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1. Manifolds

1.1. Definition of manifolds. A n-dimensional manifold is a space that locally
looks like Rn. To give a precise meaning to this idea, our space first of all has to come
equipped with some topology (so that the word “local” makes sense). Recall that a
topological space is a set M , together with a collection of subsets of M , called open
subsets, satisfying the following three axioms: (i) the empty set ∅ and the space M itself
are both open, (ii) the intersection of any finite collection of open subsets is open, (iii)
the union of any collection of open subsets is open. The collection of open subsets of M
is also called the topology of M . A map f : M1 → M2 between topological spaces is
called continuous if the pre-image of any open subset in M2 is open in M1. A continuous
map with a continuous inverse is called a homeomorphism.

One basic ingredient in the definition of a manifold is that our topological space
comes equipped with a covering by open sets which are homeomorphic to open subsets
of Rn.

Definition 1.1. Let M be a topological space. An n-dimensional chart for M is a
pair (U, φ) consisting of an open subset U ⊂ Rn and a continuous map φ : U → Rn such
that φ is a homeomorphism onto its image φ(U). Two such charts (Uα, φα), (Uβ, φβ) are
C∞-compatible if the transition map

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

is a diffeomorphism (a smooth map with smooth inverse). A covering A = (Uα)α∈A of
M by pairwise C∞-compatible charts is called a C∞-atlas.

Some people define a C∞-manifold to be a topological space with a C∞ atlas. It is
more common, however, to restrict the class of topological spaces.

Definition 1.2 (Manifolds). A C∞-manifold is a Hausdorff topological space M ,
with countable basis, together with a C∞-atlas.

Remarks 1.3. (a) We recall that a topological space is called Hausdorff if any
two points have disjoint open neighborhoods. A basis for a topological space M
is a collection B of open subsets of M such that every open subset of M is a
union of open subsets in the collection B. For example, the collection of open
balls Bǫ(x) in Rn define a basis. But one already has a basis if one takes only
all balls Bǫ(x) with x ∈ Qn and ǫ ∈ Q>0; this then defines a countable basis. A
topological space with countable basis is also called second countable.

(b) The Hausdorff axiom excludes somewhat pathological examples, such as follow-
ing: Let M = R ∪ {p}, where p is a point, with the topology given by open
sets in R, together with sets of the form (U\{0}) ∪ {p}, for open sets U ⊂ R

containing 0. An open covering of M is given by the two sets U+ = R and
U− = R\{0} ∪ {p}. The natural projection from M to R, taking p to 0, de-
scends to smooth maps φ+ : U+ → R and φ− : U− → R. Then M with atlas
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(U±, φ±) satisfies all the axioms of a 1-dimensional manifold except that it is not
Hausdorff: Every neighborhood of 0 intersects every neighborhood of p.

(c) It is immediate from the definitions that any open subset of a manifold is a
manifold and that the direct products of two manifolds is again a manifold.

The definition of a manifold can be generalized in many ways. For instance, a man-
ifold with boundary is defined in exactly the same way as a manifold, except that the
charts take values in a half space {x ∈ Rn|x1 ≥ 0}. For this to make sense, one needs
to define a notion of smooth maps between open subsets of half-spaces of Rn,Rm: Such
a map is called smooth if it extends to a smooth map of open subsets of Rn,Rm. Even
more generally, one defines manifolds with corners modeled on open subset of the positive
orthant {x ∈ Rn|xj ≥ 0} in Rn.

A complex manifold is a manifold where all charts take values in Cn ∼= R2n, and all
transition maps φβ ◦ φ−1

α are holomorphic.

1.2. Examples of manifolds.

(a) Spheres. Let Sn ⊂ Rn+1 be the unit sphere of radius 1. Let N = (1, 0, . . . , 0)
be the north pole and S = (−1, 0, . . . , 0) the south pole. Let U1 = Sn\{S} and
U2 = Sn\{N}. Define maps φj : Uj → Rn by

φ1(x) =
x− (x ·N)N

1 − x ·N
, φ2(x) =

x− (x · S)S

1 − x · S
=
x− (x ·N)N

1 + x ·N
.

Then φj : Uj → Rn define the structure of an oriented manifold on Sn. Both
charts are onto Rn, and φ1(U1 ∩ U2) = φ2(U1 ∩ U2) = Rn\{0}. The inverse map
to φ1 reads,

φ−1
1 (y) =

(||y||2 − 1)N + 2y

1 + ||y||2
.

Thus,

φ2 ◦ φ
−1
1 (y) =

y

||y||2
,

a global diffeomorphism from Rn\{0} onto itself. The 2-sphere S2 is in fact a
complex manifold: Identify R2 ∼= C in the usual way, so that φ1, φ2 take values in
C. Replace φ2 by its complex conjugate, φ2(x) = φ2(x). In complex coordinates,
φ2◦φ

−1
1 (z) = z−1, which is a holomorphic function. A different complex structure

is obtained by replacing φ1 by it complex conjugate. For n 6= 2, the spheres Sn

are not complex manifolds.
(b) Projective spaces. Let RP (n) be the quotient Sn/ ∼ under the equivalence

relation x ∼ −x. Let π : Sn → RP (n) be the quotient map. For any chart
ψ : V → Rn of Sn with the property x ∈ V ⇒ −x 6∈ V , let U = π(V ), and
φ : U → Rn the unique map such that φ ◦ π = ψ. The collection of all such
charts defines an atlas for RP (n); the compatibility of charts follows from that
for Sn.
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(c) Grassmannians. The set GrR(k, n) of all k-dimensional subspaces of Rn is called
the Grassmannian of k-planes in Rn. A C∞-atlas may be constructed as follows.
For any subset I ⊂ {1, . . . , n} of cardinality #I = k, let RI ⊂ Rn be the subspace
consisting of all x ∈ Rn with xi = 0 for i 6∈ I. Thus each RI ∈ GrR(k, n).
Let UI ⊂ Gr(k, n) be the set of all k-dimensional subspaces E ⊂ Rn with
E ∩ (RI)⊥ = {0}. There is a bijection φI : UI

∼= L(RI , (RI)⊥) ∼= Rk(n−k) of UI

with the space of linear maps AI : RI → (RI)⊥, where each such A corresponds
to the subspace E = {x+ AI(x)|x ∈ RI}.

