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Abstract. Poisson actions of Poisson Lie groups have an interesting and rich geometric
structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups.
Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent
Lie algebroid and the action algebroid for a Poisson action form a matched pair. We also
give a full classification of Dirac actions for which the base manifold is a homogeneous
space H/K, obtaining a generalization of Drinfeld’s classification for the Poisson Lie
group case.

1. Introduction

A Poisson–Lie group H is a Lie group endowed with a Poisson structure πH

such that the multiplication map MultH : H × H → H is Poisson. An action of
H on a Poisson manifold (M,πM ) is called a Poisson action if the action map
AM : H × M → M is a Poisson map. Such actions may be seen as ‘hidden’
symmetries, not necessarily preserving the Poisson structure on M . They were first
studied by Semenov–Tian-Shansky [43] in the context of soliton theory. Poisson
actions have a rich geometric structure, developed in the work of many authors,
including [18], [19], [24], [31], [33], [32], [48].

Let L = T ∗
πM be the cotangent Lie algebroid of M . Since the H-action on M

does not preserve the Poisson structure, its cotangent lift is not by Lie algebroid
automorphisms, in general. However, by a result of Jiang-Hua Lu [33] there is a
new Lie algebroid structure on the direct sum with the action Lie algebroid M ×h

L̂ = (M × h)⊕ T ∗
πM

in such a way that the summands are Lie subalgebroids. This comes equipped with
an H-action by Lie algebroid automorphisms preserving the first summand, and
inducing the given action on the quotient L̂/(M × h) ∼= L. Furthermore, letting
(d, g, h)β be the Manin triple for the Poisson Lie group (H,πH) (with β ∈ S2d
indicating the non-degenerate metric on d∗ ∼= d), the projection M × h → h and
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E. MEINRENKEN

the (symplectic) moment map T ∗
πM → h∗ ∼= g combine into an H-equivariant Lie

algebroid morphism
fL̂ : L̂→ d.

Among the applications developed in [33] is simple and transparent discussion
of Poisson homogeneous spaces. See [8], [9],[26] for further aspects of Lu’s Lie
algebroid, and generalizations to quasi-Poisson actions.

In this paper, we will consider Dirac actions of Dirac Lie groups. A Dirac
manifold (M,A, E) is given by a manifold M with a Dirac structure, that is,
a Courant algebroid A → M together with an involutive Lagrangian subbundle
E ⊆ A. This implies in particular that E is a Lie algebroid. Morphisms of Dirac
manifolds are defined in terms of Lagrangian relations. A Dirac Lie group is a Lie
group H equipped with a Dirac structure (A, E), together with a multiplication
morphism and a unit morphism

MultA : (H,A, E)× (H,A, E) 99K (H,A, E), ϵA : (pt, 0, 0) 99K (H,A, E)

satisfying the usual properties such as associativity. Dirac actions of Dirac Lie
groups on Dirac manifolds are defined similarly, in terms of an action morphism

AP : (H,A, E)× (M,P, L) 99K (M,P, L)

with base map an H-action on M . These definitions appear simpler than the
approach in [28] using VB-groupoids, but as we will see (Theorem 2) they are in
fact equivalent:

Theorem A. For any Dirac Lie group (H,A, E), the total space of A has the
structure of a VB-groupoid A ⇒ A(0) over the group H ⇒ pt, in such a way that
MultA becomes the groupoid multiplication. Its space of units is A(0) = Ee, the
fiber at the group unit of H, and E is a VB-subgroupoid with the same space of
units. Given a Dirac action on (M,P, L), one obtains a VB-groupoid action on P,
with AP as the action map; the subgroupoid E ⊆ A preserves L ⊆ P.

Suppose AP is a given Dirac action of (H,A, E) on (M,P, L). Similar to the
case of Poisson actions, the action of H on M lifts to an action on (P, L), but
this lift is usually not an action by Dirac automorphisms. We have the following
generalization of Lu’s result (Theorem 15):

Theorem B. There is a new Dirac structure (P̂, L̂) over M , on which H acts by
Dirac automorphisms, such that

P̂ = (M × (h⊕ h∗))⊕ P, L̂ = (M × h)⊕ L

as vector bundles. The subbundle (M × h∗)⊕ P is coisotropic and involutive, and

reduction of (P̂, L̂) with respect to this subbundle recovers (P, L).

There is an analogous result, Theorem 5, for the category LA∨ of Lie algebroids,
with morphisms the LA-comorphisms. (Dirac structures give examples by forget-
ting the ambient Courant algebroid; Poisson structures give examples by taking
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the cotangent Lie algebroid.) Given an LA∨-action of (H,E) on (M,L), we show

that the Lie algebroid structure on L̂ = (M×h)⊕L may be obtained as a quotient

L̂ = (TH × L)/H

for a suitable H-action on TH×L. The latter action is not by LA-automorphisms,
but it preserves the Lie bracket on H-invariant sections. As an application, we find
that the space E(0) = Ee =: g acquires a Lie algebra structure, the groupoid action
of E on its space of units is an LA∨-action, and one obtains an H-equivariant Lie
algebra triple (d, g, h) with d = ĝ. In [28], it is shown that the Dirac Lie group
structures on a Lie group H are classified by such triples together with an ad-
invariant element β ∈ S2d such that g is β-coisotropic. A conceptual construction
of β along the lines of Theorem B is given in Section 5.4. We refer to (d, g, h)β
as an H-equivariant Dirac–Manin triple. Returning to the case of a general Dirac
action, we have:

Theorem C. There is an H-equivariant bundle map fP̂ : P̂ → d, compatible with
brackets, and with the additional property

fP̂(γP̂) = β,

where γP̂ ∈ Γ(S2P̂) is the element given by the metric.

Here, compatibility with brackets means (cf. Section 2.7) that the map fP̂ to-

gether with the anchor map defines a bracket-preserving map (aP̂, fP̂) : P̂→ TM×d,
where the right-hand side is regarded as a product Lie algebroid.

As in Lu’s paper [34], we can use these results to classify the Dirac actions
for the case M = H/K. Let (H,A, E) be a Dirac Lie group, with corresponding
Dirac–Manin triple (d, g, h)β . Let k be the Lie algebra of K.

Theorem D. Dirac actions of H on Dirac manifolds (M,P, L) with M = H/K are
classified by K-equivariant Manin pairs (n, u)γn

, with generators k ⊆ u, together
with K-equivariant Lie algebra morphisms fn : n→ d extending the inclusion k→ h
and satisfying fn(γn) = β.

Given these data, one recovers (P, L) as a reduction of (H × n, H × u) (an
‘action Dirac structure’) by the action of K.

The classification takes on a simple form in the following special case. By
general facts about VB-groupoid actions (see Appendix A), the action of E on L
dualizes to a VB-groupoid action of E∗ on L∗. Since E is ‘vacant’, E∗ is a Lie
group. It turns out that E∗ is actually a Poisson Lie group, and the action is a
Poisson action. It is natural to assume that this action is transitive. We have the
following generalization of Drinfeld’s classification result, obtained in the thesis
[42]:

Theorem (Robinson [42]). The Dirac structures (P, L) on M = H/K, together
with Dirac actions of (H,A, E) such that E∗ acts transitively on L∗, are classified
by K-invariant β-coisotropic Lie subalgebras c ⊆ d such that c ∩ h = k.
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Some of our results are new even in the case of Poisson Lie groups, by considering
Dirac actions of Poisson Lie groups on Dirac manifolds. An important class of
Dirac Lie groups to which our results apply, and which is not a Poisson Lie group,
is provided by the Cartan–Dirac structure on any Lie group H with an invariant
metric on its Lie algebra h. The Cartan–Dirac structure, discovered independently
by Alekseev, Severa, and Strobl in the 1990s, is responsible for the theory of
quasi-Hamiltonian spaces [2], since the moment map condition can be described
as a Dirac morphism to H [7]. Its description as a Dirac Lie group (without
using that terminology) is given in [1, Thm. 3.9]; a future project will develop
quasi-Hamiltonian spaces for more general Dirac Lie group targets. Quasi-Poisson
Lie groups in the sense of Ševera-Valach [45] may also be considered from the
perspective of Dirac Lie groups; see Example 3.2(d). Hence, Theorem D can
serve as a starting point for the classification of the corresponding quasi-Poisson
homogeneous spaces.

We stress that our notion of ‘Dirac Lie groups’ follows [28], and is similar to [38],
but is different from notions used in [23, 40]. See Section 3.3 below. Accordingly,
Theorem D overlaps with Jotz’ [23] classification results for ‘Dirac homogeneous
spaces’ only in the Poisson case.

Acknowledgements. I would like to thank David Li-Bland for helpful discussions,
as well as Patrick Robinson, whose thesis work inspired the techniques developed
here. I also thank Madeleine Jotz for pointing out her work [22] on Dirac Lie
groupoids, and the referees for detailed comments.

2. Dirac geometry

In this section we review some background material that will be needed in this
paper. Our conventions will follow those of [27], [28], [42], to which we refer for a
more detailed discussion. Throughout, a non-degenerate symmetric bilinear form
on a vector space V will be referred to as a metric, and V as a metrized vector
space. A metrized Lie algebra (also known as a quadratic Lie algebra) is a Lie
algebra with an ad-invariant metric.

2.1. Dirac–Manin triples

We begin by describing some of the Lie-algebraic data that enter the classification
results for Dirac Lie groups. See [28, Sect. 3.2] for further details.

β-coisotropic subspaces. Let V be a vector space together with an element β ∈
S2V . We denote by β♯ : V ∗ → V the map β♯(µ) = β(µ, ·). A subspace U ⊆ V
is called β-coisotropic if β, viewed as a bilinear form on V ∗, vanishes on the
annihilator ann(U ). That is, β♯(ann(U)) ⊆ U . Equivalently, prV/U (β) = 0, where
prV/U : V → V/U is the quotient map. Note that the diagonal V∆ ⊆ V × V
is (β,−β)-coisotropic. Given a linear map Φ: V → V ′ with ϕ(β) = β′, and a
subspace U ′ ⊆ V ′, the preimage Φ−1(U ′) is β-coisotropic if and only if U ′ is β′-
coisotropic. If U ⊆ V is β-coisotropic, then Φ(U) ⊆ V ′ is β′-coisotropic. (See [42,
Lem. 6.1.2].)
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The groupoid d n d∗β ⇒ d. Let d be a Lie algebra, together with an ad-invariant

element β ∈ S2d. We denote the co-adjoint action on d∗ simply by a bracket,
so that ⟨[λ1, µ], λ2⟩ = −⟨µ, [λ1, λ2]⟩ for λ1, λ2 ∈ d and µ ∈ d∗. Denote by d∗β
the vector space d∗, equipped with the Lie bracket [µ1, µ2]β := [β♯(µ1), µ2]. The
coadjoint action of d is by derivations of this Lie bracket, and the semi-direct
product d̃ = dn d∗β becomes a metrized Lie algebra for the metric

⟨λ1 + µ1, λ2 + µ2⟩ = ⟨λ1, µ2⟩+ ⟨λ2, µ1⟩+ β(µ1, µ2) (1)

for λi ∈ d, µi ∈ d∗. We will denote by β̃ ∈ S2d̃ the element dual to the metric.
Let sd̃, td̃ : dn d∗β → d be the maps

sd̃(λ+ µ) = λ, td̃(λ+ µ) = λ+ β♯(µ).

These are the source and target maps for its structure as an action groupoid
dn d∗β ⇒ d, for the action λ 7→ λ+ β♯(µ). One has

sd̃(β̃) = −β, td̃(β̃) = β.

Dirac–Manin pairs. A Dirac–Manin pair (d, g)β is a Lie algebra d together with
an ad-invariant element β ∈ S2d and a β-coisotropic Lie subalgebra g ⊆ d. If β is
non-degenerate (so that it defines a metric on d), and g is Lagrangian, then one
calls (d, g)β a Manin pair.

Any Dirac–Manin pair (d, g)β determines a Manin pair by reduction, as follows.

Note that the pre-image s−1

d̃
(g) = g n d∗β ⊆ d̃ is a β̃-coisotropic Lie subalgebra.

The orthogonal space is an ideal in s−1

d̃
(g), hence

q = (gn d∗β)/(gn d∗β)
⊥

is a metrized Lie algebra. Let γq ∈ S2q be given by the reduced metric on q, and
let g ⊆ q be embedded as the reduction of d ⊆ d̃. Then (q, g)γq

is a Manin pair.
The map td̃ descends to a Lie algebra morphism

fq : q→ d,

restricting to the inclusion on g ⊆ q, and with fq(γq) = β.

Harish-Chandra pairs, dressing action. Let d be a Lie algebra, and H a Lie group
acting on d by Lie algebra automorphisms. An H-equivariant inclusion of the
Lie algebra h is said to define generators if the differential of the H-action on d
coincides with the adjoint action of h ⊆ d. In this case, we will denote the H-action
on d simply by h 7→ Adh, and call (d,H) a Harish-Chandra pair. A morphism
of Harish-Chandra pairs (c,K) → (d, H) is a Lie group morphism ϕ : K → H,
together with a Lie algebra morphism f : c→ d, such that f is K-equivariant and
satisfies f |k = Teϕ : k→ h.

Given a Lie algebra g complementary to h, we will call (d, g, h) an H-equivariant
Lie algebra triple. In this situation one obtains a Lie algebra action of d on H,
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extending the action τ 7→ τL of h given by the left-invariant vector fields. Denote
by prg and prh the projections from d onto the two summands. In terms of left
trivialization TH = H × h, the action ϱ : d→ Γ(TH) is given by

ϱ(λ)h = Adh−1 prh(Adh λ), λ ∈ d. (2)

In the context of Poisson Lie groups, this action is known as the (right) dresssing
action. (There is also a left dressing action (h, λ) 7→ − prh(Adh−1 λ), but we will
not use it. )

Equivariant Dirac–Manin triples. A Dirac–Manin triple (d, g, h)β is a Dirac–Ma-
nin pair (d, g)β together with a Lie subalgebra h ⊆ d complementary to g. It is
called a Manin triple if (d, g)β is a Manin pair and h is Lagrangian. A Dirac Manin
triple (d, g, h)β with an action of H on d is called an H-equivariant Dirac–Manin
triple if (d,H) is a Harish-Chandra pair, and β is H-invariant.

2.2. Courant algebroids

A Courant algebroid [30] is a vector bundle A → M , equipped with a non-
degenerate symmetric fiberwise bilinear form ⟨·,·⟩ called the metric, a bundle map
a : A→ TM called the anchor, and a bilinear map [[·,·]] : Γ(A)×Γ(A)→ Γ(A) called
the Courant bracket, satisfying the following axioms, for all sections σ1, σ2, σ3 ∈
Γ(A):

(1) [[σ1, [[σ2, σ3]]]] = [[[[σ1, σ2]], σ3]] + [[σ2, [[σ1, σ3]]]],
(2) a(σ1)⟨σ2, σ3⟩ = ⟨[[σ1, σ2]], σ3⟩+ ⟨σ1, [[σ2, σ3]]⟩,
(3) [[σ1, σ2]] + [[σ2, σ1]] = a∗d⟨σ1, σ2⟩.

