ ∗
0 Il×l

)
.

So,

det(A) = det

(
Ik×k 0

0 A′′

)
det

(
A′ ∗
0 Il×l

)
= det

(
Ik×k 0

0 A′′

)
det

(
A′ 0
0 Il×l

)

= det

(
A′′ 0
0 Ik×k

)
det

(
A′ 0
0 Il×l

)
= det(A′) det(A′′).

Here we have row operations to get rid of the unknown entries ∗. By the complicated formula,
this is det(A′) det(A′′). �

So, the message here is that the calculation of determinants simplifies if the matrix A has
lots of zeroes.

Remark 1.18. More generally, one has a similar result for block-upper triangular matrices with
several blocks along the diagonal. E.g., with three blocks A′ ∗ ∗

0 A′′ ∗
0 0 A′′′

 = det(A′) det(A′′) det(A′′′).

Example 1.19. (Cf. textbook, example 3)

det


2 0 0 1
0 1 3 −3
−2 −3 −5 2
4 −4 4 −6


Let’s use R3 and C3 to create more zeroes:

= det


2 0 0 1
0 1 3 −3
0 −3 −5 3
4 −4 4 −6

 = det


2 0 0 1
0 1 3 −3
0 −3 −5 3
0 −4 4 −8

 = 2 det

 1 3 −3
−3 −5 3
−4 4 −8



2 det

 −2 3 −3
0 −5 3
−12 4 −8

 = 2 det

 −2 3 −3
0 −5 3
0 −14 10

 = −4 det

(
−5 3
−14 10

)
= −4(−50 + 42) = (−4)(−8) = 32.
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Cofactor expansions Another useful method is to exploit the linearity in the columns (or
rows). For example, we have that det(A) equals

A11 det


1 A12 · · · A1n

0 A22 · · · A2n
...

...
...

0 An2 · Ann

+A21 det


0 A12 · · · A1n

1 A22 · · · A2n
...

...
...

0 An2 · Ann

+. . .+An1 det


0 A12 · · · A1n

0 A22 · · · A2n
...

...
...

1 An2 · · · Ann


In the i-th matrix, we can use column operations to remove the entries of the i-th row, and
then use a row operation switching the i-th and first row, after which we can use the Lemma

above. Let Ã[ij] denote the matrix obtained from A be removing the i-th row and j-th column.
Then we obtain

det(A) = A11 det(Ã[11])−A21 det(Ã[21]) +A31 det(Ã[31]) + . . . .

Of course, one can apply the same technique for other columns, and also for the rows. For
instance, the cofactor expansion across the second row is

det(A) = −A21 det(Ã[21]) +A22 det(Ã[22])−A23 det(Ã[23])± . . . .

In practice, it’s often a matter of finding a convenient row or column to do the expansion. Let’s
start the previous example with this method:

det


2 0 0 1
0 1 3 −3
−2 −3 −5 2
4 −4 4 −6

 = 2 det

 1 3 −3
−3 −5 2
−4 4 −6

− det

 0 1 3
−2 −3 −5
4 −4 4


(But in continuing the calculation, I’d still prefer the ‘create zeroes’ method.)

Cramer’s rule

A square matrix A ∈Mn×n is invertible if and only if det(A) 6= 0. In particular, in this case
the equation Ax = b has a unique solution for all b ∈ Fn. In fact, there is a simple formula
expressing the solution in terms of determinants.

Theorem 1.20 (Cramer’s rule). Let A ∈Mn×n be an invertible matrix, with columns v1, . . . , vn.
Then the unique solution x = (x1, . . . , xn)t to the equation Ax = b is given by the formula

xi =
1

detA
det(v1, . . . , vi−1, b, vi+1, . . . , vn).

(Thus, for each i one takes the determinant of the matrix obtained by replacing the i-th column
vi with b, and divides by det(A).)

Proof. The unique solution is, of course, x = A−1b. By definition of matrix multiplication,

b = Ax = x1v1 + . . .+ xnvn.
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Thus, expanding by linearity in the ith column,

det(v1, . . . , vi−1, b, vi+1, . . . , vn) =

n∑
r=1

xr det(v1, . . . , vi−1, vr, vi+1, . . . , vn).

But det(v1, . . . , vi−1, vr, vi+1, . . . , vn) = 0 unless r = i, in which case it is det(A). This shows

det(v1, . . . , vi−1, b, vi+1, . . . , vn) = xi det(A).

�

Example 1.21. The solution of the equation Ax = b, for A ∈M3×3(R) given as

A =

 3 0 −1
0 2 4
−3 −2 1

 , b =

 1
7
−1


is

x1 =

det

 1 0 −1
7 2 4
−1 −2 1


det

 3 0 −1
0 2 4
−3 −2 1

 , x2 =

det

 3 1 −1
0 7 4
−3 −1 1


det

 3 0 −1
0 2 4
−3 −2 1

 , x3 =

det

 3 0 1
0 2 7
−3 −2 −1


det

 3 0 −1
0 2 4
−3 −2 1


(Etc. [...])

Note that Cramer’s rule also gives a formula for the inverse matrix A−1. Let (v1, . . . , vn)
be the columns of A, and w1, . . . , wn the columns of A−1. Thus wj = A−1ej , i.e., wj is the
solution to Ax = ej , and the matrix entry (A−1)ij is the i-th component of this solution. Thus,
by Cramer’s rule

(A−1)ij =
1

det(A)
det(v1, . . . , vi−1, ej , vi+1, . . . , vn).

To calculate det(v1, . . . , vi−1, ej , vi+1, . . . , vn), note that we can use ej to clear out all entries in
the j-th row. This argument gives:

Theorem 1.22 (Formula for the inverse matrix). Let A ∈Mn×n(F ) be a square matrix, with
det(A) 6= 0. Then the inverse matrix B = A−1 has entries

Bij =
(−1)i+j det(Ã[ji])

det(A)
.

(Alert: Note that the formula involves Ã[ji], not Ã[ij].) We leave the proof as an exercise, but
here is a hint: Recall that the columns wj of B satisfy wj = B(ej), thus A(wj) = ej . Thus, wj
is a solution of Ax = ej . Now use Cramer’s formula.

You should verify that this generalizes the formula for the inverse of a 2× 2-matrix.
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