To check that the charts are compatible, let ΠI denote orthogonal projection
Rn → RI . We have to show that for all intersections, UI ∩ UĨ , the map taking
AI to AĨ is smooth. The map AI is determined by the equations

AI(xI) = (1 − ΠI)x, xI = ΠIx

for x ∈ E, and x = xI + AIxI . Thus

AĨ(xĨ) = (I − ΠĨ)(AI + 1)xI , xĨ = ΠĨ(AI + 1)xI .

The map ΠĨ(AI + 1) restricts to an isomorphism S(AI) : RI → RĨ . The above
equations show,

AĨ = (I − ΠĨ)(AI + 1)S(AI)
−1.

The dependence of S on the matrix entries of AI is smooth, by Cramer’s formula
for the inverse matrix. It follows that the collection of all φI : UI → Rk(n−k)

defines on GrR(k, n) the structure of a manifold of dimension k(n − k). Later,
we will give an alternative description of the manifold structure for the Grass-
mannian as a “homogeneous space”.

The discussion above can be repeated by replacing R with C everywhere.
The space GrC(k, n) is a complex manifold of complex dimension k(n − k), i.e.
real dimension 2k(n − k). In particular, GrC(1, n) = CP (n) is the complex
projective space.

(d) Flag manifolds. A (complete) flag in Rn is a sequence of subspaces {0} = V0 ⊂
V1 ⊂ · · · ⊂ Vn = Rn where dimVk = k for all k. Let Fl(n) be the set of all flags.
It is a manifold of dimension (n2−n)/2, as one can see from the following rough
argument. Any real flag in Rn determines, and as determined by a sequence
of 1-dimensional subspaces L1, · · · , Ln, where each Lj is orthogonal to the sum
of Lk with k 6= j. Indeed the flag is recovered from this by putting E1 = L1,
E2 = L1 ⊕ L2 and so on. There is an RP (n − 1) of choices for L1. Given L1

there is an RP (n − 2) of choices for L2 (since L2 is orthogonal to L1). Given
L1, . . . , Lj there is an RP (n− j − 1) of possibilities for Ln+1. Hence we expect,

dim FlR(n) =
n−1∑

j=1

(n− j) = n(n− 1)/2.
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It is possible to construct an atlas for FlR(n) using this idea. Below we will give
an alternative approach, by showing that the flag manifold is a homogeneous
space (see below). Similarly, one can define a complex flag manifold FlC(n), con-
sisting of flags of subspaces in Cn. Also, one can define spaces FlR(k1, . . . , kl, n)
of partial flags, consisting of subspaces {0} = E0 ⊂ E1 ⊂ · · · ⊂ El ⊂ El+1 = Rn

of given dimensions k1, . . . , kl, n. Note that FlR(k, n) = Gr(k, n).
(e) Klein Bottle. Let M be the manifold obtained as a quotient [0, 1] × [0, 1]/ ∼

under the equivalence relation (x, 0) ∼ (x, 1), (0, x) ∼ (1, 1 − x). Exercise: The
quotient space has natural manifold structure. Hint: Write M as a quotient of
R2 rather than [0, 1]2. Then use charts for R2 to define charts for M .

A manifold M is called orientable if it admits an atlas such that the Jacobians of all
transition maps φβ ◦φ

−1
α have positive determinants. An manifold M with such an atlas

is called an oriented manifold.

Exercise 1.4. Show that GrR(1, n+ 1) = RP (n), and GrR(k, n) = GrR(n− k, n).

Exercise 1.5. Construct a manifold structure on the space M = Gror
R

(k, n) of ori-
ented k-planes in Rn.

Exercise 1.6. Show that RP (n) is orientable if and only if n is odd. Any idea for
which k, n the Grassmannian GrR(k, n) is orientable? (Answer: If and only if n is odd.)

Show that the Klein Bottle is non-orientable. Show that any complex manifold
(viewed as a real manifold) is oriented.

1.3. Smooth maps between manifolds.

Definition 1.7. A map F : N → M between manifolds is called smooth (or C∞)
if for all charts (U, φ) of N and (V, ψ) of M with F (U) ⊂ V , the composite map

ψ ◦ F ◦ φ−1 : φ(U) → ψ(V )

is smooth. The space of smooth maps from N to M is denoted C∞(N,M). A smooth
map F : N →M with smooth inverse F−1 : M → N is called a diffeomorphism.

In the special case where the target space is the real line we write C∞(M) :=
C∞(M,R). The space C∞(M) is an algebra under pointwise multiplication, called the
algebra of functions on M . For any f ∈ C∞(M), one defines the support of f to be the
closed set

supp(f) = {x ∈M | f(x) 6= 0}.

Clearly, the composition of any two smooth maps is again smooth. In particular, any
F ∈ C∞(N,M) defines an algebra homomorphism

F ∗ : C∞(M) → C∞(N), f 7→ F ∗f = f ◦ F
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called the pull-back.