(In the last condition, the metric is used to identify A∗ with A.) The bracket is
sometimes also called the Dorfman bracket, after [14]. The conditions imply [47]
that the anchor map is bracket-preserving, and that

(d) [[σ1, fσ2]] = f [[σ1, σ2]] + (La(σ1)f)σ2

for f ∈ C∞(M). Note that a Courant algebroid over M = pt is the same thing
as a metrized Lie algebra. For a Courant algebroid A, changing the sign of the
metric defines a Courant algebroid A. The standard Courant algebroid over M is
the direct sum TM = TM ⊕ T ∗M , with the metric given by the pairing between
vectors and covectors, with anchor the projection to the first summand, and with
the Courant bracket

[[X1 + α1, X2 + α2]] = [X1, X2] + L(X1)α2 − ι(X2)dα1

for vector fields X1, X2 ∈ Γ(TM) and 1-forms α1, α2 ∈ Ω1(M). This is essentially
the setting of Courant’s original work [11], [12].

2.3. Dirac manifolds

A Dirac structure [30] on a manifold M is a Courant algebroid A over M together
with a Lagrangian subbundle E ⊆ A that is involutive, that is, Γ(E) is closed
under the Courant bracket. For any Dirac structure, the Courant bracket restricts
to a Lie bracket on Γ(E), making E into a Lie algebroid. The triple (M,A, E) will
be called a Dirac manifold. We often refer to M itself as a Dirac manifold, and
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to (A, E) as its Dirac structure. For the standard Courant algebroid, the Dirac
structures (TM, E) with the property E ∩ TM = 0 are in 1-1 correspondence
with Poisson structures πM ; the correspondence takes the Poisson structure to
E = Gr(πM ), the graph of the bundle map π♯

M : T ∗M → TM, α 7→ πM (α, ·).
2.4. The category DIR
For any Courant algebroid A, we denote by A the Courant algebroid obtained
by changing the sign of the metric. A Courant morphism R : A1 99K A2 [3], [10]
between two Courant algebroids is a smooth map Φ: M1 →M2 of the underlying
manifolds, together with a Lagrangian subbundle R ⊆ A2 × A1 along the graph
Gr(Φ), such that (a2×a1)(R) ⊆ Gr(TΦ), and satisfying an integrability condition:
if two sections of A2 ×A1 restrict over Gr(Φ) to a section of R, then so does their
Courant bracket. We shall write x1 ∼R x2 if and only if (x2, x1) ∈ R. Since R is
Lagrangian, we have

x1 ∼R x′
1, x2 ∼R x′

2 =⇒ ⟨x1, x
′
1⟩ = ⟨x2, x

′
2⟩. (3)

For sections σi ∈ Γ(Ai), write σ1 ∼R σ2 if and only if (σ2 × σ1)|Gr(Φ) ∈ Γ(R).
The integrability of R implies

σ1 ∼R σ2, σ′
1 ∼R σ′

2 =⇒ [[σ1, σ
′
1]] ∼R [[σ2, σ

′
2]]. (4)

Composition of Courant morphisms is defined as a composition of relations,
provided that certain transversality conditions are satisfied (cf. [28]). A Dirac
morphism [10]

(Φ, R) : (M1,A1, E1) 99K (M2,A2, E2) (5)

is a Courant morphism R : A1 99K A2, with base map Φ: M1 → M2, with the
following property:

(D) For all m ∈ M and every element x2 ∈ (E2)Φ(m), there is a
unique element x1 ∈ (E1)m with x1 ∼R x2.

Given another Dirac morphism (Φ′, R′) : (M2,A2, E2) 99K (M3,A3, E3), the
composition

(Φ′ ◦ Φ, R′ ◦R) : (M1,A1, E1) 99K (M3,A3, E3)

is a well-defined Dirac morphism – the transversality conditions mentioned above
are automatic due to the uniqueness condition in (D). We hence have a well-
defined category of Dirac manifolds. Any Dirac morphism induces a comorphism
E1 99K E2 of Lie algebroids: A bundle map Φ∗E2 → E1 such that the induced
map on sections is a Lie algebra morphism, and is compatible with the anchor.
For any map Φ: M1 → M2, the direct sum of the graphs of the differential TΦ
and of its dual (TΦ)∗ defines a Courant morphism

TΦ: TM1 99K TM2.

If M1,M2 are Poisson manifolds, then Φ is a Poisson map if and only if it defines a
Dirac morphism TΦ: (M1,TM1,Gr(π1)) 99K (M2,TM2,Gr(π2)). We will use the
following notation for the categories that we are interested in:

POI —Poisson manifolds and Poisson maps,

DIR —Dirac manifolds and Dirac morphisms ,

LA∨ —Lie algebroids and comorphisms of Lie algebroids.
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We have a functor POI → DIR taking (M,π) to (M,TM,Gr(π)), and a
functor DIR → LA∨ taking (M,A, E) to (M,E). By composition, one obtains
the functor POI → LA∨ associating to a Poisson manifold its cotangent Lie
algebroid Gr(π) ∼= T ∗

πM . There is also a functor LA∨ → POI in the opposite
direction, taking a Lie algebroid E to the dual bundle E∗ with a linear Poisson
structure on its total space; as is well-known, the composition gives the tangent
lift of a Poisson structure from M to TM .

One also encounters Dirac comorphisms (also called backward Dirac [7]): These
are defined similarly to Dirac morphisms, but with (D) replaced by the condition

(D∨) For all m ∈ M and every x1 ∈ (E1)m, there is a unique
x2 ∈ (E2)Φ(m) such that x1 ∼R x2.

This defines a category DIR∨ with a functor to the category LA of Lie algebroids
and Lie algebroid morphisms.

2.5. Action Dirac structures

Let q be a metrized Lie algebra, with metric given by an ad-invariant element
γ ∈ S2q. Given an action ϱ : q → Γ(TM) on a manifold M , with the property
that all stabilizer algebras for the action are coisotropic in q, the trivial bundle
M×q has a well-defined structure of an action Courant algebroid [27]. The anchor
a : M × q → TM coincides with the action map, and the metric and Courant
bracket extend the metric and Lie bracket on constant sections. Any Lagrangian
Lie subalgebra g ⊆ q defines an action Dirac structure

(M × q, M × g) (6)

on M . As an example, consider any Lie algebra g, and take q = g n g∗ with
the metric given by the pairing. Its natural action on M = g∗ has coisotropic
stabilizers, hence M = g∗ becomes a Dirac manifold. In this example, the Dirac
structure is canonically isomorphic to (Tg∗,Gr(πg∗)) with the usual Lie–Poisson
structure πg∗ .

2.6. Actions of Lie algebroids and Courant algebroids

An action of a Lie algebroid E →M along a map Φ: N →M is a comorphism of
Lie algebroids

TN / /___

��

E

� �
N

Φ
/ / M.

Given such an action, the vector bundle pullback Φ∗E has a Lie algebroid struc-
ture, in such a way that the natural map Φ∗E → E is a Lie algebroid comorphism.
Similarly [27], an action of a Courant algebroid A→M on N is given by a vector
bundle comorphism TN 99K A, such that the induced map ϱN : Γ(A) → Γ(TN)
preserves brackets and is compatible with the anchor:

ϱN ([[σ1, σ2]]) = [ϱN (σ1), ϱN (σ2)], TΦ ◦ ϱN = aA.
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If furthermore the stabilizers of this action (i.e., the kernels of AΦ(n) → TnN)
are coisotropic in A, then the vector bundle pullback Φ∗A has a Courant algebroid
structure, and comes with a morphism of Courant algebroids Φ∗A 99K A. In the
case of a Dirac structure (A, E) this becomes a Dirac morphism (Φ∗A,Φ∗E) 99K
(A, E).

2.7. Maps compatible with brackets

Let A be a Courant algebroid with base M , and let d be a Lie algebra. A bundle
map

f : A→ d

(with base map M → pt) will be called compatible with brackets if the map
(aA, f) : Γ(A)→ Γ(TM × d) is bracket preserving, where TM × d has the product
Lie algebroid structure. That is, for all σ1, σ2 ∈ Γ(A),

f([[σ1, σ2]]) = [f(σ1), f(σ2)] + LaA(σ1)f(σ2)− LaA(σ2)f(σ1). (7)

Note that since the right-hand side is skew-symmetric in σ1, σ2, this equation
means in particular that

f ◦ a∗A = 0, (8)

by property (c) in the definition of Courant algebroids.
Suppose in addition that d has an ad-invariant element β ∈ S2d, and that

f(γA) = β, where γA ∈ Γ(S2A) is the section determined by the metric. Together
with (8), this means (aA, f)(γA) = β, viewed as a section of S2(TM × d). Suppose
ϱQ : d → Γ(TQ) is an action of d on a manifold Q, with β-coisotropic stabilizers.
By composition, we obtain an action of A on Q ×M along prM , defined by the
comorphism

T (Q×M) 99K d× TM 99K A

(where we regard the morphism (aA, f) as a comorphism in the opposite direction).
That is, ϱQ×M (σ) = ϱQ(f(σ)) + aA(σ). By Section 2.6, it follows that pr∗M A =
Q×A is a Courant algebroid over Q×M . If (A, E) is a Dirac structure, then we
obtain a Dirac structure (Q×A, Q×E). The action Dirac structures from Section
2.5 may be regarded as such pullbacks. See [27, Sect. 4].

2.8. Pullbacks

There is another kind of pullback for Lie algebroids, Courant algebroids, and
Dirac structures, as follows. Suppose Φ: N → M is a smooth map, and E is a
Lie algebroid over M . Suppose that the anchor aE is transverse to TΦ. Then the
fiber product

Φ!E / /

� �

E

aE

� �
TN

TΦ
/ / TM

is a vector bundle Φ!E → N , with a canonical Lie algebroid structure [36] (cf. [27]).
Here the left vertical map serves as the anchor, and the upper horizontal map
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defines a Lie algebroid morphism to E. Similarly, if A→M is a Courant algebroid
whose anchor aA is transverse to TΦ, then one obtains a Courant algebroid Φ!A =
C/C⊥ where C is the fiber product of A with TN over TM [28]. Finally, given
a Dirac structure (A, E) over M such that aE is transverse to TΦ, we obtain a
pullback Dirac structure [27] (Φ!A, Φ!E) on N , with a Dirac comorphism

(Φ, R) : (N,Φ!A,Φ!E) 99K (M,A, E).

If N is a direct product N = Q×M , and Φ is the projection to the second factor,
then Φ!A = TQ× A.

As another special case, Φ!(TM) = TN . If E ⊆ TM is a Dirac structure, then
Φ!E is a Poisson structure if and only if E is a Poisson structure and Φ is an
immersion.

2.9. Reductions

Let (M,A, E) be a K-equivariant Dirac manifold. That is, K is a Lie group acting
on M , with a lift to an action by Courant automorphisms of A, preserving the
subbundle E. For ν ∈ k let LA(ν) be the resulting Lie derivatives on Γ(A). A
K-equivariant bundle map

ϱA : M × k→ A

is said to define generators if LA(ν) = [[ϱA(ν), ·]] for all ν ∈ k. We will only
consider the case that the generators are isotropic, that is, ⟨ϱA(ν), ϱA(ν)⟩ = 0
for all ν. Suppose the K-action is a principal action, and let J = ϱA(M × k).
One defines a reduced Courant algebroid A//K = (J⊥/J)/K. Assuming that E ∩
J has constant rank (or equivalently, E ∩ J⊥ has constant rank), one defines
E//K =

(
(E ∩ J⊥)/(E ∩ J)

)
/K. Then (A//K, E//K) is a Dirac structure on

M/K. See Bursztyn, Cavalcanti, and Gualtieri [10] for details and many more
general reduction procedures; see also Marrero, Padron, and Rodrigues–Olmos
[37] for a detailed discussion of reductions of Lie algebroids. If E ∩ J = 0 (resp.,
J ⊆ E) then the quotient map p : M → M/K lifts to a Dirac morphism (resp.
comorphism)

(M,A, E) 99K (M/K, A//K, E//K).

The pullback operation p! is a right inverse to reduction, in the following sense:

Proposition 1. Let p : M → B be a principal K-bundle, and (P, L) a Dirac
structure over the base B. Then the pullback Dirac structure (p!P, p!L) on M
is K-equivariant, with isotropic generators, and its reduction by K is canonically
isomorphic to (P, L).

Proof. Let C ⊆ P × TM be the coisotropic subbundle along Gr(p), given as the
fiber product over TB. By definition,

p!P = C/C⊥, p!L = (L× TM) ∩ C
/
(L× TM) ∩ C⊥.

For (y, z) ∈ C, let [(y, z)] ∈ p!P be its equivalence class. The Lagrangian subbundle

R ⊆ P× p!P, consisting of all (y, [(y, z)]) with (y, z) ∈ C, defines the Courant mor-
phism R : p!P 99K P. Consider the canonical action of K on TM , with generators
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k→ Γ(TM) ⊆ Γ(TM) given by the action on M . Its direct product with the trivial
action on P preserves C, and its generators descends to generators k→ Γ(C/C⊥).
Let J ∼= M × k be the isotropic subbundle of C/C⊥ spanned by the generators.
Then J ⊆ p!L ⊆ C/C⊥, and the reduction (p!L)//K ⊆ (p!P)//K is defined. Since
elements x ∈ J satisfy x ∼R 0, the morphism R descends to a Dirac morphism

(idB , R//K) :
(
B, (p!P)//K, (p!L)//K

)
99K (B, P, L).

Since any element y ∈ P satisfies [(y, v)] ∼R y, where v ∈ TM is any lift of
aP(y) ∈ TB, the morphism R//K is surjective. Hence, by dimension considerations
it is an isomorphism. �

3. Dirac Lie groups and Dirac actions

3.1. Definitions

Poisson Lie groups do not conform to the official definition of group objects in
the category POI of Poisson manifolds: The product of Poisson manifolds is
not a direct product in the categorical sense, and in any case the inverse map
is anti-Poisson rather than Poisson. See Blohmann and Weinstein [4] for a de-
tailed discussion. What makes them ‘group-like’ objects is that they come with
an associative multiplication morphism and a unit morphism, satisfying the usual
properties. (The existence of an inverse, and the fact that it is anti-Poisson, are
automatic.) In a similar spirit, we can define Dirac Lie groups to be ‘group-like’
objects in the category DIR of Dirac manifolds. For a Lie group H, we denote by
MultH : H ×H → H the multiplication map, and by ϵH : pt → H the unit map
(that is, the inclusion of the group unit).

Definition 1.

(1) A Dirac Lie group is a Lie group H with a Dirac structure (A, E), together
with Dirac morphisms

MultA : (H,A, E)× (H,A, E) 99K (H,A, E)

and
ϵA : (pt, 0, 0) 99K (H,A, E),

with base maps MultH and ϵH respectively, such that MultA is associative
and ϵA is a two-sided unit:

MultA ◦ (MultA × idA) = MultA ◦ (idA ×MultA),

MultA ◦ (ϵA × idA) = idA = MultA ◦ (idA × ϵA).

