Linear Algebra Notes

Lecture Notes, University of Toronto, Fall 2016

1. DUAL SPACES

Given a vector space V, one can consider the space of linear maps ¢: V — F. Typical
examples include:

e For the vector space V = F(X, F) of functions from a set X to F', and any given ¢ € X,
the evaluation

eve: F(X,F) = F, f~ f(o).
e The trace of a matrix,
tr: V. =Matyun(F) = F, A— A1+ Ao+ ...+ App.
More generally, for a fixed matrix B € Maty, x,(F'), there is a linear functional
A — tr(BA).

e For the vector space I, written as column vectors, the i-th coordinate function

z1
— T
Tn
More generally, any given by, ..., b, defines a linear functional
1
— x1b1 + ...+ zpby.
L,
(Note that this can also be written as matrix multiplication with the row vector (by, ..., by).)

e This generalizes to the space F'*° of infinite sequences: We have maps
F>* — F, x= (1'1,:(}2,...) = Q.

More generally, letting Fg® C F°° denote the subspace of finite sequences, every y =
(y1,y2,...) € Fg defines a linear map

o0
F* = F, z=(r1,22,...) — Zazzyh
i=1
similarly every z = (x1,x2,...) € F* defines a linear map

oo
i=1
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Definition 1.1. For any vector space V over a field F', we denote by
V*=L(V,F)
the dual space of V.

Proposition 1.2.
dim(V*) = dim(V).
Proof.
dim(V*) = dim L(V, F) = dim(V) dim(F") = dim(V).
O

If V is finite-dimensional, this means that V and V* are isomorphic. But this is false
if dimV = oo. For instance, if V' has an infinite, but countable basis (such as the space
V = P(F)), one can show that V* does not have a countable basis, and hence cannot be
isomorphic to V. In a homework problem, you were asked to show that the map associating
to x € F*° a linear functional on F§° defines an isomorphism

B2 = (FR)5
thus (Fg7)* is much bigger than FgY (the latter has a countable basis, the former does not).

Definition 1.3. Suppose V, W are vector spaces, and V*, W* their dual spaces. Given a linear
map

T:V>W

one defines a dual map (or transpose map)
T W*—=V* ¢Y—yoT.
The composition of ¢ € W* = L(W, F) with T' € L(V,W).
Note that T™* is a linear map from W* to V* since

T*(1 +1p2) = (1 + ) o T =11 o T +hy o T}

similarly for scalar multiplication. Note that the dual map goes in the ‘opposite direction’. In
fact, under composition of '€ L(V, W), T € L(U,V),

(ToS)" =80T
(We leave this as an Exercise.)
Bases Let us now see what all this means in terms of bases. We will take all the vector spaces

involves to be finite-dimensional.
Thus let dim V' < oo, and let 8 = {v1,...,v,} be a basis of V.

Lemma 1.4. The dual space V* has a unique basis 8* = {v],..., v} with the property
. 0 i#j
vilv; ) = 5 =
3 (v0) =0y {1 i=j

One calls 5* = {v],...,v}} the dual basis to [3.
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Proof. Any linear map, and in particular every linear functional, is uniquely determined by its

action on basis vectors. Hence, the formulas above define n linear functionals v7,...,v;. To
check that they are linearly independent, let a1v] +. ..+ a,v;, = 0. Evaluating on v;, we obtain
a; =0, foralli=1,...,n. O

Theorem 1.5. Let 3,7 be ordered bases for V,W respectively, and T € L(V,W). Then the
matriz of T* € L(W*,V*) relative to the dual bases v*,* is the transpose of the matrix [T]g
) = (1)

Proof. Write
B=Avi,...,on}, vy ={wi,...,wn}, B ={v],...,v }, v=A{w],...,w;,}.
Let A=[T]}, B= [T*]g: By definition,

B
T(vj) =Y Agjwr,  (T*)(w]) = By
k l
Applying w; to the first equation, we get
wi(T(v))) =Y Apjwy(wy) = Ayj.
k

On the other hand,

wi(T(v;)) = (T*(w}))(vj) = Y_ Buvf (vj) = Bjs.

l

This shows Aij = Bﬂ O

This shows that the dual map is the ‘coordinate-free’ version of the transpose of a matrix.
For this reason, one also calls the dual map the ‘transpose map’, denoted 7.

Given a subspace S C V, one can consider the space of all linear functional vanishing on S.
This space is denoted S° (also ann(S)), and is called the annihilator of S:

SO={pecV* p(v)=0VveScV*

Given a linear functional [¢] on the quotient space V/S, one obtains a linear functional ¢ on
V by composition: V' — V/S — F. Note that ¢ obtained in this way vanishes on S. Thus, we
have a map

(V/S)* — S°.

Lemma 1.6. This map is an isomorphism. In particular, if dimV < oo, then dim S° =
dimV —dim S.

Proof. Exercise. O
Consider a linear map 7' € L(V, W), with dual map 7™ € L(W*, V™).

Lemma 1.7. The null space of T* is the annhilator of the range of T':
N(T*) = R(T)".



Proof.

b€ N(T™) & T*($) = 0
ST (Y)(v)=0forallveV
< YP(T(w))=0forallveV
< Y(w) =0 for all w € R(T)
& e R(T)°

As a consequence, we see that

hence

dim N(T*) = dim R(T)° = dim W — dim R(T),

dim R(T*) = dim W — dim N(T*) = dim R(T).

This is the basis-free proof of the fact that a matrix and its transpose have the same rank. We
also see (for finite-dimensional spaces) that 7' is injective (resp. surjective) if and only if 7% is
surjective (resp. injective).

More on dual spaces. (not covered in class)

0.

1.

Every element v € V defines a linear functional on V*, by ¢ +— ¢(v). This gives a map
V — (V*)*, which for dim V' < oo is an isomorphism. (For dim(V') = oo, it is not.)
The physicist Dirac invented the ‘bra-ket’ notation, where elements of a vector spaces
V are denoted by ‘ket’ |v) etc, and the elements of the dual space V* by ‘bra’ (¢|. The
pairing is then a bracket (bra-ket) (¢| v). The linear map

T:V =V, x— ¢(x)v
defined by v, ¢ is denoted T = |v)(¢|; this works nicely since

) = [v)(¢] z).

Given a basis v; € V as above, one write v; = |v;) and v} = (v;| (now omitting the

star). The definition of dual basis now reads as (v;|v;) = d;;. One has the following
expression for the identity map:

IV = Z ‘Ul><’l)z‘
i
The matrix elements of a linear map T: V — W are
(wj| T vi),
and T itself can be written

T = 3wy T e)eil

The claim that the matrices for T, T™ are transposes of each other becomes the statement
(wi| T vi) = (vil T*[ wy)
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