R

M
F

//

F ∗f
>>

N

f

OO

In fact, a given map F : N →M is smooth if and only if for all f ∈ C∞(M), the pulled
back map F ∗f = f ◦ F is smooth. (Exercise.)

If M is a manifold, we say that a coordinate chart φ : U → Rm is centered at x ∈M
if φ(x) = 0.

Definition 1.8. Let F ∈ C∞(N,M) be a smooth map between manifolds of di-
mensions n,m, and x ∈ N . The rank of F at x, denoted rankx(F ), is the rank of the
Jacobian

Dφ(x)(ψ ◦ f ◦ φ−1) : Rn → Rm,

for any choice of charts φ : U → Rn centered at x and ψ : V → Rm centered at F (x).
The point x is called regular if rankx(F ) = m, and singular (or critical) otherwise. A
point y ∈M is called a regular value if rankx(F ) = m for all x ∈ F−1(y), singular value
otherwise.

Note that the rank of the map F does not depend on the choice of coordinate charts.
According to our definition, points that are not in the image of F are regular values.

Lemma 1.9. The map M → Z, x 7→ rankx(F ) is lower semi-continuous: That is, for
any x0 ∈M there is an open neighborhood U around x0 such that rankx(F ) ≥ rankx0

(F )
for x ∈ U . In particular, if r = maxx∈M rankx(F ), the set {x ∈ M | rankx(F ) = r} is
open in M .

Proof. Choose coordinate charts φ : U → Rn centered at x0 and ψ : V → Rm

centered at F (x0). By assumption, the Jacobian Dφ(x0) : Rn → Rm has rank r =
rankx0

(F ). Equivalently, some r × r-minor of the matrix representing Dφ(x0) has non-
zero determinant. By continuity, the same r× r-minor for any Dφ(x), x ∈ U has nonzero
determinant, provided U is sufficiently small. This means that the rank of F at x must
be at least r. �

Definition 1.10. Let F ∈ C∞(N,M) be a smooth map between manifolds of di-
mensions n,m. The map F is called a

• submersion if rankx(F ) = m for all x ∈M .
• immersion if rankx(F ) = n for all x ∈M .
• local diffeomorphism if dimM = dimN and F is a submersion (equivalently, an

immersion).

Thus, submersions are the maximal rank maps if m ≤ n, and immersions are the
maximal rank maps if m ≥ n.
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Theorem 1.11 (Local normal form for submersions). Suppose F ∈ C∞(N,M) is a
submersion, x0 ∈ N . Given any coordinate chart (V, ψ) centered at F (x0), one can find a
coordinate chart (U, φ) centered at x0 such that the map F̃ = ψ ◦F ◦φ−1 : φ(U) → ψ(V )
is given by

F̃ (x1, . . . , xn) = (x1, . . . , xm).

Proof. The idea is simply to take the components of F as the first m components
φj(x) of the coordinate function near x0.

Using the given coordinate chart around F (x0) and any coordinate chart around x0,
we may assume that M is an open neighborhood of 0 ∈ Rm and N an open neighbor-
hood of 0 ∈ Rn. We have to find a smaller neighborhood U of 0 ∈ M ⊂ Rn and a
diffeomorphism φ : U → φ(U) ⊂ Rn such that F̃ = F ◦ φ−1 has the desired form.

By a linear transformation of Rn, we may assume that ∂F i

∂xj (0) = δij for i, j ≤ m. Let
φ : M → Rn be the map

φ(x1, . . . , xn) =
(
F 1(x1, . . . , xn), . . . , Fm(x1, . . . , xn), xm+1, . . . , xn

)
.

The Jacobian of φ at x = 0 is just the identity matrix. Hence the inverse function
theorem applies: There exists some smaller neighborhood U of 0 ∈ M ⊂ Rn, such that
φ is a diffeomorphism U → φ(U). Then (U, φ) is the desired coordinate system. �

Theorem 1.12 (Local normal form for immersions). Suppose F ∈ C∞(N,M) is an
immersion, x0 ∈ N . Given any coordinate chart (U, φ) centered at x0, one can find a
coordinate chart (V, ψ) centered at F (x0) such that the map F̃ = ψ ◦ F ◦ φ−1 : φ(U) →
ψ(V ) is given by

F̃ (x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

Proof. The idea is to use the given coordinates on U as coordinates on F (U),
near F (x0), and supplementary m − n coordinates in “transversal directions” to get
coordinates on M near F (x0).

Using the given coordinates chart around x0 and any coordinate chart around F (x0),
we may assume that M is an open neighborhood of 0 ∈ Rm and N an open neighborhood
of 0 ∈ Rn. We have to find a smaller neighborhood V ⊂ M , and a diffeomorphism ψ :
V → ψ(V ) ⊂ Rm such that F̃ = ψ◦F has the form F̃ (x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

Let x1, . . . , xn be the coordinates on Rn and y1, . . . , ym the coordinates on Rm. By
assumption, the matrix ∂F i

∂xj
(x) has maximal rank n for all x ∈ U . By a linear change of

coordinates on V , we may assume that (∂F i

∂xj
(x0))i,j≤n = δij. Consider the map Consider

the map

Ψ : N × Rm−n → Rm, (x, s) 7→ F (x) + (0, . . . , 0, sn+1, . . . , sm)

The Jacobian of Ψ at 0 is just the identity matrix. Hence, the inverse function theorem
applies, and we can find an open neighborhood V around 0 ∈M ⊂ Rm such that Ψ−1 is a
well-defined diffeomorphism over V . The map ψ = Ψ−1 : V → ψ(V ) ⊂ U ×Rm−n ⊂ Rm

is the desired coordinate chart. �
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Exercise 1.13. Let π : N → M be a surjective submersion. Suppose F : M → X
is any map such that F lifts to a smooth map F̂ : N → X, i.e. F ◦ π = F̂ . Then F is
smooth.