(2) A Dirac action of (H,A, E) on a Dirac manifold (M,P, L) is a Dirac mor-
phism

AP : (H,A, E)× (M,P, L) 99K (M,P, L),
with base map AM : H ×M →M an H-action, satisfying

AP ◦ (idA×AP) = AP ◦ (MultA × idP),

AP ◦ (ϵA × idP) = idP.

The following result shows that Dirac actions can always be described as actions
of VB-groupoids. We refer to Appendix A for background and notation for VB-
groupoids and their actions.
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Theorem 2.

(1) For any Dirac Lie group (H,A, E), the Courant algebroid A is naturally
a VB-groupoid A ⇒ A(0) with base the group H ⇒ pt, and with units
A(0) = Ee, in such a way that MultA becomes the groupoid multiplication.
The subbundle E is a vacant VB-subgroupoid, with the same space of units
E(0) = Ee.

(2) For a Dirac action of (H,A, E) on a Dirac manifold (M,P, L) the bundle
P is naturally a VB-groupoid module over A, in such a way that AP be-
comes the groupoid module action. The subbundle L is a submodule over
the subgroupoid E.

Proof. (1) For the proof, we need to define the source and target maps, verify
that MultA gives a well-defined multiplication of composable elements, and finally
prove the existence of groupoid inverses.

1. Definition of source and target map. Let g := Ee. We can think of g as
the Lagrangian subbundle of A × 0 along Gr(ϵH) ⊆ H × pt defining the Dirac
morphism ϵA. The identity MultA ◦ (ϵA× idA) = idA says that for any given x ∈ A
there exists ξ ∈ g with

x ∼(ϵA×idA) (ξ, x) ∼MultA x.

This ξ is unique, since (ξ, 0h) ∼MultA 0h implies ξ = 0, by definition of Dirac
morphisms. We take it to be the definition of t(x), so that (t(x), x) ∼MultA x.
Similarly, there is a unique element s(x) ∈ g such that (x, s(x)) ∼MultA x.

2. We next prove that

(x1, x2) ∼MultA x =⇒ s(x1) = t(x2), t(x1) = t(x), s(x2) = s(x).

The relation (x1, x2) ∼MultA x gives

(x1, s(x1), x2) ∼MultA×id (x1, x2) ∼MultA x;

hence by associativity of MultA there exists y such that

(x1, s(x1), x2) ∼id×MultA (x1, y) ∼MultA x.

In particular, (s(x1), x2) ∼MultA y. Subtracting (t(x2), x2) ∼MultA x2, this shows

(s(x1)− t(x2), 0) ∼MultA y − x2.

Since the left-hand side is in E × E, it follows that z := y − x2 ∈ E. But
we also have (t(z), z) ∼ z; hence the uniqueness condition in the definition of
Dirac morphism shows (t(z), z) = (s(x1)− t(x2), 0). This proves z = 0 and hence
s(x1) = t(x2). By a similar argument, t(x1) = t(x) and s(x2) = s(x).

3. The maps s and t restrict to fiberwise isomorphisms on E. Let h ∈ H be
given. For any ξ ∈ g there exist, by definition of Dirac morphism, elements x ∈ Eh

and y ∈ Eh−1 with (x, y) ∼MultA ξ. We have t(x) = ξ = s(y). This shows that
both s and t restrict to fiberwise isomorphisms on E. It also follows that ker(s)
and ker(t) are subbundles of A, both of which are complements to E in A.
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4. Definition of the groupoid multiplication ◦. If (0h1 , 0h2) ∼MultA z, then
z ∈ Eh1h2 by definition of Dirac morphism, but also s(z) = s(0h2) = 0, hence
z = 0. This shows that if x1, x2 ∈ A are such that (x1, x2) ∼MultA x for some
x ∈ A, then this x is unique. In this case, we will call x1, x2 composable, and write
x = x1 ◦ x2. As we saw above, a necessary condition for composability is that
s(x1) = t(x2). Since the subbundle consisting of elements (x1, x2) ∈ A × A with
this property has rank 2 rank(A)− dim g = 3dim g = rank(Gr(MultA)), it follows
that this condition is also sufficient.

5. Existence of a groupoid inverse. Let x ∈ Ah be given. Let y1 ∈ Eh−1 be the
unique element with s(x) = t(y1), and put y = y1+0h−1 ◦λ with λ = t(x)−x◦y1 ∈
ker(te) ⊆ Ae. Then

x ◦ y = x ◦ y1 + 0h ◦ 0h−1 ◦ λ = x ◦ y1 + λ = t(x),

so that y is a right inverse to x. Similarly, one has the existence of a left inverse.
By the usual argument, it is automatic that left and right inverses coincide.

(2) Arguing as in part (1), we see that for any y ∈ P, there exists a unique
element u(y) ∈ g with (u(y), y) ∼AP y. Furthermore, (x, y) ∼AP y′ implies that
s(x) = u(y) and t(x) = u(y′).

We claim that (x, y) ∼AP y′ uniquely determines y′ in terms of x, y. Indeed,
suppose w ∈ Ph.m with (0h, 0m) ∼AP w. We will show w = 0 by proving that
⟨w, z⟩ = 0 for all z ∈ Ph.m. Write u(z) = y1 ◦ y2 with y1 ∈ Eh and y2 ∈ Eh−1 .
Then

(y1, y2, z) ∼MultA×idP (u(z), z) ∼AP z.

By the property AP ◦ (idA×AP) = AP ◦ (MultA × idP), there exists z′ ∈ Pm with

(y1, y2, z) ∼idA×AP (y1, z
′) ∼AP z.

Taking the inner product of (y1, z
′) ∼AP z with (0h, 0m) ∼AP w, and using (3), we

find ⟨w, z⟩ = 0.
The bundle of elements (x, y) ∈ A × P with s(x) = u(y) has rank equal to

rank(A) + rank(P) − dim g = rank(P) + dim g, which is also the rank of Gr(AP).
Hence x ◦ y is defined if and only if s(x) = u(y). The rest is clear. �
Remark 1.

(1) In [28], Dirac Lie groups were defined in terms of a VB-groupoid structure
on A; Theorem 2 shows that the Definition 1 is equivalent. In turn, the description
in [28] is equivalent to the super-geometric definition of [29], where it is shown that
these are indeed the groups for the super-geometric incarnation of Dirac manifolds.

(2) Definition 1 is similar to that in a 2007 preprint of Milburn [38], who defines
‘Dirac Lie groups’ as group objects for various kinds of ‘Dirac categories’. However,
his choice of morphisms for general Courant algebroids is much more restrictive
then the one used here.

(3) On the other hand, our definition is different from notions of ‘Dirac Lie
group’ in the work of Ortiz [40] and Jotz [23] – see Section 3.3 below.

In an analogous fashion, one can define ‘group-like’ objects, and their actions,
in the category LA∨ of Lie algebroids and Lie algebroid comorphisms. One finds
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that if (H,E) is an LA∨ Lie group, then E is a vacant VB-groupoid E ⇒ E(0)

with base H ⇒ pt, and with E(0) = Ee =: g as the units. Compatibility with the
Lie algebroid structure means that E is an LA-groupoid. Given an LA∨-action of
(H,E) on a Lie algebroid (M,L), the Lie algebroid L becomes an LA-groupoid
module. See Stefanini [46, Chapt. 3] for related discussions.

Example 1. Any Lie group H has an LA∨ Lie group structure (H,E), defined
by the action Lie algebroid E = H × h for the infinitesimal conjugation action on
H. The VB-groupoid structure E ⇒ h is that of an action groupoid for the trivial
H-action on h. More generally, given a Lie algebra automorphism κ of h, one can
consider the κ-twisted conjugation action; its action Lie algebroid again defines an
LA∨ Lie group structure.

Given a Lie group H, one has the classification results:

Poisson Lie group structures on H ←→ H-equivariant Manin triples [15].

Dirac Lie group structures on H ←→ H-equivariant Dirac–Manin triples [28].

LA∨ Lie group structures on H ←→ H-equivariant Lie algebra triples [35].

We will recall below how these correspondences come about, and generalize to
actions over homogeneous spaces.

3.2. Examples

We conclude this section with some examples of Dirac actions.

(a) Dirac actions of Poisson Lie groups. Let H be a Lie group, and TH the
standard Courant algebroid with the multiplication morphism MultTH = TMultH .
This morphism is the multiplication for the VB-groupoid structure, given as the
direct product of the group TH ⇒ pt with the cotangent groupoid T ∗H ⇒ h∗. As
remarked in [28], a Dirac structure (TH, E) defines a Dirac Lie group structure for
this multiplication morphism if and only if E is the graph of a Poisson Lie group
structure πH . Hence, all Dirac Lie groups with A = TH are actually Poisson Lie
groups (unless one relaxes the definitions (cf. Remark 1) or allows twistings by
closed 3-forms; see below).

Given an H-action on M , one obtains a VB-groupoid action of TH on TM ,
where ATM = TAM is the product of the action ATM = TAM of the group TH
on TM with the ‘dual’ action AT∗M (cf. Appendix A) of the groupoid T ∗H ⇒ h∗

on T ∗M ; the moment map uT∗M : T ∗M → h∗ is the usual moment map from
symplectic geometry. Given a Dirac structure (TM, L), this action defines a Dirac
Lie group action of (H, TH, E) if and only if L is a submodule over E. If πM

is a Poisson structure and the H-action on M is Poisson, then L = Gr(πM ) is a
submodule. But there are also many non-Poisson examples: For instance, L = TM
is always a submodule.

(b) Cartan–Dirac structure. Let H be a Lie group with Lie algebra h. Suppose
h has an Ad(H)-invariant metric, and denote by h the same Lie algebra with
the opposite metric. The metrized Lie algebra d = h ⊕ h contains the diagonal
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g = h∆ ⊆ h ⊕ h as a Lagrangian Lie subalgebra. The Lie algebra d acts on H by
the difference of the left-invariant and right-invariant vector fields,

ϱ(τ ′, τ) = τL − τ ′
R
.

This action has coisotropic (in fact, Lagrangian) stabilizers. It defines an ac-
tion Dirac structure (A, E) = (H × d, H × g) on H, known as the Cartan–Dirac
structure. (One can identify A with the twist of the standard Courant algebroid
TH by the Cartan 3-form η ∈ Ω3(H) defined by the metric (see [7, Example
4.11] or [1, Sect. 3.1]). This reproduces the perhaps more familiar description of
the Cartan–Dirac structure.) The Courant algebroid is a VB-groupoid A ⇒ g,
given as the direct product of the group H with the pair groupoid of h: Thus
s(h, τ ′, τ) = τ, t(h, τ ′, τ) = τ ′, and for composable elements

(h1, τ
′
1, τ1) ◦ (h2, τ

′
2, τ2) = (h1h2, τ

′
1, τ2).

As shown in [1, Sect. 3.4], the groupoid multiplication MultA is a Dirac mor-
phism, hence (H,A, E) is a Dirac Lie group. Note that the orbits of the Lie
algebroid E = H × g are the conjugacy classes in H. As explained in [7, 10], this
Dirac Lie group structure is responsible for the theory of quasi-Hamiltonian spaces
[2]. Suppose M is a manifold with an action of d, with coisotropic stabilizers, and
let P = M × d be the action Courant algebroid. Suppose that the action of the
sub-Lie algebra h integrates to an action AM of H. Then the groupoid action AP
of A ⇒ g, given by the product of the action AM with the groupoid multiplication
Multd, is a Courant morphism. Any Lagrangian Lie subalgebra l ⊆ d defines a
Dirac structure L = M × l in P, which is a submodule for the groupoid action of
E. That is, we have a Dirac action of (H,A, E) on (M,P, L).

An interesting special case is the following: Consider any coisotropic Lie sub-
algebra c ⊆ h × h, and let M = D.c ⊆ Grassr(d) be its orbit under the adjoint
action of D = H × H on the Grassmannian of r = dim c-dimensional subspaces.
The infinitesimal action of d has coisotropic stabilizers, since the stabilizer at c
contains c itself.

(c) Wonderful compactification. We continue the discussion from (b), but with
the assumption that H is a connected complex semi-simple Lie group with trivial
center. In this case there is an embedding H → GrassdimH(d), taking h ∈ H to
the graph of the adjoint action, Gr(Adh). Equivalently, H is embedded as the
D-orbit of the diagonal. According to deConcini-Procesi, the closure of H inside
the Grassmannian is a smooth submanifold M . It is called the wonderful compact-
ification. Since the infinitesimal action of d on H has co-isotropic stabilizers, the
same is true for the action on its closure M . Thus, by the above, any choice of a
Lagrangian Lie subalgebra l (in particular l = g) makes M into a Dirac manifold
(M,P, L), with a Dirac action of (H,A, E).

For h semisimple, there is a classification of Lagrangian Lie subalgebras of h⊕h,
due to Karolinsky [24] and Delorme [13]. A detailed discussion of the variety of
Lagrangian Lie subalgebras of d = h⊕h, and its relation with Poisson homogeneous
spaces, may be found in the work of Evens and Lu [16], [17].
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(d) Quasi-Poisson actions. In a recent paper, Ševera-Valach [45] develop a the-
ory of quasi-Poisson Lie groups H. These are classified by H-equivariant Manin
quadruples (d, h, g, h′)β , consisting of a Lie algebra d with invariant metric β, and
with three Lie subalgebras such that d = h⊕ g⊕ h′. Here the metric restricts to a
metric on g and to zero on both h, h′; the adjoint action of g is required to preserve
both h and h′. An example is the usual triangular decomposition of a semisimple
complex Lie algebra, and more general decompositions involving parabolics. (See
[45].) Without getting into details, we remark that the quasi-Poisson Lie groups
can be studied from the perspective of Dirac Lie groups; the relevant Dirac Manin
triple is (d, g ⊕ h′, h)β . Similarly, the q-Poisson actions can be regarded as Dirac
Lie group actions.

3.3. Comparison with the Ortiz–Jotz theory

As already remarked, our approach to Dirac Lie groups and their actions is differ-
ent from that in the work of Ortiz [40] and Jotz [23].

In Ortiz’ paper [40], a multiplicative Dirac structure on a Lie group H is a Dirac
structure E ⊆ TH inside the standard Courant algebroid, such that E is a sub-
groupoid of TH ⇒ h∗, but not necessarily a wide subgroupoid: the space of units
of E may be strictly smaller than h∗. He refers to a Lie group with multiplica-
tive Dirac structure as a Dirac Lie group, and shows that, modulo a ‘regularity
assumption’, all of these are obtained by pullback of a Poisson Lie group structure
under a surjective group homomorphism. Jotz [23] remarks that Ortiz’s definition
is equivalent to group multiplication of H being weakly Dirac, and obtains a more
precise version of the classification theorem. (Here, by weakly Dirac we mean that
one omits the uniqueness part in condition (D) from 2.4 – in many references, in-
cluding [23], these are referred to as Dirac maps.) In a similar fashion, Jotz studies
Dirac actions on a homogeneous space M = H/K, equipped with Dirac structure
L ⊆ TM , by requiring that the action map is weakly Dirac, and again she obtains
a classification of such actions.