Definition 1.14. Let M be a manifold. A subset S ⊂ M is called an embedded
submanifold if for each x0 ∈ S there exists a coordinate system (U, φ) centered at x0,
such that

φ(U ∩ S) = {(x1, . . . , xm) ∈ φ(U)| xk+1 = . . . = xm = 0}

It is obvious from the definition that submanifolds inherit a manifold structure from
the ambient space: Given a covering of S by coordinate charts (U, φ) as above, one
simply takes (U ∩ S, φ|U∩S) to define an atlas for S.

The following two Theorems are immediate consequences of the normal form theorems
for submersions and immersions, respectively.

Theorem 1.15. Let F ∈ C∞(N,M) be a submersion. Then each level set S =
F−1(y) for y ∈M is an embedded submanifold of dimension n−m.

Theorem 1.16. Let F ∈ C∞(N,M) be an immersion. For each x0 ∈ N there exists
a neighborhood U of x0 such that the image S = F (U) is an embedded submanifold of
dimension m− n.

These theorems provide many new examples of manifolds. Often, manifolds are
obtained as level sets for a smooth function on a Euclidean space RN . For example, we
see again that Sn ⊂ Rn+1 is a manifold. Another example is the 2-torus, for 0 < r < R
the radii of the “small” and “big” circles, given as a level set G−1(r2) where G ∈ C∞(R3)
is the function,

G(x1, x2, x3) = (x3)2 + (
√

(x1)2 + (x2)2 −R)2.

The 2-torus can also be described as the image of an immersion F : R2 → R3, where
F (θ, φ) = (x1, x2, x3) is given by

x1 = (R + r cos θ) cosφ,

x2 = (R + r cos θ) sinφ,

x3 = r sin θ

In fact, it is clear that this map descends to an embedding R2/(2πZ)2 → R3 as a
submanifold.

We will show below that any compact manifold can be smoothly embedded into some
RN . (In fact, compactness is not necessary but we won’t prove this harder result.)
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Exercise 1.17. Construct an explicit embedding of the Klein bottle into R4. Solu-
tion: Given 0 < r < R define F (θ, φ) = (x1, x2, x3, x4) where

x1 = (R + r cos θ) cosφ,

x2 = (R + r cos θ) sinφ,

x3 = r sin θ cosφ/2,

x4 = r sin θ sinφ/2.

for 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ 2π.

1.4. Tangent vectors. There is a number of equivalent coordinate-free definitions
for the tangent space TxM of a manifold x ∈ M at some point x ∈ M . Our favorite
definition defines TxM as the space of “directional derivatives”.

Definition 1.18. Let M be a manifold. A tangent vector at x ∈M is a linear map
v : C∞(M) → R satisfying the “Leibnitz rule” (product rule)

v(f1f2) = v(f1)f2(x) + f1(x)v(f2).

The vector space of tangent vectors at x is denoted TxM , and called the tangent space
at x.

It follows immediately from the definition that any tangent vector vanishes on con-
stant functions. Indeed, if 1 denotes the constant function f(x) = 1, the product rule
gives

v(1) = v(1 · 1) = v(1) · 1 + 1 · v(1) = 2v(1)

thus v(1) = 0. Furthermore, the product rule shows that for any two functions g, h with
g(x) = h(x) = 0, v(gh) = 0.

Lemma 1.19. If U ⊂ Rn is an open subset and x0 ∈ U , the tangent space Tx0
U is

isomorphic to Rn, with basis the derivatives in coordinate directions,

∂

∂xi
|x0

: f 7→
∂f

∂xi
(x0)

Proof. We may assume x0 = 0. Let v ∈ T0U . Given f ∈ C∞(U), use Taylor’s
theorem with remainder to write f(x) = f(0) +

∑m
i=1

∂f
∂xi (0)xi +

∑m
i=1 gi(x)x

i, where gi

vanishes at 0. v vanishes on the constant f(0), and also on the products xigi(x). Thus

v(f) =
m∑

i=1

∂f

∂xi
(0)v(xi) =

m∑

i=1

ai
∂f

∂xi
|x=0

where ai = v(xi). �

Lemma 1.20. Let M be a manifold of dimension m. If ι : U →֒ M is any open
neighborhood of x, the map

ι∗ : TxU → TxM, ι∗v(f) = v(f |U)
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is an isomorphism. In particular, any coordinate chart (U, φ) around x gives an isomor-
phism TxM ∼= Rm.

Proof. We first show that for any v ∈ TxM , v(f) depends only on the restriction
of f to an arbitrary open neighborhood of x. Equivalently, we have to show that if f
vanishes on a neighborhood of x then v(f) = 0. Using a coordinate chart around x
construct χ ∈ C∞(M) with χ = 1 on a neighborhood of x and χ = 0 on a neighborhood
of the support of f . Let g = 1 − χ. Then fg = f since g = 1 on supp(f). Since both
f, g both vanish at x, v(f) = v(fg) = 0, as required.

This result can be re-interpreted as follows: Let V ⊂ M be an open neighborhood
of x, and FV (M) ⊂ C∞(M) be the functions supported in V . Then TxM can also be
defined as the space of linear maps F → R satisfying the Leibnitz rule. Indeed, if χ is
supported on V and χ = 1 near x, then any function f coincides with χf ∈ FV (M) near
x. In particular, choose V with V ⊂ U . Then FV (U) = FV (M), and it follows directly
that TxM = TxU . �

Definition 1.21. Let F ∈ C∞(N,M) be a smooth map, and x ∈ N . The tangent
map

dxF : TxN → TF (x)M

is defined as follows:

(dxF (v))(f) = v(F ∗f), f ∈ C∞(M).

It is immediate from the definition that dxF is a linear map. We often write F∗ :
TxN → TF (x)M if the base point is understood. The map F∗ is also called push-forward.
Under composition of maps, (F1 ◦ F2)∗ = (F1)∗ ◦ (F2)∗.

Exercise 1.22. Let U ⊂ Rm and V ⊂ Rn be open subsets and F ∈ C∞(U, V ). For
all x ∈ U , the isomorphisms TxU = Rm and TF (x)V = Rn identify the tangent map
dxF : TxU → TF (x)V with the Jacobian DxF : Rm → Rn. That is,

(dxF )(
∂

∂xi
) =

∑

j

∂F j

∂xi

∂

∂yj
,

where xi, yj are the coordinates on U, V .

Thus dxF is just the coordinate-free definition of the Jacobian: any choice of charts
(U, φ) around x and (V, ψ) around F (x) identifies dxF with the Jacobian of the map
ψ ◦ F ◦ φ−1 : φ(U) → ψ(V ) at φ(x). In particular,

rankx(F ) = rank(dxF ).

F is an immersion if dxF is injective everywhere, and a submersion if dxF is surjective
everywhere.

Definition 1.23. A map F ∈ C∞(N,M) is called an embedding if F is an injective
immersion and F is a homeomorphism onto F (N) (with the subspace topology).
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Thus, a 1:1 immersion is an embedding if and only if the map N → F (N) is open
for the subset topology. That is, one has to verify that for each open subset U of N , the
image F (U) can be written F (U) = F (N) ∩ V where V is open in M .

Example 1.24. Consider the curve

γ : R → R2, t 7→ (sin(2t), cos(t)).

Then γ is an immersion, with image a “figure 8”. Let F be the restriction of γ to the
open interval (−π/2, 3π/2). Then F is a 1-1 immersion, but is not an embedding. For
instance, the image of the open interval (0, π) is not open in the subspace topology. Note
that the image of F is still the full figure 8, so it is not an embedded submanifold.

Exercise 1.25. Show that the image of an embedding is an embedded submanifold.
Conversely, if N ⊂ M is an embedded submanifold with the induced structure of a
manifold on N , then the inclusion map N →M is an embedding.

If F is an embedding, then dxF : TxN → TF (x)M is injective, so TxN is identified
with a subspace of TF (x)M . In particular, if N is an embedded submanifold of Rm, the
tangent spaces to N are canonically identified with subspaces of Rm.

Exercise 1.26. Suppose F ∈ C∞(N,M) has a ∈M as a regular value, so F−1(a) is
an embedded submanifold of N . Show that

Tx(F
−1(a)) = ker(dxF ) ⊂ TxN

for all x ∈ F−1(a). (Hint: Use the normal form theorem for submersions.)

1.5. Velocity vectors for curves. If I ⊂ R is an open interval, a map γ ∈
C∞(I,M) is called a parametrized curve in M . For any t ∈ I, one can define the
velocity vector

γ̇(t) ∈ Tγ(t)M

by γ̇(t) = (γ)∗(
∂
∂t

). The action of the velocity vector on functions is, by definition of
push-forward,

γ̇(t)(f) =
d

dt
f(γ(t)).

Exercise 1.27. Show that every v ∈ TxM is of the form v = γ̇(0) for some curve
γ : (−ǫ, ǫ) →M with γ(0) = x. (Hint: Use a chart.)

Exercise 1.28. Let F ∈ C∞(N,M) and γ ∈ C∞(I,N) a smooth curve. Show that

F∗(γ̇(t)) =
d

dt
F (γ(t)),

the tangent vector for the curve F ◦ γ.



14 CONTENTS

1.6. Jet spaces. Let C∞
x (M) be the space of functions vanishing at x, and C∞

x (M)2 ⊂
C∞

x (M) linear combinations of products of such functions. Thus C∞
x (M)2 consists of

functions on M that vanish to second order at x. From the definition, it is clear that
any tangent vector is determined by its value on C∞

x (M), and is zero on C∞
x (M)2. Thus

one has a natural linear map TxM → (C∞
x (M)/C∞

x (M)2)∗.

Proposition 1.29. The map

TxM ∼= (C∞
x (M)/C∞

x (M)2)∗

is a vector space isomorphism.

Proof. Clearly, this map is injective. To show surjectivity, we have to show that
if v : C∞(M) → R is any linear map vanishing on constants and on C∞

x (M)2, then
v satisfies the Leibnitz rule. Given f, g write f = a + (f − a) where f(x) = a, and
g = b+ (g − b) where g(x) = b. Then f − a and g − b vanish at x. Thus

v(fg) = v(ab) + av(g − b) + v(f − a)b+ v((f − a)(g − b))

= av(g − b) + v(f − a)b

= av(g) + v(f)b.

�

Exercise 1.30. Show that C∞
x (M) is a maximal ideal in the algebra C∞(M), and

that every maximal ideal is of this form, for some x.

Exercise 1.31. Give the definition of the tangent map dxF from this point of view.

This second definition suggests a definition of “higher tangent bundles”: One defines,
for all k = 1, 2, . . .