For the more general Dirac structures (A, E) in this paper, in order to demand
that ‘group multiplication is a Dirac morphism’, it is necessary to specify a mul-
tiplication morphism MultA. We work with the strong notion of Dirac morphism
in order to have an actual category. As mentioned before, if A = TH this only al-
lows Poisson Lie group structures, whereas the Ortiz–Jotz definition also includes,
e.g., E = TH, and more general versions of Example 3.2(a). On the other hand,
Examples 3.2(b),(c), and (d) are not included in their theory.

One could relax our definitions in two directions, similar to Ortiz–Jotz: either
(i) allow weak Dirac morphisms (keeping in mind that these cannot always be
composed), or (ii) study multiplicative Dirac structures over H (given by a CA-
groupoid structure A ⇒ g such that the Dirac structure E ⊆ A is a subgroupoid),
and modules over these. These two directions are different: e.g., having MultA
only weakly Dirac does not determine a groupoid structure on A. For both gener-
alizations, no general classification results are in sight.
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4. LA∨-actions

Recall again that forgetting the ambient Courant algebroid is a functor DIR →
LA∨. In particular, any Dirac Lie group structure on H defines an LA∨-Lie group
structure. We will hence begin by considering LA∨-actions. Aside from Poisson
Lie groups with the cotangent Lie algebroid E = T ∗

πH, the main example to keep
in mind is the LA∨-Lie group structure (H,H × h) from Example 1.

4.1. General properties of LA∨ actions

Let (H,E) be an LA∨-Lie group. The unit fiber g = Ee inherits a Lie algebra
structure such that the inclusion g ⊆ E is a sub-Lie algebroid along {e} ⊆ H. As
we observed above, the VB-groupoid E ⇒ g is vacant : Its source and target maps
are fiberwise isomorphisms. We will use the source map to define a trivialization:

E = H × g.

Let us temporarily forget about the Lie algebroid structure and just consider
any vacant VB-groupoid E ⇒ g over H ⇒ pt. Let V be a VB-module, with base M
and moment map uV : V → g. We obtain an H-action by bundle automorphisms
of V , covering the action AM : H ×M →M on the base, given by

h • y := x ◦ y, (9)

for y ∈ V and h ∈ H; here x ∈ E is the unique element in the fiber Eh for which
sE(x) = uV (y).

For a first application, recall that any groupoid acts on its space of units; for a
VB-groupoid this makes the bundle of units into a VB-module. Hence V = g, as a
vector bundle over M = pt, is a VB-module over E ⇒ g, and we obtain an action
• of H on g. By definition, this action is such that

tE(x) = h • sE(x) (10)

for all x ∈ Eh. For a general VB-module V over E ⇒ g, the moment map
uV : V → g is a morphism of VB-modules; hence it has the equivariance property

uV (h • y) = h • uV (y). (11)

(Alternatively, this follows from (9) and (10), since uV (h•y) = tE(x) and uV (y) =
sE(x).)

By a result of Ping Xu [48], for any Poisson action of a Poisson Lie group H
on a Poisson manifold M , the (symplectic) moment map T ∗

πM → h∗ = g is a
morphism of Lie algebroids. The following proposition is a similar result for any
LA∨-action of (H,E) on (M,L).

Proposition 3. The moment map uL : L → g is a morphism of Lie algebroids:
That is,

uL([σ1, σ2]) = [uL(σ1), uL(σ2)]g + LaL(σ1)uL(σ2)− LaL(σ2)uL(σ1)

for all sections σ1, σ2 ∈ Γ(L). In particular, both sE , tE : E → g are morphisms of
Lie algebroids.
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Proof. The Lie algebroid comorphism AL : E×L 99K L restricts to a Lie algebroid
comorphism g × L 99K L, with base map the identity map of M . Under this
comorphism, (uL(σ), σ) ∼ σ for all sections σ. Given two sections σi ∈ Γ(L), by
taking Lie brackets of the relations (uL(σi), σi) ∼ σi, i = 1, 2, we obtain(

[uL(σ1), uL(σ2)]g + LaL(σ1)uL(σ2)− LaL(σ2)uL(σ1), [σ1, σ2]
)
∼ [σ1, σ2].

By the uniqueness part in the definition of LA∨-morphism, the first entry on the
left-hand side must be uL([σ1, σ2]). �

In particular, we see that the space of sections with uL(σ) = 0 is a Lie subalgebra
of Γ(L), and those annihilated by both uL and aL form a Lie ideal.

Proposition 4. The space Γ(L)H of •-invariant sections is closed under the Lie
algebroid bracket. Furthermore, the difference aL(h • y) − h.aL(y) is tangent to
H-orbits, for all h ∈ H and y ∈ L. Hence, if the H-action on M is a principal
action, then L/H is a Lie algebroid over M/H.

Proof. Since AL is a Lie algebroid comorphism, the pullback map A∗
L : Γ(L) →

Γ(E×L) preserves Lie brackets. Let S : E×L→ L be the Lie algebroid morphism
given by projection to the second factor. Then σ is invariant if and only if A∗

Lσ ∼S

σ. Given two invariant sections σ1, σ2, we conclude

A∗
L[σ1, σ2] = [A∗

Lσ1,A∗
Lσ2] ∼S [σ1, σ2],

hence [σ1, σ2] is invariant.
If x ∈ Eh and y ∈ Lm with sE(x) = uL(y), then aL(h • y) = aL(x ◦ y) =

aE(x) ◦ aL(y), with the action of TH on TM . But for any v ∈ ThH, w ∈ TmM
the difference v ◦ w − h.w is tangent to orbits. The rest is clear. �
4.2. The Lu–Lie algebroid

In her 1997 paper [34], Jiang-Hua Lu proved that for any Poisson action of a
Poisson Lie group H on a Poisson manifold (M,πM ), the action Lie algebroid
M × h and the cotangent Lie algebroid T ∗

πM
∼= Gr(πM ) form a matched pair, in

the sense of Mokri [39]. Equivalently, their direct sum

T̂ ∗
πM := (M × h)⊕ T ∗

πM (12)

has a Lie algebroid structure, in such a way that the two summands are Lie sub-
algebroids. Lu proved furthermore that the action of H on M lifts to an action by
Lie algebroid automorphisms on (12), and that the direct sum of the projection
M × h → h and the moment map T ∗

πM → h∗ ∼= g defines a Lie algebroid mor-
phism to d = h⊕g, the Drinfeld double of h. Further aspects of this Lie algebroid,
relating it to a construction of Bursztyn and Crainic [7] for quasi-Poisson actions,
are discussed in the article [26] of Kosmann-Schwarzbach. We have the following
result for general LA∨-actions of (H,E) on Lie algebroids (M,L).

Theorem 5. The direct sum

L̂ = (M × h)⊕ L (13)

has the structure of an H-equivariant Lie algebroid, in such a way that both sum-
mands are sub-Lie algebroids, and such that the map h → Γ(L̂) given by the con-
stant sections of M × h gives generators for the H-action.
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Proof. The LA∨-action of (H,E) on (M,L) extends to an action on (H×M, TH×
L), by putting uTH×L(v, y) = uL(y), and for composable elements

x ◦ (v, y) = (aE(x) ◦ v, x ◦ y),

where aE(x) ◦ v is a product in the group TH. To see its compatibility with
Lie brackets, note that Gr(ATH×L) can be regarded as the intersection of the set
Gr(MultTH)×Gr(AL) with the set of all ((v′, w, v), (y′, x, y)) such that w = a(x).
Being the intersection of two Lie subalgebroids, it is itself a Lie subalgebroid.

The action of E ⇒ g on TH ×L gives rise to a •-action of H, which commutes
with the action TAR(h)× idL. Hence Proposition 4 shows that the quotient by the

•–action is a Lie algebroid L̂ = (TH×L)/H with an action ofH by automorphisms.
As a vector bundle,

L̂ ∼= (TH × L)
∣∣
{e}×M

= (M × h)⊕ L.

The first summand is the quotient of the Lie subalgebroid TH ×M ⊆ TH × L
under the •-action, hence it is itself a Lie subalgebroid. Since left-trivialization
identifies TH ×M with the action Lie algebroid for AR, it follows that M × h is
the action Lie algebroid M × h for AM .

It remains to show that L is a Lie subalgebroid of L̂. For σ ∈ Γ(L), let σ̆ ∈
Γ(TH × L)H be the corresponding invariant section, so that σ̆|{e}×M = σ. We
need to show that the map σ 7→ σ̆ preserves brackets. This map can be written as
a composition

Γ(L)
(InvE ×id)◦A∗

L−−−−−−−−−→ Γ(E × L)H
aE×id−−−−→ Γ(TH × L)H ;

hereA∗
L : Γ(L)→ Γ(E×L) is the pullback map under the Lie algebroid comorphism

AL : E × L 99K L, and InvE : E → E is the inversion. (In detail: If σm = y, then
(InvE ×id)((A∗

Lσ)h,m) = (x, x ◦ y), with the unique x ∈ Eh such that s(x) = u(y).
Hence σ̆h,m = (aE(x), x ◦ y). If h = e, then x ∈ g = Eh, hence aE(x) = 0e. That
is, σ̆e,m = σm.) Since all of these maps preserve brackets, it follows that the map
σ 7→ σ̆ is a Lie algebra morphism, as required. �

Clearly, the construction from Theorem 5 is functorial: Given LA∨-actions of
(H,E) on (M1, L1), (M2, L2), and a Lie algebroid morphism L1 → L2 intertwin-

ing the actions, the resulting map L̂1 → L̂2 is an H-equivariant Lie algebroid
morphism.

As a first example, we can apply Theorem 5 to the action of (H,E) on (pt, g).
We find that

ĝ = h⊕ g (14)

is a Lie algebra, with H acting by automorphisms, and with h and g as Lie subalge-
bras. Writing d := ĝ, this is the H-equivariant Lie algebra triple (d, g, h) associated
to the LA∨-Lie group (H,E) by Mackenzie’s classification [35].

Proposition 6. The map

fL̂ : L̂ = h× L→ d, (τ, y) 7→ τ + uL(y)

is an H-equivariant morphism of Lie algebroids.
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Proof. The moment map uL : L → g is a morphism of Lie algebroids, and is
equivariant for the action of (H,E). Hence the result follows by functoriality.
�

We will denote by prh, prg the projections from d = h⊕ g to the two summands.

In terms of fL̂, the H-action on L̂ = h× L is explicitly given as

h.(τ, y) =
(
prh

(
Adh fL̂(τ, y)

)
, h • y

)
.

4.3. The action of d on H

There are two commuting LA∨-actions of (H,E) on itself, with base actions the
actions AL,AR of H on itself:

(x, y) ∼AL
E
x ◦ y, (x, y) ∼AR

E
y ◦ x−1

Apply Theorem 5 to the action AR
E . We obtain an H-equivariant Lie algebroid

Ê = (H × h)⊕ E

together with an H-equivariant Lie algebroid morphism fÊ : Ê → d; here H × h
is the action Lie algebroid for AR. Since AR

E commutes the action AL
E , the latter

defines an LA∨-action of (H,E) on (H, Ê), commuting with the action of H by
Lie algebroid automorphisms, and such that fÊ(x ◦ z) = fÊ(x) for composable

elements x ∈ E and z ∈ Ê. Since fÊ is a fiberwise isomorphism, it defines a
trivialization.

Proposition 7. The trivialization Ê = H × d defined by fÊ identifies Ê with the
action Lie algebroid for the dressing action (2). The H-action by automorphisms
reads as g.(h, λ) = (hg−1,Adg(λ)), and the groupoid action of E = H × g ⇒ g on

Ê is given by the moment map

uÊ(h, λ) = prg Adh(λ), (15)

and (g, ξ) ◦ (h, λ) = (gh, λ) for ξ = uÊ(h, λ).

Proof. The description of the H-action follows by H-equivariance of fÊ . Using
the H-equivariance of the anchor aÊ , we find

aÊ(h, λ) = aÊ
(
h−1.(e,Adh(λ))

)
= TAR(h−1)aÊ(e,Adh(λ))

)
= TAR(h−1) prh Adh(λ)

proving aÊ(h, λ) = ϱ(λ)h. (See (2).) Similarly, H-invariance of uÊ together with
uÊ(e, λ) = prg(λ) implies (15). The formula for the groupoid action of (H,E)
follows since fÊ is invariant under this action. �
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The trivialization Ê = H × d restricts to the trivialization E = H × g given by
sE . We conclude that E is isomorphic to the action Lie algebroid for the dressing
action of g ⊆ d onH. On the other hand, as a VB-groupoid it is the action groupoid
E ⇒ g for the action h•ξ = prg(Adh ξ). This shows that the LA∨ Lie group (H,E)
is fully determined by the H-equivariant Lie algebra triple (d, g, h). To complete
a proof of Mackenzie’s classification, one has to show that conversely, given an
H-equivariant triple (d, g, h), the Lie algebroid and VB-groupoid structure on E =
H × g are compatible, in the sense that the graph of the groupoid multiplication
is a sub-Lie algebroid. (This may be verified directly, in the trivialization.)

We have the following alternative description of Ê:

Proposition 8. The map (aÊ , uÊ) : Ê → TH × g is an isomorphism of Lie alge-
broids. In terms of this identification, the VB-groupoid action of E ⇒ g is given
by

uÊ(v, ξ) = ξ, x ◦ (v, ξ) = (a(x) ◦ v, h • ξ).

Proof. The map (aÊ , uÊ) is a Lie algebroid morphism, since both components are.

In terms of left trivialization TH = H × h and the trivialization Ê = H × d, the
map is given at the fiber of h ∈ H by ζ 7→ (Adh−1 prh(Adh ζ), prg(Adh ζ)). It is
an isomorphism with inverse

ThH × g→ Êh, (τ, ξ) 7→ τ +Adh−1 ξ. (16)

The rest is clear. �
Note that the groupoid action of E ⇒ g is just the action used in the construc-

tion of ĝ = d. We recover that the quotient Ê/H by the •-action is d.

Remark 2. Let fL̂ : L̂→ d be the Lie algebroid morphism from Proposition 6, and
let p : H ×M → M be the projection to the second factor. Using the dressing
action (2) of d on H, the vector bundle pullback p∗L̂ has a Lie algebroid structure.

It is not hard to see that p∗L̂ ∼= TH×L, the Lie algebroid used in the construction
of L̂.

4.4. Homogeneous spaces

We now specialize to the case that M = H/K a homogeneous space. The kernel
of the anchor of the action Lie algebroid M × h is an associated bundle H ×K k,
where k is the Lie algebra of K. Since L̂ contains the action Lie algebroid, it is
a transitive Lie algebroid: its anchor is surjective. This defines an H-equivariant
exact sequence of Lie algebroids

0→ ker(aL̂)→ L̂→ TM → 0.

Since ker(aL̂) has a trivial anchor, it is an H-equivariant bundle of Lie algebras

ker(aL̂) = H ×K u,

where u = ker(aL̂)e is a Lie algebra with an action of K by automorphisms. The
inclusion of ker(aM×h) ∼= H ×K k into ker(aL̂) restricts to a K-equivariant Lie
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algebra morphism k → u, thus (u,K) is a Harish-Chandra pair (cf. Section 2.1).