Jk
xM := C∞(M)/C∞

x (M)k,

the kth jet space. For any function f ∈ C∞
x (M), its image Jk

x (f) in Jk
xM is called the

kth order jet at x. In local coordinates, Jk
x (f) represents the kth order Taylor expansion

at x.
Thus J0

xM = R, J1
xM = R ⊕ T ∗

xM . For larger k one still has projection maps
Jk+1

x M → Jk
xM but these maps no longer split: There is no coordinate invariant meaning

of the terms of order exactly k + 1 of a Taylor expansion, unless the terms of order ≤ k
vanish.

2. Partitions of unity

Before developing the theory of vector fields, differential forms etc., we need an
important technical tool known as partitions of unity.

We recall a few notions from topology. An open cover (Vβ)β∈B of a topological space
M is called a refinement of a given open cover (Uα)α∈A if each Vβ is contained in some
Uα. A cover (Uα)α∈A is called locally finite if each point in M has an open neighborhood
that intersects only finitely many Uα’s. A topological space is called paracompact if
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every open cover has a locally finite refinement. We will show now that manifolds are
paracompact. First we need:

Lemma 2.1. Every manifold has an open covering (Si)
N
i=1 where each Si is compact,

and Si ⊂ Si+1, for all i.

Proof. Let (Ui)
∞
i=1 be a countable basis of the topology. Already the Ui’s with

compact closure are a basis for the topology, so passing to a subsequence we may assume
that each Ui has compact closure. Let S1 = U1. Let k(1) > 1 be an integer such that
U1, . . . , Uk(1) cover S1. Put S2 := U1 ∪ . . . ∪ Uk(1). Let k(2) > k(1) be an integer such

that U1, . . . , Uk(2) cover S2. Put S3 := U1 ∪ . . . ∪ Uk(2). Proceeding in this fashion, one
produces a sequence Si with the required properties. �

Theorem 2.2. Every manifold M is paracompact. In fact, every open cover admits
a countable, locally finite refinement consisting of open sets with compact closures.

Proof. Let (Uα)α∈A be any given cover of M . Here A is any indexing set. Let
S1, S2, . . . be the sequence from Lemma 2.1. Each Si is compact, and is therefore covered
by finitely many Uα’s. It follows that there exists a countable subset A′ ⊂ A such that
(Uα)α∈A′ is a covering of M . Replacing A with A′, we may assume that our indexing set
is A = {1, 2, . . .} (possibly finite). For each j, let k(j) be an integer such that the sets
Ui with i ≤ k(1) cover Sj. For 1 ≤ k ≤ k(j) define

V j
k = Uk ∩ (Sj+1\Sj−1)

where j is the integer such that k(j − 1) < k ≤ k(j) (we put k(0) = 0 and S0 = ∅).
Then the collection V j

k ’s are a locally finite refinement of the given cover, and each V j
k

has compact closure. �

Lemma 2.3. Let C ⊂ M be a compact subset of some manifolds M . For any open
neighborhood U of C there exists a smooth function f ∈ C∞(M) with 0 ≤ f ≤ 1, such
that f = 1 on C and supp(f) ⊂ U .

Proof. For each x ∈ C, choose a function fx ∈ C∞(M) with supp(fx) ⊂ U and
fx = 1 on a neighborhood of x. (Such a function is easily constructed using a local
coordinate chart.)Let Cx = f−1

x (1). Then {int(Cx)}x∈C are an open cover of C. By
compactness, there exists a finite subcover. Thus we can choose a finite collection of
points xi such that the interiors of the sets Ci = Cxi

cover C. Write fi = fxi
. Then

f = 1 −
N∏

i=1

(1 − fi)

has all the required properties. �

Lemma 2.4 (Shrinking Lemma). Let (Uα)α∈A be a locally finite covering of a manifold
M by open sets with compact closure. Then there exists a covering (Vα)α∈A such that
Vα ⊂ Uα for all α ∈ A.
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Proof. Since the covering is locally finite, it is in particular countable. (Taking an
open cover Si of M as above, where each Si is compact and contained in Si+1, only
finitely many Uα’s meet each Si. This implies countability.) Thus we may assume that
A = N or a finite sequence, and write the given cover as (Ui)

N
i=1, N ∈ N∪∞. Inductively,

we now construct open subsets Vi with Vi ⊂ Ui, such that V1, . . . , Vi, Ui+1, Ui+2, . . . still
form a cover of M . Given V1, . . . , Vi, we construct Vi+1 as follows: Choose 0 ≤ f ≤ 1
supported in Ui+1 with f = 1 on the compact set

C = M\
( ⋃

k≤i

Vi ∪
⋃

k≥i+2

Ui

)
⊆ Ui+1.

Then take Vi+1 to be the open set where f > 0. Then V1, . . . , Vi+1, Ui+2, . . . is an open
cover. Since the original cover was locally finite, (Vi)

N
i=1 is a cover of M . �

Theorem 2.5. Let (Uα)α∈A be an open covering of a manifold M . Then there exists
a partition of unity subordinate to the cover Uα, that is, a collection of functions χα

such that

(a) Each point x ∈ M has an open neighborhood U meeting the support of only
finitely many χα’s.

(b) 0 ≤ χα ≤ 1,
(c) supp(χα) ⊂ Uα,
(d)

∑
α χα = 1

(The sum is well-defined, since near each point only finitely many χα are non-zero.)

Proof. Suppose first that the cover is locally finite and that each Uα is compact.
Choose a shrinking (Vα)α∈A as in the Lemma. Choose functions 0 ≤ fα ≤ 1 supported
in Uα with fα = 1 on Vα. Since the covering is locally finite, the sum f =

∑
α fα

exists, and clearly f > 0 everywhere. Put χα = fα/f . This proves the Theorem for
locally finite covers with compact closures. In the general case, choose a locally finite
refinement (Ũβ)β∈B consisting of open sets with compact closures. There is a function

j : B → A, β 7→ α = j(β) such that Ũβ ⊆ Uj(β), and define χα =
∑

j(β)=α χ̃β. �

Exercise 2.6. Show that Lemma 2.3 holds for any closed, not necessarily compact,
subset of M .

Here is a typical application of partitions of unity.

Theorem 2.7. Every manifold M can be embedded into Rk, for k sufficiently large.

Proof. We will prove this only under the additional assumption that M admits a
finite atlas. The existence of a finite atlas is obvious if M is compact. It can be shown
that in fact, every manifold admits a finite atlas but the proof is not so easy (see e.g. the
book Greub-Halperin-Vanstone). Let (Uk, φk)

N
k=1 be a finite atlas. Choose a partition of

unity subordinate χk, subordinate to the cover Uk. Then χkφk : Uk → Rm extends by
zero to a function fk ∈ C∞(M,Rm). Let

F : M → R(m+1)N , x 7→ (f1(x), . . . , fN(x), χ1(x), . . . , χN(x)).
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We claim that F is an embedding: That is, F is a 1-1 immersion that is a homeomorphism
onto its image. First, F is 1-1. For suppose F (x) = F (y). Thus χi(x) = χi(y) for all i.
Choose i with χi(x) > 0. In particular, x, y ∈ Ui. Dividing the equation fi(x) = fi(y)
by χi(x) = χi(y) we find φi(x) = φi(y), thus x = y. More generally, for any x ∈ N and
any sequence yi ∈ N , F (yi) → F (x) implies yi → x. This shows that the inverse map is
continuous, so F is a homeomorphism onto its image. Finally, let us show that F has
maximal rank at x: For suppose v ∈ ker(dxF ). Then v(χi) = 0 and v(fi) = 0 for all i.
Choose i such that χi(x) > 0, thus x ∈ Ui. Writing fi = χiφi the product rule gives

0 = v(φiχi) = χi(x)v(φi),

thus v(φi) = 0. But φi is a diffeomorphism onto its image, so v = 0. �

A famous theorem of Whitney (1944) says that any manifold of dimension dimM =
m can be embedded into R2m, and immersed into R2m−1. See Smale, Bull.Am.Math.Soc.
69 (1963), 133-145 for a survey of results on embeddings and immersions.

3. Vector fields

3.1. Vector fields. Suppose A is an algebra over R. A derivation of A is a linear
map D : A → A satisfying the Leibnitz rule

D(ab) = aD(b) +D(a)b.

If D1, D2 are derivations, then so is their commutator [D1, D2] = D1D2 −D2D1. Recall
that the commutator satisfies the Jacobi identity,

[D1, [D2, D3]] + [D2, [D3, D1]] + [D3, [D1, D2]] = 0.

Thus Der(A) is a Lie subalgebra of the algebra End(A). If A is commutative, the space
Der(A) is an A-submodule of End(A): If D is a derivation and x ∈ A, then xD is also
a derivation.

Definition 3.1. A vector field on M is a derivation X ∈ Der(C∞(M)). That is, X
is a linear map X : C∞(M) → C∞(M) satisfying the Leibnitz rule

X(fg) = (Xf)g + f(Xg), f, g ∈ C∞(M).

The space of vector fields will be denoted X(M). If X,Y ∈ X(M), the vector field
[X,Y ] = X ◦ Y − Y ◦X is called the Lie bracket of X and Y .

Thus, the space X(M) of vector fields is a Lie algebra. They are also a C∞(M)-
module, that is, fX ∈ X(M) for all f ∈ C∞(M) and X ∈ X(M). Evaluation at any
point x ∈M defines a linear map

X → TxM, X 7→ Xx, Xx(f) = (Xf)(x).

Conversely X can be recovered from the collection of tangent vectors Xx with x ∈ M .
We write

supp(X) = {x ∈M |Xx 6= 0}.
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One can think of a vector field as a family of tangent vectors depending smoothly on the
base point.

Exercise 3.2 (Locality). Show that vector fields are local, in the following sense: If
U is an open subset of a manifold M , and X ∈ X(M), there exists a unique vector field
XU ∈ X(U) (called the restriction of X to U) such that (XU)x = Xx for all x ∈ U .

The action of X on functions f ∈ C∞(M) supported in U is given in terms of
the restriction by Xf |U = XU(f |U). Using a partition of unity, this means that the
restrictions of X to coordinate charts determine the vector field X. In local coordinates,
vector field have the following form:

Lemma 3.3. Suppose U ⊂ Rn is an open subset. Then any X ∈ X(U) has the form

X =
n∑

i=1

ai
∂

∂xi

where ai ∈ C∞(U).

Proof. From the description of tangent vectors v ∈ TxU , we know that

Xx =
n∑

i=1

ai(x)
∂

∂xi

for some function ai(x). We have to show that ai is smooth. But this is clear since
ai = X(f) where f ∈ C∞(U) is the coordinate function f(x) = xi. �

Any diffeomorphism F ∈ C∞(N,M) induces a map F∗ : X(M) → X(N) of vector
fields, with F ∗(F∗(X)(f)) = X(F ∗f). Thus

F∗(Xx) = (F∗X)F (x).

For a general map F , this equation does need not define a vector field F∗X, for two
reasons: 1) If F is not surjective, the equation does not specify F∗X at points away from
the image of F , 2) If F is not injective, the equation assigns more than one value to
points y ∈M having more than one pre-image.