The H-equivariant Lie algebroid morphism fL̂ : L̂→ d restricts to a K-equivariant
Lie algebra morphism

fu : u→ d,

whose restriction to k ⊆ u coincides with Teϕ : k → h, where ϕ : K ↪→ H is the
inclusion. It hence defines a morphism of Harish-Chandra pairs from (u,K) to
(d,H). These data give a full classification:

Proposition 9. The Lie algebroids (H/K,L) together with LA∨-actions of (H,E)
are classified by Harish-Chandra pairs (u,K) along with a morphism of Harish-
Chandra pairs

(fu, ϕ) : (u,K)→ (d,H). (17)

As a Lie algebroid, L is the reduction by K of the action Lie algebroid for ϱ ◦
fu : u→ Γ(TH):

L = (H × u)//K = H ×K (u/k).

The VB-groupoid action of E ⇒ g on L is given by the moment map

uL([(h, ζ mod k)]) = prg(Adh(fu(ζ)),

and for composable elements, (g, ξ) ◦ [(h, ζ mod k)] = [(gh, ζ mod k)].

Proof. (i) We begin with the case K = {e}, so that M = H. Suppose (M,L) and
the action are given. Since K = {e}, the anchor map restricts to an isomorphism
on H ×h, which hence has ker(aL̂) as an H-invariant complement. The projection

prL : L̂→ L along H × h restricts to an H-equivariant vector bundle isomorphism

prL : H × u = ker(aL̂)
∼=−→ L.

By Proposition 4, this map is a Lie algebra morphism on H-invariant sections.
This shows that the bracket on invariant sections of L is given by the Lie bracket
on u; hence L is an action Lie algebroid for some u-action on H. To compute the
anchor and the moment map in terms of this trivialization, let y ∈ Lh be given.
Let y = y′ + y′′ be its decomposition in L̂h, into

y′ = (h, ζ) ∈ ker(aL̂) = H × u, y′′ = (h, τ ) ∈ H × h.

We obtain
uL(y) = fL̂(y) = fL̂(y

′) + fL̂(y
′′) = Adh(fu(ζ)) + τ.

The g-component of this equation shows

uL(y) = prg(Adh(fu(ζ)), (18)

while the h-component tells us that τ = − prh(Adh(fu(ζ))). Since H × h is

identified with the action Lie algebroid for the action AL
H , its anchor map is

1102



DIRAC ACTIONS AND LU’S LIE ALGEBROID

(h, τ) 7→ −τR|h = −Adh−1 τ , using left trivialization TH = H × h. Since
aL(y) = aL̂(y

′ + y′′) = aL̂(y
′′) = −τR|h, this shows

aL(y) = Adh−1 prh Adh fu(ζ) = ϱ(fu(ζ))h. (19)

(ii) For general K, let p : H → H/K be the projection. The LA∨-action of
(H,E) on L lifts to an action on p!L ⊆ TH × L. Hence, the discussion above
applies, and identifies p!L ∼= H × u. Note that this identification intertwines the
K-action on p!L with the action k.(h, ζ) = (hk−1, Adk ζ), and intertwines the
generators for these actions. Hence L = p!L//K = (H × u)//K. The moment map
up!L, being K-invariant, descends to the quotient, and so does the action of (H,E).

(iii) The discussion above shows that (H/K,L) is uniquely determined by (u,K)
and the morphism (17). Conversely, given these data, define L = (H×u)//K, with
the moment map uL, and the (H,E)-action as above. We need to show that the
action AL is an LA-comorphism. Rather than proving this directly, consider the
embedding

p!L = H × u→ Ê × u, (h, ζ) 7→ ((h, fu(ζ)), ζ).

This is a K-equivariant morphism of Lie algebroids, and intertwines the moment
maps, as well as the actions of E ⇒ g. Since the (H,E)-action on Ê × u (given
by the action on the first factor) is an LA-comorphism, the same is true for the
action on the Lie subalgebroid p!L, and hence on L. �
Example 2. The simplest examples of Harish-Chandra pairs with morphisms to
(d,H) are

(d,H), (d, {e}), (g, {e}), (h, H), (h, {e}).

The corresponding Lie algebroids with actions of (H,E) are, respectively,

(pt, g), (H, Ê), (H,E), (pt, 0), (H,TH).

Remark 3. The constructions in this section can be generalized to the category
LG∨ of Lie groupoids, with morphisms the comorphisms of Lie groupoids.

Recall that a Lie algebroid structure on a vector bundle E corresponds to a
linear (equivalently, homogeneous of degree −1) Poisson structure on the dual
bundle E∗. Under this correspondence, LA-comorphisms E1 99K E2 correspond
to Poisson morphisms E∗

1 → E∗
2 . Hence, all of the results above may be restated

in Poisson-geometric terms. In particular, if (H,E) is an LA∨ Lie group then the
total space of E∗ is a Poisson Lie group. (If (H,E) is classified by the Lie algebra
triple (d, g, h), then the Manin triple of E∗ is (dn d∗, gn h∗, hn g∗).)

An LA∨-action on (M,L) becomes a Poisson action of E∗ on the Poisson man-
ifold L∗, compatible with the fiberwise linear structure. Proposition 9 classifies
such actions when H acts transitively on M ; however, E∗ need not act transitively
on L∗.

Proposition 10. In the setting of Proposition 9, the action of E∗ on L∗ is tran-
sitive if and only if the map fu : u → d is injective, with fu(u) ∩ h = k. The
classification of LA∨-actions with this property is thus given by K-invariant Lie
subalgebras c ⊆ d with c ∩ h = k.
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Proof. Since H acts transitively on the base M , the action of E∗ on L∗ is transitive
if and only if the action of E∗|e on L∗|eK is transitive. By dualizing the VB-
groupoid action of Ee = g ⇒ g on LeK = u/k, we find that this is the action
µ ◦ ν = ν + f∗

u (µ) for µ ∈ g∗ = annd∗(h) and ν ∈ annu∗(k). (This is well-defined,
since fu(k) ⊆ h is equivalent to f∗

u (g
∗) = f∗

u (annd∗(h)) ⊆ annu∗(k).) This action
is transitive if and only if f∗

u : d
∗ → u∗ restricts to a surjective map annd∗(h) →

annu∗(k), or equivalently if and only if fu induces an injective map u/k → d/h.
Since fu restricts to the identity map on k, this is equivalent to fu itself being
injective, with fu(u) ∩ h = k. �

5. General properties of Dirac actions

In this Section, we will extend the results from the last section to Dirac actions.
Throughout, we fix a Dirac-Lie group (H, A, E). In particular, (H,E) is an LA∨-
Lie group, classified by an H-equivariant Lie algebra triple (d, g, h).

5.1. Properties of the structure maps

We will use the VB-groupoid structure A ⇒ g; recall that E ⇒ g is a vacant
VB-subgroupoid. Since the anchor map aA : A→ TH is a VB-groupoid morphism,
the dual map a∗A : T

∗H → A∗ = A is a VB-groupoid morphism,

T ∗H / // /

a∗A
� �

h∗

φ

� �
A / // / g

(See Appendix A.) The right vertical map in this diagram

φ : h∗ → g (20)

is the map of units; it is characterized by the property sA ◦ a∗A = φ ◦ sT∗H , with a
similar property tA ◦ a∗A = φ ◦ tT∗H for the target map. Let γA ∈ Γ(S2A) be the
element defined by the metric. Then sA(γA) is a function on H with values in S2g,
and similarly for tA(γA). Let

γg := tA(γA)|e ∈ S2g.

Lemma 11. We have
tA(γA) = −sA(γA) = γg.

In particular, both sides are constant functions from H to S2g.

Proof. For all x ∈ A, with groupoid inverse x−1, we have

⟨x, x⟩+ ⟨x−1, x−1⟩ = ⟨x ◦ x−1, x ◦ x−1⟩ = ⟨tA(x), tA(x)⟩ = 0.

If x ∈ ker(sA|e) = ran(t∗A|e) then x−1 ∈ ker(tA|e) = ran(s∗A|e), and

⟨x, ξ⟩+ ⟨x−1, ξ⟩ = ⟨x ◦ x−1, ξ ◦ ξ⟩ = ⟨tA(x), ξ⟩ = 0
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for all ξ ∈ g. Hence, if x = t∗A(µ)|e then x−1 = −s∗A(µ)|e, and
⟨s∗A(µ), s∗A(µ)⟩|e = ⟨x−1, x−1⟩ = −⟨x, x⟩ = −⟨t∗A(µ), t∗A(µ)⟩|e.

This proves sA(γA)|e = −tA(γA)|e. For all h ∈ H, the composition t∗A(µ)|e ◦ 0h
is well-defined since ran(t∗A)e = ker(sA)e. The composition lies in ker(sA)h =
ran(t∗A)h; indeed t∗A(µ)|e ◦ 0h = t∗A(µ)|h, as we can see by taking the inner product
with the identity tA(y) ◦ y = y, valid for all y ∈ Ah. Hence

⟨t∗A(µ)|h, t∗A(µ)|h⟩ = ⟨t∗A(µ)|e ◦ 0h, t∗A(µ)|e ◦ 0h⟩ = ⟨t∗A(µ)|e, t∗A(µ)|e⟩,
proving that tA(γA) is constant. Similarly, sA(γA) is constant. �

Consider a Dirac action of (H, A, E) on a Dirac manifold (M, P, L). In parti-
cular, H acts on M ; let aM×h : M×h→ TM be the infinitesimal action map. The
dual map is the symplectic moment map uT∗M : T ∗M → h∗. The anchor maps
intertwine the action of A on P with the action of TH on TM . Hence, their duals
intertwine the groupoid action of T ∗H ⇒ h∗ on T ∗M with the action of A ⇒ g
on P. (See Appendix A.) In particular, the moment maps for the two groupoid
actions are intertwined, giving a commutative diagram

T ∗M
uT∗M / /

a∗P
� �

h∗

φ

��
P

uP
/ / g.

Proposition 12. We have uP(γP) = γg, where γP ∈ Γ(S2P) is the element defined
by the metric.

Proof. Given µ ∈ g∗ and m ∈M , we claim that

u∗P(µ)m = t∗A|e(µ) ◦ 0m, (21)

with 0m ∈ Pm the zero element. To see this, note first that the action is well-
defined since ran(t∗A) = ker(sA). Furthermore, whenever x ∈ Ae, y ∈ Pm are
composable elements, then

⟨x ◦ y, u∗P(µ)⟩ = ⟨uP(x ◦ y), µ⟩ = ⟨tA(x), µ⟩ = ⟨x, t∗A(µ)|e⟩.
This shows that the element (u∗P(µ)m, t∗A(µ)|e, 0m) is orthogonal to the graph of AP.
Since Gr(AP)

⊥ = Gr(AP), this proves Equation (21). Taking an inner product of
this element with itself, we obtain ⟨u∗P(µ)m, u∗P(µ)m⟩ = ⟨t∗A(µ)|e, t∗A|(µ)|e⟩, proving
uP(γP) = γg. �

Using γg and φ, we define β ∈ S2d as the symmetric bilinear form on d∗ = g∗⊕h∗
given by

β(µ1, µ2) =


γg(µ1, µ2) µ1, µ2 ∈ g∗,

⟨µ1, φ(µ2)⟩ µ1 ∈ g∗, µ2 ∈ h∗,

0 µ1, µ2 ∈ h∗.

By definition g ⊆ d is β-coisotropic, and prg(β) = γg. In [28] it was shown that β
is ad(d)-invariant as well as H-invariant, and that the Dirac Lie group (H,A, E)
is classified by the H-equivariant Dirac–Manin triple (d, g, h)β . Below we will give
a conceptual explanation of these facts.
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5.2. The H-action on P
Consider a Dirac action of (H, A, E) on a Dirac manifold (M, P, L). The action
of E ⊆ A on P defines a •-action (cf. Section 4.1) of H on P, given as h • y = x ◦ y
where x ∈ Eh is the unique element such that sA(x) = uP(y). This action preserves
the subbundle L, it satisfies uP(h • y) = h • uP(y), and it preserves the metric on
P, since

⟨h • y, h • y⟩ = ⟨x ◦ y, x ◦ y⟩ = ⟨x, x⟩+ ⟨y, y⟩ = ⟨y, y⟩.

On the other hand, the •-action preserves neither the Courant bracket on Γ(A)
nor the anchor, in general.

Examples 1.
(1) For a Poisson action of a Poisson Lie group (H,πH) on a Poisson manifold

(M,πM ), the corresponding •-action on P = TM is the unique action that preserves
the decomposition TM = TM ⊕ Gr(πM ) as well as the metric on TM , and that
restricts to the tangent lift on TM . Note that this is different from the action
h 7→ TAM (h), which does not preserve Gr(πM ) in general.

(2) Let (d, g, h)β = (h ⊕ h, h∆, h ⊕ 0)β defined by an H-invariant metric on h
corresponding to the Cartan–Dirac structure (A, E) = (H×d, H×g), cf. Example
3.2(b). The •-action on g is trivial. Therefore, given a Dirac action on (P, L) =
(M × d, M × l) the •-action on P is simply h • (m, τ, τ ′) = (h.m, τ, τ ′).

Theorem 13. For any Dirac action of (H,A, E) on (M,P, L), the space Γ(P)H of
•-invariant sections is closed under the Courant bracket. For all h ∈ H and y ∈ P,
the difference aP(h • y)−h.aP(y) ∈ TM (where the dot indicates the tangent lift of
the action) is tangent to H-orbits. Hence, if the action of H on M is a principal
action, then the quotient space becomes a Dirac manifold (M/H, P/H, L/H), with
the quotient map defining a Dirac morphism.

Proof. Define a Courant morphism S : A× P 99K P, with base map H ×M → M
projection to the second factor, by declaring that (x, y) ∼S y′ if and only if y = y′

and x ∈ E. A section σ ∈ Γ(P) is •-invariant if and only if there exists a section
σ̃ ∈ Γ(A×P) with σ̃ ∼S σ and σ̃ ∼AP σ. (This section is necessarily unique.) Since
these relations are preserved under Courant brackets (cf. (4)), it follows that the
Courant bracket of two •-invariant sections is again invariant.

For composable elements x ∈ A and y ∈ P, we have aP(x ◦ y) = aA(x) ◦ aP(y),
where the right-hand side uses the action of TH on TP . Writing aA(x) = (h, τ)
in left trivialization, the difference aA(x) ◦ w − h.w for any w ∈ TM is tangent to
H-orbits in M ; in fact it is given by the infinitesimal action of Adh(τ). �

The analogue to Proposition 3 holds true on invariant sections:

Proposition 14. For σ1, σ2 ∈ Γ(P)H ,

uP([[σ1, σ2]]) = [uP(σ1), uP(σ2)]g + LaP(σ1)uP(σ2)− LaP(σ2)uP(σ1); (22)

here [·,·]g denotes the pointwise Lie bracket of g-valued functions on M . In partic-
ular, Γ(P)H ∩ ker(uP) is closed under the Courant bracket. Furthermore, the space
Γ(P)H ∩ ker(uP) ∩ ker(aP) is an ideal in Γ(P)H , relative to the Courant bracket.
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Proof. We use the notation from the proof of Theorem 13. The section σ̃ associated
to σ ∈ Γ(P)H has the form σ̃ = (uP(σ), σ), where the first entry uP(σ) is regarded
as a section of pr∗H E = (H ×M)× g (depending trivially on the H-variable) and
the second entry as a section of pr∗M P. The Courant bracket of two such sections
σ̃i = (uP(σi), σi) is given by

[[σ̃1, σ̃2]] =
(
[uP(σ1), uP(σ2)]g + LaP(σ1)uP(σ2)− LaP(σ2)uP(σ1), [[σ1, σ2]]

)
.

Since this section is related to σ = [[σ1, σ2]] under both AP and S (cf. (4)) it
coincides with (uP([[σ1, σ2]]), [[σ1, σ2]]), proving (22).

Suppose σ1, σ2 ∈ Γ(P)H , with σ1 ∈ ker(uP)∩ker(aP). Then aP([[σ1, σ2]]) = 0 since
ker(aP) is an ideal for the Courant bracket, while (22) shows that uP([[σ1, σ2]]) = 0.
Similarly for [[σ2, σ1]]. �

In particular, if the action of H on M is a principal action, and uP has constant
rank, then ker(uP)/H is an involutive subbundle of the Courant algebroid P/H. If
(aP, uP) : P→ TM×g has constant rank, then the sections of (ker(uP)∩ker(aP))/H
form a Courant ideal.

Remark 4. Note that the right-hand side of formula (22) is skew-symmetric in
σ1, σ2, hence so is the left-hand side. This is possible since uP vanishes on the
space Γ(ran(a∗P))

H , as one may also prove directly.

5.3. The Lu–Dirac structure

We next extend the construction of the Lu–Lie algebroid L̂ to incorporate the
Courant algebroid.

Theorem 15. There is a canonically defined H-equivariant Dirac structure (P̂, L̂)
on M , such that

P̂ = (M × (h⊕ h∗))⊕ P, L̂ = (M × h)⊕ L (23)

as (metrized ) vector bundles, with anchor map aP̂(τ + ν, y) = aM×h(τ) + aP(y).

The constant sections of M × h are generators for the H-action on P̂, and the
induced H-action on (M × h)⊥/(M × h) ∼= P is the •-action on P. The map

fP̂ : P̂→ d, fP̂(τ + ν, y) = τ + φ(ν) + uP(y) (24)

is an H-equivariant bundle morphism, with fP̂ ◦ a
∗
P̂
= 0, compatible with brackets,

and with
fP̂(γP̂) = β. (25)

Proof. We will obtain P̂ as a quotient (TH × P)/H. Consider the Dirac action of
(H,A, E) on (H ×M,TH × P, TH × L), where ATH×P is the composition of

MultTH ×AP : (TH × A)× (TH × P) 99K (TH × P)

with the Courant morphism A 99K TH × A, x ∼ (aA(x) − µ, x + a∗A(µ)) (with
µ ∈ T ∗H) in the first factor. That is, for x ∈ Ag and w + ν ∈ ThH, y ∈ Ph,

x ◦ (w + ν, y) =
(
aA(x) ◦ w + (−µ) ◦ ν, (x+ a∗A(µ)) ◦ y

)
(26)
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whenever the composition on the right-hand side is defined. In particular µ ∈
T ∗
gH is the unique element such that ν′ := (−µ) ◦ ν (groupoid multiplication in

T ∗H ⇒ h∗) is defined: thus −sT∗H(µ) = tT∗H(ν) = Adh sT∗H(ν), and in this
case ν′ ∈ T ∗

ghH is such that s(ν′) = s(ν). That is, ν′ is the image of ν under the

cotangent lift of AL(g), while −µ is the image of ν under the cotangent lift of
AL(g) ◦ AR(h). The condition that (x+ a∗A(µ)) ◦ y be defined requires that

sA(x) = uP(y)− sA(a
∗
A(µ)) = uP(y)− φ(sT∗H(µ)) = uP(y) + φ(tT∗H(ν)).

This determines the moment map for the action:

uTH×P(w + ν, y) = uP(y) + φ(tT∗H(ν)). (27)

By construction, the VB-groupoid action ATH×P given by these formulas is a
Courant morphism. To check that it is a Dirac action, let (w′, y′) ∈ TghH × Lg.m

be given. Let x ∈ Eg, y ∈ Lh be the unique elements such that y′ = x ◦ y, and
put w = aA(x)

−1 ◦ w′. Then (x, (w, y)) ∈ Eg × (TH × L)h is the unique element
such that x ◦ (w, y) = (w′, y′).

The action of the subgroupoid E ⇒ g determines a •-action of H on TH × P,
preserving TH × L. By Theorem 13, the quotient with respect to the •-action is
a Dirac structure (P̂, L̂) over (H ×M)/H ∼= M . As vector bundles,

P̂ = (TH × P)
∣∣
{e}×M

, L̂ = (TH × L)
∣∣
{e}×M

.

Since TH = H × (h ⊕ h∗) by left-trivialization, this gives the decomposition (23)
as vector bundles. The description of the anchor is clear. The action TAR(h)× id
on TH × P is by Dirac automorphisms, and commutes with the •-action, hence it
descends to an action by Dirac automorphisms of (P̂, L̂).

Note that the subbundle TH × P is invariant under the •-action of H as well
as under the action TAR × idP. The diagonal H-action preserves the restriction
to {e} × P; it is given by (w, y) 7→ (a(x) ◦ w ◦ h−1, h • y). It follows that the
induced action on P is the •-action. The map h→ Γ(TH×P), τ 7→ (τL, 0) defines
generators for the H-action h 7→ TAR(h) × id on TH × P. Its image under the
quotient map are the constant sections of M × h, which hence are generators for
the H-action on P̂.

To prove the properties of the map fP̂, consider the diagram

TH × P
(aTH×P, uTH×P)/ /

� �

TH × TM × g

� �
P̂

(aP̂, fP̂) / / TM × d

where the vertical maps are quotient maps under the •-actions. This diagram
commutes: The map aTH×P : TH × P → TH × TM , followed by the map TH ×
TM → TM, (v, w) 7→ v ◦ w−1, descends to aP̂, while the map uTH×P, followed
by the quotient map TH × g → d, descends to fP̂. Proposition 14 shows that
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the upper horizontal map is bracket-preserving on •-invariant sections. Hence the
lower horizontal map defines a bracket-preserving map on sections, that is, fP̂ is
compatible with brackets:

fP̂([[σ1, σ2]]) = [fP̂(σ1), fP̂(σ2)] + LaP̂(σ1)fP̂(σ2)− LaP̂(σ2)fP̂(σ1) (28)

for all sections σ1, σ2 ∈ Γ(P̂). In particular, fP̂ ◦ a
∗
P̂
= 0. Furthermore, since the

upper horizontal map intertwines the action TAR × idP with the action TAR ×
idTM × idg, the lower horizontal map is H-equivariant, and in particular fP̂ is
H-equivariant.

For µ ∈ d∗, let µ = µ′ + µ′′ be its decomposition into µ′ ∈ g∗ and µ′′ ∈ h∗. The
dual map to fP̂ at m ∈M satisfies f∗

P̂
(µ) = (φ∗(µ′), µ′′, u∗P(µ

′)m). It follows that

⟨f∗
P̂ (µ), f∗

P̂ (µ)⟩ = 2⟨ϕ∗(µ′), µ′′⟩+ ⟨u∗P(µ′)m, u∗P(µ
′)m⟩

= 2⟨ϕ(µ′′), µ′⟩+ γg(µ
′, µ′)

= β(µ, µ),

proving fP̂(γP̂) = β. �

Remark 5. As remarked earlier, L̂ = (M×h)⊕L is a matched pair of Lie algebroids.

Similarly, as we saw in the proof, P̂ is the direct sum of two involutive subbundles,
M × h and f−1

P̂
(g) = (M × h∗) ⊕ P. There is also a notion of matched pair of

Courant algebroids, due to Grützmann–Stiénon [21], but P̂ does not fit into this
framework, in general.

Remark 6. The stabilizer of the dressing action of d at h ∈ H is the β-coisotropic
Lie subalgebra Adh(g). Since fP̂ is compatible with brackets and satisfies (25),

the discussion from Section 2.8 shows that the vector bundle pullback of P̂ under
the projection p : H ×M →M is a Courant algebroid. One can show that p∗P̂ ∼=
TH × P.

The description of P̂ simplifies in the special case that the Dirac–Manin triple
(d, g, h)β is exact : That is, β is non-degenerate and g is Lagrangian. (As shown in
[28, Prop. 7.1], this condition is equivalent to exactness of the Courant algebroid
A, i.e., ker(aA) = ran(a∗A) is a Lagrangian subbundle.)

Proposition 16. If the Dirac–Manin triple (d, g, h)β is exact, there is a canonical
isomorphism

P̂ ∼= d× P

(product of Courant algebroids ). Under this identification, fP̂ is the projection to
the first factor.

Proof. Since β is non-degenerate and g is Lagrangian, the map φ : h∗ → g is an
isomorphism. Consequently, the map fP̂ is surjective, and by (28) ker(fP̂) is an H-

invariant involutive subbundle, which is a complement to f−1

P̂
(g)⊥ = M×h∗ inside

f−1

P̂
(g). The quotient map identifies this subbundle with f−1

P̂
(g)/f−1

P̂
(g)⊥ = P as

a Courant algebroid.
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The map fP̂ defines a trivialization ker(fP̂)
⊥ = M × d. For a constant section

σ1 of M × d, and any section σ of ker(fP̂), we obtain, using (28),

fP̂([[σ1, σ]]) = −LaP(σ)fP̂(σ1) = 0

hence [[σ1, σ]] ∈ Γ(ker(fP̂)). If σ1, σ2 are two constant sections of M × d, and
σ ∈ Γ(ker(fP̂)), we see that ⟨[[σ1, σ2]], σ⟩ = −⟨σ2, [[σ1, σ]]⟩ = 0. Hence [[σ1, σ2]] is
again a section of M × d, and since fP̂([[σ1, σ2]]) = [fP̂(σ1), fP̂(σ2)] this section

is again constant. This shows that the Courant algebroid P̂ is the product of
the metrized Lie algebra d (embedded as constant sections) with P (embedded as
ker(fP̂)). �
Remark 7. After a calculation, one finds that the isomorphism from d × Pm to
P̂m = (h⊕ h∗)⊕ Pm is given by

(λ, y) 7→
(
τ + ν − φ−1(uP(y)), y + u∗P(ϕ

−1)∗τ
)
,

where τ ∈ h and ν ∈ h∗ are determined by τ = prh(λ), ϕ(ν) = (1− prh⊥)(λ). The

inclusion of L̂ reads as,

L̂m → d× Pm, (τ, z) 7→
(
τ + uP(z), z − u∗P(ϕ

−1)∗τ
)
.

As a special case, we recover a result of Bursztyn–Crainic–Ševera [9], according to
which for any Poisson action (H,πH)× (M,πM )→ (M,πM ), the Lu–Lie algebroid

L̂ = (M × h) ⊕ T ∗
πM may be realized as a Dirac structure in the direct product

d× TM .

5.4. The action Aq

Put q := Ae, g := Ee, and let γq ∈ S2q be the element defined by the metric. The
VB-groupoid structure of A restricts to a VB-groupoid structure of its unit fiber

q ⇒ g. (29)

The groupoid structure is compatible with the metric, in the sense that ⟨λ1 ◦
λ2, λ1◦λ2⟩ = ⟨λ1, λ1⟩+⟨λ2, λ2⟩ for composable elements λ1, λ2. Let r = ker(tq) ⊆ q,
so that r⊥ = ker(sq). Denote by prr, prr⊥ = 1 − pr∗r ∈ End(q) the projections to
r, r⊥ with kernel g. Then

sq(λ) = (1− prr⊥)(λ), tq(λ) = (1− prr)(λ),

and the groupoid multiplication is uniquely determined by its compatibility with
the metric:

λ1 ◦ λ2 = λ2 + prr⊥(λ1);

see the proof of Lemma 20 below. By applying Theorem 13 to the action AL
A of

(H, A, E) on itself, where
(x, y) ∼AL

A
x ◦ y,
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it follows that (A/H, E/H) = (q, g) is a Dirac structure over H/H = pt. Thus,
(q, g)γq

is a Manin pair. By Proposition 14, ker(tA)/H = ker(tA|e) = r is a Lie
subalgebra of q complementary to g. (The space ker(sA|e) = r⊥ is not a Lie
subalgebra, in general.) The Dirac action AR

A of (H, A, E) on (H,A, E), given as

(x, y) ∼AR
A
y ◦ x−1

commutes with AL
A , hence it descends to a Dirac action Aq of (H, A, E) on

(pt, q, g), with moment map the source map sq. The resulting •-action of H on
q is the unique extension of the •-action on g that preserves the metric and for
which sq (hence also tq) is equivariant. It is hence an action by automorphisms of
the metrized groupoid q ⇒ g.

By applying Theorem 15 to the Dirac action Aq, we obtain a Manin pair (q̂, ĝ)γq̂
,

with an action of H by automorphisms and with an H-equivariant Lie algebra
morphism f̄q̂ : q̂ → d. Here the bar serves as a reminder that we are using a

Dirac action of (H,A, E) (with the opposite metric); by Theorem 15 this implies
in particular that

f̄q̂(γq̂) = −β, (30)

with a minus sign.

Proposition 17. (d, g, h)β is an H-equivariant Dirac–Manin triple, and

(q̂, ĝ)γq̂
= (dn d∗β , d)β̃ .

Here d∗β is embedded as ker(f̄q̂) = ran(f̄∗
q̂ )

⊥.

Proof. Since the Lie algebra morphism f̄q̂ : q̂→ d restricts to the identity map on
ĝ = d, it is ad(d)-equivariant as well as H-equivariant. From this, it is immediate
that β is H-invariant as well as ad-invariant. (In [28], this was proved by direct
calculations.) The kernel ker(f̄q̂) is an H-invariant ideal complementary to d,
hence it may be identified with the dual space to d. On the orthogonal space
ker(f̄q̂)

⊥ = ran(f̄∗
q̂ ), the metric restricts to −β, by definition. Hence the restriction

to ker(f̄q̂) is +β. It follows that ker(f̄q̂) = d∗β as a Lie algebra as well as a d-module,
and hence q̂ = dn d∗β as a metrized Lie algebra. �

Let fq̂ : q̂ → d be the projection along ker(f̄q̂)
⊥. Since the latter is an ideal,

the map fq̂ is a Lie algebra morphism, and by the proof of Proposition 17 we have
that

fq̂(γq̂) = β.

The Manin pair (q, g)γq
is recovered from (dn d∗β , d)β̃ as the reduction

q = f̄−1
q̂

(g)/f̄−1
q̂

(g)⊥, g = (f̄−1
q̂

(g) ∩ d)/(f̄−1
q̂

(g)⊥ ∩ d).

(See also Section 2.1.) The map fq̂ vanishes on f̄−1
q̂

(g)⊥ ⊆ f̄−1
q̂

(0)⊥ = ker(fq̂),
hence it descends to a Lie algebra morphism fq : q→ d.
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Proposition 18. Given a Dirac action of (H,A, E) on (M,P, L), there is a ca-
nonical Dirac comorphism

(P, L) 99K (q, g),

defined by the property that y ∼ ζ if and only if there exists z ∈ L with y = ζ ◦ z.
It is equivariant for the action of (H,A, E).

Proof. The relation given above is obtained from the action AP : A × P 99K P
together with the morphism A→ q (given by trivialization) and P→ 0 (given by
L). As a composition of Courant relations, it is again a Courant relation. It is a
Dirac comorphism, since for y ∈ L, the unique element ξ ∈ g with y ∼ ξ is given
by ξ = uL(y). �

6. Classification results for Dirac actions

We will now use the results of the previous section to classify the Dirac actions
on Dirac manifolds of the form (H/K,P, L).

6.1. The Dirac structure (H × (d n d∗
β), H × d)

By definition of (q, g) as the quotient of (A, E) under the •-action for AL
A , one

obtains a trivialization
(A, E) = (H × q, H × g), (31)

in such a way that the constant sections of H× q are the •-invariant sections of A.
It identifies the Dirac Lie group structure as an action Dirac structure, for some
action of q on H that will be determined below.

The Dirac morphism (A, E)→ (q, g) defined by the trivialization is equivariant
for the Dirac action AR

A of (A, E) (with base action AR
H). Hence it extends to an

H-equivariant Dirac morphism

(Â, Ê)→ (q̂, ĝ) = (dn d∗β , d).

Since both sides have the same rank, this morphism is given by an actual vec-
tor bundle map, Â → d n d∗β , which is a fiberwise isomorphism. This defines a
trivialization

(Â, Ê) = (H × (dn d∗β), H × d). (32)

Proposition 19. The trivialization (32) identifies (Â, Ê) with the action Dirac
structure for the Manin pair (q̂, ĝ)γq̂

and the action ϱ ◦ fq̂ : q̂→ Γ(TH).

Proof. The general construction gives a bracket preserving map f̄Â : Â → d with
f̄Â(γÂ) = −β. (In terms of the trivialization, this is the projection to d.) Both
ker(f̄Â) and ker(f̄Â)

⊥ = ran(f̄∗
Â
) are complements to the Lagrangian subbundle

Ê ⊆ Â. Since f̄Â ◦ a
∗
Â
= 0, we have aÂ ◦ f̄

∗
Â
= 0. That is, the anchor map vanishes

on the second summand of the decomposition

Â = Ê ⊕ ker(f̄Â)
⊥.

In terms of the trivialization, ker(f̄Â)
⊥ = H × ker(fq̂). But we had already shown

that Ê is an action Lie algebroid, i.e., its anchor is given by the restriction of ϱ◦fq̂.
�
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Since the anchor of A ⊆ Â is obtained by restriction, we conclude that (A, E) is
an action Dirac structure for the action ϱ ◦ fq : q → Γ(TH). As explained in [28]
the groupoid structure of A = H×q is that of a semidirect product (see Appendix
B) of H with the groupoid q ⇒ g, using the •-action of H on q.

To summarize: Given a Dirac Lie group (H,A, E), one obtains an H-equivariant
Dirac–Manin triple (d, g, h)β . The Dirac–Manin pair (d, g)β determines a Manin
pair (q, g)γ as in Section 2.1. The Dirac structure on (A, E) on H is that of an
action Dirac structure (H × q, H × g) for ϱ ◦ fq, while the VB-groupoid structure
A ⇒ g is that of a semi-direct product of H with (29). This proves that up to
isomorphism, the Dirac Lie group (H,A, E) is uniquely determined by its Dirac–
Manin triple. As shown in [28], any Dirac–Manin triple arises in this way.

6.2. Homogeneous spaces

We will now consider Dirac actions of (H,A, E) on (M,P, L), with M = H/K a
homogeneous space. Restricting to the group unit e ∈ H, the groupoid action of
A ⇒ g on P gives an action of q ⇒ g on p = PeK , with moment map up : p → g.
This groupoid action is compatible with the metrics, and is uniquely determined
by this property and the moment map up. Indeed, letting Fp : q → p be the map
defined by ⟨Fp(λ), z⟩ = ⟨λ, up(z)⟩, we have

Lemma 20. The groupoid action of q ⇒ g on p is given by λ ◦ z = z + Fp(λ).

Proof. For all y ∈ p, we have up(y)◦y = y. Taking the inner product with λ◦z = z′,
we see that ⟨z′, y⟩ = ⟨z, y⟩ + ⟨λ, up(y)⟩ = ⟨z + Fp(λ), y⟩, hence z′ = z + Fp(λ).
�

Use the •-action of H on P to write P = H ×K p, and write A = H × q.

Lemma 21. The groupoid action of A ⇒ g on P is given by uP([(g, z)]) = g•up(z)
and

(h, λ) ◦ [(g, z)] = [(hg, z + Fp(g
−1 • λ))].

Proof. Note that Fp is K-equivariant relative to the •-action of K ⊆ H. Hence,
the action of K on p is compatible with the structure as a VB-groupoid module
over q ⇒ g:

k.(λ ◦ z) = (k • λ) ◦ k.z.

We conclude that the VB-groupoid action of A ⇒ g on P is that of the semidirect
product H n q ⇒ g on H ×K p, as in Appendix B. �

The following example will be important in what follows.

Example 3. Similar to Proposition 7, the multiplication morphism MultA lifts to
a Dirac action of (H,A, E) on (H, Â, Ê), defining in particular a •-action of H

on Â which commutes with the action of H by Dirac automorphisms. In terms
of the trivialization Â = H × q̂, the •-action reads as h • (g, z) = (hg, z), while
the H action by automorphisms is h.(g, z) = (gh−1, h.z), with the given H-action

on q̂ = d n d∗β . Proposition 19 shows that (Â, Ê) is an action Dirac structure for

ϱ ◦ fq̂. On the other hand, as a VB-groupoid module, Â is fully determined by the
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moment map uÂ|e = uq̂ at the identity fiber. The latter is induced by the target
map tq = (1− prr) = prg ◦fq, hence

uq̂ = prg ◦fq̂ : q̂→ g.

With Fq̂ : q→ q̂ defined as above (for p = q̂), Lemma 21 shows

(h, λ) ◦ (g, z) = (hg, z + Fq̂(g
−1 • λ))

for composable elements (h, λ) ∈ A and (g, z) ∈ Â.

Returning to Dirac structures over homogeneous spaces, we have the following
classification result. Let ϕ : K → H denote the inclusion.

Theorem 22 (Dirac Lie group actions on homogeneous spaces).The Dirac struc-
tures (P, L) on H/K, together with Dirac actions of (H,A, E), are classified by the
following pieces of data:

(i) A Harish-Chandra pair (n,K) together with a non-degenerate K-invariant
element γn ∈ S2n,

(ii) a morphism of Harish-Chandra pairs (fn, ϕ) : (n,K) → (d,H) such that
fn(γn) = β,

(iii) a K-invariant Lagrangian Lie subalgebra u ⊆ n.

Remark 8. We stress again (cf. 3.3) that Theorem 22 is different from the clas-
sification of ‘Dirac homogeneous spaces’ of Jotz [23]. Theorem 22 does not imply
those results, or vice versa.

The proof of Theorem 22 is divided in several stages. First, we show how to
associate to a given (P, L) the data (i), (ii), (iii). Second, we give a normal form
for (P, L) and the action AP in terms of these data, thus proving that (P, L) is
uniquely determined by the data. Third, we show that any given set of data (i),
(ii), (iii) arises in this way.

Construction of the data (i), (ii), (iii). We assume that the Dirac structure (P, L)
on H/K and the Dirac action AP of (H,A, E) are given. Let (P̂, L̂) and fP̂ : P̂→ d

be as in Theorem 15. Since the anchor map for P̂ is surjective, its kernel ker(aP̂)
is an involutive coisotropic subbundle, with ker(aP̂)

⊥ = ran(a∗
P̂
). The quotient is

an H-equivariant Courant algebroid over H/K containing ker(aL̂) as a Lagrangian
subbundle. Both have the zero anchor map, and are hence bundles of Lie algebras.
Their fibers at eK are K-equivariant Lie algebras. We denote these by n, u, so
that

ker(aP̂)/ ran(a
∗
P̂) = H ×K n, ker(aL̂) = H ×K u.

Let γn ∈ S2n be the element defined by the metric. Then (n, u)γn
is a Manin

pair, with an action of K by Manin pair automorphisms. The inclusion of k ⊆ u
into n defines generators for the K-action; hence (n,K) is a Harish-Chandra pair.
Since fP̂ vanishes on ran(a∗

P̂
), it defines an H-equivariant map H ×K n → d. The

restriction to eK is a K-equivariant map,

fn : n→ d.
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Since fP̂ is compatible with brackets and satisfies fP̂(γP) = β, the map fn is a
Lie algebra morphism with fn(γn) = β. Note that fn intertwines the inclusions
of k into n and into h ⊆ d, hence it defines a morphism of Harish-Chandra pairs
(fn, ϕ) : (n,K)→ (d,H), where ϕ : K → H is the inclusion.

Construction of a normal form. Consider first the case K = {e}, thus M = H.
Let

Fn : q→ n (33)

be the map defined by

⟨Fn(λ), ζ⟩ = ⟨λ, prg(fn(ζ))⟩,

for all λ ∈ q, ζ ∈ n. Note that Fn vanishes on g ⊆ q, and the induced map
g∗ = q/g→ n is the restriction of f∗

n : d
∗ → n to the subspace g∗ ⊆ d∗. As before,

we denote by ϱ : d→ Γ(TH) the dressing action (2).

Proposition 23. Suppose K = {e}, thus M = H. There is a canonical identifi-
cation of (P, L) with the action Dirac structure (H×n, H×u), where n acts by the
composition ϱ◦fn. The structure as a module over the VB-groupoid A = H×g ⇒ g
is given by the moment map

uP(h, ζ) = h • prg(fn(ζ))

and the formula, for composable elements (g, λ) ∈ A and (h, ζ) ∈ P,

(g, λ) ◦ (h, ζ) = (gh, ζ + Fn(h
−1 • λ)).

Proof. We will regard P as the second summand of P̂ = H × (h⊕ h∗)⊕ P. Given
y ∈ Ph, let τ ∈ h be the unique element such that aH×h(h, τ) = aP(y). Write

y′′ = (h, τ ) and put y′ = y − y′′ ∈ P̂. Then aP̂(y
′) = 0, and the map taking y to y′

defines an isomorphism of metrized vector bundles

P ∼= ker(aP̂)/ ran(a
∗
P̂) = H × n.

It restricts to the isomorphism L ∼= H × u from Section 4.4. Let (h, ζ) ∈ H × n
be the element corresponding to y ∈ P under this isomorphism. Repeating the
argument for L̂ in the proof of Proposition 9, we obtain

uP(y) = fP̂(y) = fP̂(y
′) + fP̂(y

′′) = Adh fn(ζ) + τ,

Projecting to the g-component, it follows that uP(h, ζ) = h•prg(fn(ζ)). Projecting
to the h-component, we find that

aP(h, ζ) =
(
h,Adh−1 prh Adh fn(ζ)

)
,

which identifies (P, L) as an action Dirac structure for ϱ ◦ fn. The formula for
the-VB-groupoid action is determined by uP, by the formulas from Lemmas 20
and 21. �
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For general M = H/K, let p : H → H/K be the projection. The proposition
above applies to the action of (H,A, E) on (H, p!P, p!L). This action commutes
with the action of K (with base action k 7→ AR(k)) by Dirac automorphisms, and
(P, L) = (p!P//K, p!L//K). In terms of the identification P ∼= H × n, the K-action
reads as

k.(h, ζ) = (hk−1, k.ζ).

We thus have

(P, L) = (H × n//K, H × u//K) = (H ×K p, H ×K l)

with p = k⊥/k, l = u/k. The map up!P descends to the map

uP : H × n//K → g, uP([(h, ζ)]) = h • prg(fn(ζ)),

and the groupoid action of A = H × q descends to a well-defined groupoid action

(g, λ) ◦ [(h, ζ)] = [(gh, ζ + Fn(h
−1 • λ))]. (34)

In summary, we see that the Dirac structure (P, L), and the Dirac action of
(H,A, E) on (H/K,P, L), are fully determined by the data (i), (ii), (iii).

Construction of (M,P, L). Given the data (i), (ii), (iii), we may use the formulas
above to define (M,P, L). That is, as a Dirac structure (P, L) is the reduction
(H × n//K, H × u//K) of the action Dirac structure for the action ϱ ◦ fn. As a
VB-groupoid module over A, it is the module H×K p over the semi-direct product
H n q ⇒ g, where the groupoid action of q ⇒ g on p = k⊥/k is described by the
formulas above. To prove the theorem, one has to show that the VB-groupoid
action is a Dirac morphism.

Rather than proving this directly, we use the following argument. Consider
the action of (H,A, E) on (H, Â, Ê). Recall that this action preserves the map

f Â : Â → d, and that f Â(γÂ) = −β. Extend to an action on the direct product

(H, Â× n, Ê × u), using the trivial action on the second factor. The map

(f Â, fn) : Â× n→ d× d

is invariant under the action, and takes (γÂ, γn) to (−β, β). Since the diagonal
d∆ ⊆ d× d is a (−β, β)-coisotropic Lie subalgebra, its pre-image

C = (f Â, fn)
−1(d∆) ⊆ Â× n

is coisotropic and involutive. The diagonal action of K has generators given by
the diagonal embedding of k. We put

P = (C/C⊥)//K,

and let
L =

(
C ∩ (Ê × u)/C⊥ ∩ (Ê × u)

)
/K.
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By construction, this Dirac manifold comes equipped with a Dirac action of the
Dirac Lie group (H,A, E).

To verify that these two constructions of (P, L) coincide, recall that (Â, Ê) is
the action Dirac structure (H × q̂, H × ĝ), for the action ϱ ◦ fq̂. Here

fq̂ : q̂ = dn d∗β → ĝ = d

is simply the projection to the first factor. One has fÂ(h, λ+ µ) = λ. The map

H × n→ C ⊆ Â× n, (h, ζ) 7→ ((h, fn(ζ)), ζ)

preserves metrics, the anchor map, and the brackets, and descends to an isomor-
phism of metrized vector bundles H × n → C/C⊥, compatible with the anchor
maps and brackets. Furthermore, this isomorphism is also compatible with the
action of K.

6.3. Robinson’s classification

We continue with the setting of Theorem 22. Since fn(γn) = β, and u ⊆ n is
Lagrangian, the image c := fn(u) ⊆ d is β-coisotropic. According to Proposition
10, the group A/E ∼= E∗ acts transitively on P/L ∼= L∗ if and only if fn restricts
to an isomorphism from u onto c, and c ∩ h = k. By the general construction
from Section 2.1, the Dirac–Manin pair (d, c)β determines a Manin pair, given as
the reduction of (d n d∗β , d) by the coisotropic Lie subalgebra c n d∗β , with c as a
Lagrangian Lie subalgebra.

Lemma 24. There is a canonical isomorphism of Manin pairs

(n, u) ∼=
(
(cn d∗β)/(cn d∗β)

⊥, c).

Proof. We have (ran(f∗
n )+u)⊥ = ker(fn)∩u⊥ = ker(fn)∩u = 0, hence ran(f∗

n )+u =
n. It follows that any element of n can be written in the form x = ζ + f∗

n (µ) with
ζ ∈ u and µ ∈ d∗. Note that

f∗
n (µ) ∈ u ≡ u⊥ ⇐⇒ µ ∈ ann(fn(u)) = ann(c) =⇒ fn(f

∗
n (µ)) = β♯(µ) ∈ c,

Thus, if ζ ∈ u, µ ∈ d∗ with ζ + f∗
n (µ) = 0, then

fn(ζ) + µ = −β♯(µ) + µ ∈ (cn d∗β)
⊥.

We hence obtain a well-defined linear map

n→ (cn d∗β)/(cn d∗β)
⊥, ζ + f∗

n (µ) 7→ [fn(ζ) + µ].

It is straightforward to verify that this map preserves Lie brackets and metrics.
For dimension reasons, it is hence an isomorphism. �

Using Lemma 24, Theorem 22 specializes to the following result, which was first
obtained by P. Robinson using a different approach:
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Theorem 25 (P. Robinson [42]). The Dirac structures (H/K,P, L) together with
Dirac actions of (H,A, E), such that E∗ acts transitively on L∗, are classified by
K-invariant β-coisotropic Lie subalgebras c ⊆ d such that c ∩ h = k.

Note that for transitive Poisson actions of Poisson Lie groups H on Poisson
manifolds M , the condition in the theorem is automatic: Here the action of E∗ =
TH on L∗ = TM is just the tangent lift of the H-action on M .

6.4. The exact case

Recall that a Courant algebroid over a manifold Q is exact [44] if the kernel of its
anchor map is a Lagrangian subbundle. In this case, the choice of a complementary
Lagrangian subbundle identifies the Courant algebroid with the standard Courant
algebroid TQ, with the Courant bracket twisted by a closed 3-form.

As we already remarked, [28, Prop. 7.1] asserts that the Courant algebroid A of
a Dirac Lie group (H,A, E) is exact if and only if its Dirac–Manin-triple (d, g, h)β
is exact, that is, β is non-degenerate and g is Lagrangian. As discussed in [28],
there is in fact a canonical splitting TH → H × d, given on left-invariant vector
fields by

νL 7→ (h, ν − 1
2 Adh−1(1− prh⊥)Adh ν).

The corresponding 3-form in this case is expressed in terms of the Maurer–Cartan
forms θL, θR as

η = 1
12 ⟨θ

L, [θL, θL]⟩

(where ⟨· , ·⟩ is the inner product on d defined by β). Thus A ∼= THη, in the
notation from [28].

Proposition 26. Let (H,A, E) be an exact Dirac Lie group, classified by (d, g, h)β,
and K ⊆ H a closed subgroup. Then the exact Dirac structures (P, L) on H/K, to-
gether with Dirac actions of (H,A, E), are classified by Lagrangian Lie subalgebras
c ⊆ d.

Proof. Let (n, u)γn
and fn : n → d be the data from the general classification

theorem 22, and c = fn(u). Note that rank(P) = dim n − 2 dim k. Hence, if P is
exact as well, we must have dim n = 2dimH = dim d. Since fn(γn) = β, this
implies that fn is an isomorphism from n to d, restricting to an isomorphism from
u to c. But these conditions are also sufficient: if n = d, then its pullback p!P
under the map p : H → H/K equals H × d = A as a Courant algebroid. Hence
P = (p!P)//K, being the reduction of an exact Courant algebroid, is again exact
[6]. �

We hence see that the Courant algebroid P is A//K = THη//K, where the
reduction is defined using the generators

τ 7→ τL + 1
2 ⟨θ

L,Adh−1(1− prh⊥)Adh τ⟩.

The reduction is isomorphic to T(H/K) with the Courant bracket twisted by
a closed 3-form; the latter depend on the choice of a splitting. In the special case
k ⊆ h⊥ the splitting of A descends to a splitting of P, and the 3-form η descends
to H/K. In general, the splitting of A does not directly descend, but the choice of
a K-principal connection on H → H/K determines a reduced splitting for P [6].
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Example 4. Suppose h has an invariant metric, and let H be equipped with the
corresponding Cartan–Dirac structure. Recall that the associated H-equivariant
Dirac Manin triple is (h ⊕ h, h∆, h ⊕ 0)β . This is an exact Dirac–Manin triple;
indeed, A ∼= THη where η ∈ Ω3(H) is the Cartan 3-form determined by the
metric. The exact Dirac homogeneous spaces H/K for this Dirac Lie group are
given by Lagrangian Lie subalgebra c such that (h ⊕ 0) ∩ c = k ⊕ 0. Note that
this requires k ⊆ h to be isotropic. If the metric on h is positive definite, then c is
obtained as the graph of a Lie algebra automorphism κ of h, and one has k = 0.
(Note however that the Dirac structure on H/K = H is a κ-twisted version of the
Cartan Dirac structure.) If H is a non-compact real semi-simple Lie group, there
are many other examples of Lagrangian Lie subalgebras, with a possibly non-trivial
K. See Karolinsky–Lyapina [25] for some classification results. Stronger results
are available in the complex case, as discussed in Example 3.2(c).

A. VB-groupoids

For any groupoid H, we denote by H(0) its space of units, and by s, t : H → H(0)

the source and target maps. Sometimes we write sH , tH for clarity. The groupoid
itself will be written as H ⇒ H(0), and the groupoid multiplication of elements
h1, h2 with s(h1) = t(h2) is written as h1 ◦h2 or simply h1h2. Throughout, we will
take ‘groupoids’ to mean Lie groupoids; thus H and H(0) are smooth manifolds,
all structure maps are smooth, and the source and target maps are surjective
submersions. We denote by Gr(MultH) ⊆ H ×H ×H the graph of the groupoid
multiplication, consisting of elements (h1◦h2, h1, h2) with s(h1) = t(h2). An action
of a groupoid H ⇒ H(0) on a manifold M is given by a smooth map u : M → H(0)

(called the moment map), together with a smooth map AM : (h,m) 7→ h ◦ m,
defined on the submanifold of elements (h,m) ∈ H×M such that s(h) = u(m), such
that h1 ◦ (h2 ◦m) = (h1 ◦ h2) ◦m whenever s(h1) = t(h2), s(h2) = u(m), and such
that h◦m = m whenever h = u(m) ∈ H(0). We denote by Gr(AM ) ⊆M ×H×M
the graph of the action map, consisting of all (m′, h,m) such that m′ = h ◦m.

A VB-groupoid [41] (see also [5], [20], [27], [36]) is a groupoid V ⇒ V (0), such
that V is a vector bundle (whose base is a groupoid H ⇒ H(0)), and Gr(MultV ) is
a vector subbundle along Gr(MultH). The condition on the graph implies that the
units V (0) are a sub-vector bundle, and that all the groupoid structure maps (mul-
tiplication, inversion, and source and target maps) are vector bundle morphisms.
The core of a VB-vector bundle is the vector bundle

core(V ) = V |H(0)/V (0);

the VB-vector bundle is called vacant if core(V ) = 0. The restrictions of ker(sV )
and ker(tV ) to H(0) are both complements to TH(0), hence they are both identified
with core(V ).

Left translation by elements of H ⊆ V gives a canonical isomorphism s∗H core(V )
∼= ker(tV ); similarly t∗H core(V ) ∼= ker(sV ) by right translation. Composing with
the inclusion maps into V , and dualizing, we obtain two bundle maps

sV ∗ : V ∗ → core(V )∗, tV ∗ : V ∗ → core(V )∗ (35)

with base maps sH , tH . These are the source and target maps of a groupoid:
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Proposition 27 (Pradines [41]). For any VB-groupoid V ⇒ V (0), the dual bun-
dle is again a VB-groupoid V ∗ ⇒ (V ∗)(0), with source and target map (35). The
groupoid structure satisfies ⟨µ1 ◦ µ2, v1 ◦ v2⟩ = ⟨µ1, v1⟩ + ⟨µ2, v2⟩ for elements
µi ∈ V ∗

hi
and vi ∈ Vhi such that the compositions are defined.

As an immediate consequence, we see that a VB-groupoid is vacant if and only
if the dual VB-groupoid is a group.

Example 5. For any Lie groupoid H ⇒ H(0), the tangent bundle is a VB-
groupoid TH ⇒ TH(0), with core the Lie algebroid AH ofH. Hence, the cotangent
bundle of H is a VB-groupoid T ∗H ⇒ A∗H, with core the cotangent bundle of
H(0). It is the symplectic groupoid integrating the Poisson manifold A∗H.

If H(0) = pt so that H is a group, the tangent bundle is a group, and the
cotangent bundle is the vacant VB-groupoid T ∗H ⇒ h∗. The condition α = α1◦α2

for αi ∈ T ∗
hi
H and α = T ∗

hH holds if and only if h = h1h2 and (α1, α2) =
(Th1,h2 MultH)∗α. We conclude that the graph of the groupoid multiplication
MultTH of

TH = TH ⊕ T ∗H ⇒ h∗

coincides with the graph of the Courant morphism TMultH : TH × TH 99K TH.

Let V ⇒ V (0) be a VB-groupoid with base H ⇒ H(0), and let P be a vector
bundle with base M , with a groupoid action AP of V . Then P is called a VB-
module if the graph Gr(AP ) ⊆ P ×V ×P of is a sub-vector bundle. In particular,
the action AP restricts to a groupoid action AM of H on M , and the moment map
uP : P → V (0) is a vector bundle morphism along uM : M → H(0). (Similarly, we
define LA-modules over LA-groupoids and CA-modules over CA-groupoids.) The
inclusion

u∗M core(V ) ∼= u∗M ker(sV )→ P, v 7→ v ◦ 0m,

dualizes to define a bundle map

uP∗ : P ∗ → core(V )∗ = (V ∗)(0), (36)

with base map uM . We have the following addendum to Proposition 27:

Proposition 28. For any VB-module P over V ⇒ V (0), the dual bundle P ∗ is a
VB-module over V ∗ ⇒ (V ∗)(0), for the moment map (36). The module action is
uniquely defined by the property

⟨µ ◦ ν, v ◦ w⟩ = ⟨µ, v⟩+ ⟨ν, w⟩ (37)

for µ ∈ V ∗
h , ν ∈ P ∗

m, v ∈ Vh, w ∈ Pm.

Proof. (Cf. [42].) To check that the formula for the module action is well-defined,
we must verify that the right-hand side vanishes whenever v ◦ w = 0h◦m. Since
this condition implies tV (v) = uP(0h◦m) = 0, we may write v = 0h−1 ◦ v1 with
v1 ∈ ker(tV )H(0) . Then

0m = v1 ◦ w = (v1 − sV (v1)) ◦ 0m + sV (v1) ◦ w = (v1 − sV (v1)) ◦ 0m + w.
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Pairing with ν, this shows ⟨ν, (v1 − sV (v1)) ◦ 0m⟩ + ⟨ν, w⟩ = 0. Letting [v1] ∈
core(V ) be the equivalence class of v1 mod V (0), we have

⟨ν, (v1 − sV (v1)) ◦ 0m⟩ = ⟨uP∗(ν), [v1]⟩ = ⟨sV ∗(µ), [v1]⟩ = ⟨µ, v⟩.

This shows that ⟨µ, v⟩ + ⟨ν, w⟩ = 0 as desired. Hence (37) is well-defined; it is
straightforward to check that (37) gives a VB-groupoid action. �
Example 6. Continuing Example 5, suppose the Lie groupoid H acts on a mani-
fold M , with a moment map u : M → H(0). Then TH ⇒ TH(0) acts on TM , and
dually T ∗H ⇒ A∗H acts on T ∗M , with a moment map uT∗M : T ∗M → A∗H.

IfH is a Lie group, then this is the usual moment map from symplectic geometry.
We obtain an action of TH ⇒ h∗ on TM , such that the graph of the action map
ATM coincides with the graph of TAM .

B. Semidirect products

There is a general notion of semi-direct product of two groupoids, with one
groupoid H acting on a second groupoid G by automorphisms (in a suitable sense).
We will only need the simple case that H is a Lie group, where this notion is a
rather straightforward generalization of the semi-direct product of two Lie groups.

Proposition 29 (Semi-direct product). Suppose G ⇒ M is a groupoid on which
a Lie group H acts by automorphisms. Then there is semi-direct product groupoid
H nG ⇒ M , equal to H ×G as a manifold, with source and target maps

s(h, g) = s(g), t(h.g) = h.t(g),

and with the groupoid multiplication of composable elements given as

(h1, g1)(h2, g2) = (h1h2, (h
−1
2 .g1)g2).

Given a G-action on a manifold Q, with moment map uQ : Q→M , we obtain an
action of H n G on H × Q, with moment map uH×Q(h, q) = h • uQ(q), and for
composable elements

(h1, g) ◦ (h2, q) = (h1h2, (h−1
2 .g) ◦ q).

If a closed subgroup K ⊆ H acts on Q, in such a way that k.(g ◦ q) = (k.g) ◦ (k.q)
for all k ∈ K and composable g ∈ G, q ∈ Q, then this action of H n G descends
to an action on the associated bundle H ×K Q.

The proof is a straightforward verification. As a special case, suppose H acts
on a VB-groupoid V ⇒ V (0) over G ⇒ G(0). Then the semi-direct product H n V
is a VB-groupoid over the semi-direct product H nG.

Example 7. The Dirac Lie group (H,A, E) determines, by restriction to the
group unit e ∈ H, a linear groupoid q ⇒ g, with an action of H by automor-
phisms. Here q = Ae,

t(λ) = (1− prr)(λ), s(λ) = (1− prr⊥)(λ)
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with r the kernel of t : A → g at e. The action of H preserves the metric, is the
•-action on g, and preserves both r, r⊥. The groupoid multiplication of q reads as

λ1 ◦ λ2 = λ1 + λ2 − s(λ1).

Hence, for the semi-direct product we obtain

s(h, λ) = (1− prr⊥)(λ), t(h, λ) = h • (1− prr)(λ),

and for composable elements,

(h1, λ1) ◦ (h2, λ2) = (h1h2, (h−1
2 λ1) ◦ λ2) = (h1h2, λ2 + h−1

2 • (λ1 − s(λ1))).

We conclude that as a groupoid, A is a semi-direct product A = H n q ⇒ g.
Likewise E = H n g.

Let n be a given space, with a linear map fn : n → d. Define a ‘moment map’
u = prg ◦fn, and let q ⇒ g act by λ ◦ ζ = ζ + Fn(λ) for s(λ) = u(ζ), where Fn was
defined in (33). It is easily seen that this action is compatible with metrics. We
obtain an action of A = H n q on P = H × n, as explained above.
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