Definition 3.4. Let F ∈ C∞(N,M). Two vector fields X ∈ X(N) and Y ∈ X(M)
are called F -related if

F ∗(Y (f)) = X(F ∗f)

for all f ∈ C∞(M). One writes X ∼F Y .

Proposition 3.5. X ∼F Y if and only if

F∗(Xx) = YF (x)

for all x ∈ N . If X1 ∼F Y1 and X2 ∼F Y2 then

[X1, X2] ∼F [Y1, Y2].

Proof. Exercise. �
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For example, if F is the embedding of a submanifold, then X ∈ X(N) is F -related
to a vector field Y ∈ X(M) if and only if Y is tangent to F (N) everywhere. The vector
field X is then just the restriction of Y to N .

Definition 3.6. A Riemannian metric on a manifold M is a symmetric C∞(M)-
bilinear form g : X(M) × X(M) → C∞(M) which is positive definite in the sense that
for all x ∈M , g(X,X)(x) > 0 for Xx 6= 0.

Exercise 3.7. Every manifold M admits a Riemannian metric g. (Hint: Define
such a metric in charts, and then use a partition of unity to patch the local solutions
together.) If g is a Riemannian metric and x ∈ M , the value g(X,X)(x) depends
only on Xx. If U ⊂ M is open, there exists a unique Riemannian metric gU such that
gU(XU , YU) = g(X,Y )|U .

3.2. The flow of a vector field. Suppose A is a finite dimensional algebra, and
Aut(A) its group of algebra automorphisms. A 1-parameter subgroup of automorphisms
is a group homomorphism Φ : R → Aut(A), t 7→ Φt, i.e. a map such that Φt1+t2 =
Φt1Φt2 for all t1, t2 ∈ R. For any 1-parameter group of automorphisms, the derivative
D = d

dt
|t=0Φt : A → A is well defined. By taking the derivative of the equation

Φt(ab) = Φt(a)Φt(b)

one finds that D ∈ Der(A). Conversely, every derivation gives ride to a 1-parameter
group Φt = exp(tD) (exponential of matrices), and one check that each Φt is an automor-
phism. Thus, if dimA <∞ one can identify derivations of an algebra with 1-parameter
groups of automorphisms.

For the infinite-dimensional algebra A = C∞(M), this does not directly apply. We
will see that so-called complete vector fields X ∈ X(M) define a 1-parameter group of
diffeomorphisms Φt of M , where the algebra automorphism Φ∗

t of C∞(M) plays the role
of exp(tX). This “flow” of X is constructed using integral curves.

Let X be a vector field on a manifold M . A curve γ : I → M is called an integral
curve of X if for all t ∈ I,

γ̇(t) = Xγ(t).

If U ⊂ Rm is an open subset and X ∈ X(U) is a vector field on U , this has the following
interpretation. Letting xi be the local coordinates on Rm, write

X =
∑

i

ai ∂

∂xi

where ai ∈ C∞(U). Also write γ(t) = (γ1(t), . . . , γm(t)). Then the tangent vector
γ̇(t) ∈ Tγ(t)U is just

γ̇(t) =
∑

i

γ̇i ∂

∂xi

∣∣∣
γ(t)
.
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To see this, apply γ̇(t) to a function f ∈ C∞(U):

γ̇(t)(f) =
∂

∂t
f(γ(t)) =

∑

i

dγi

dt

∂f

∂xi

∣∣∣
γ(t)
.

Thus γ is an integral curve if and only its components satisfy the following system of
first order ordinary differential equation:

dγi

dt
= ai(γ(t))

From ODE theory, it follows that for any x ∈ U , there exists a unique maximal solution
γx of this system: That is, there is an open interval Ix around t = 0, and a curve
γx : Ix → U with

γx(0) = x, γ̇i
x(t) = ai(γx(t))

such that any other solution of this initial value problem is obtained by restriction to
a subinterval. Moreover, this solution depends smoothly on the initial value x. By
applying this result in manifold charts, one obtains:

Theorem 3.8. Let X be a vector field on a manifold M . For each x ∈ M there
exists a unique maximal solution γx : Ix →M to the initial value problem

γx(0) = x, γ̇x(t) = Xγx(t).

The solution depends smoothly on the initial value x, in the following sense:

U =
⋃

x∈M

({x} × Ix) ⊂M × R.

Then U is an open neighborhood of M × {0} in M × R, and the map

Φ : U →M, (x, t) 7→ γx(t)

is smooth.

Here “maximal solution” means that any other solution is obtained by restriction to
some subinterval.

One calls Φ the flow of the vector field X. If U = M × R, that is if Ix = R for
all x, the vector field is called complete, and the flow is called a global flow. A simple
example for an incomplete vector field is X = ∂

∂t
on M = (0, 1) ⊂ R. By choosing a

diffeomorphism (0, 1) ∼= R, one obtains an incomplete vector field on R. Let us write
Φt(x) = Φ(x, t) for t ∈ Ix.

Exercise 3.9. Show that on a compact manifold, any vector field is complete. More
generally, any compactly supported vector field on a manifold is complete.

Theorem 3.10. Suppose X ∈ X(M) is a complete vector field, and Φt its flow. Then
each Φt is a diffeomorphism, and the map

R → Diff(M), t 7→ Φt
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is a group homomorphism. In particular,

Φ0 = Id, Φt1 ◦ Φt2 = Φt1+t2 .

Conversely, if t 7→ Φt is any such group homomorphism and if the map Φ(t, x) = Φt(x)
is smooth, then Φt is the flow of a uniquely defined complete vector field X, called the
generating vector field for the flow. For all f ∈ C∞(M) one has

X(f) = LX(f) :=
d

dt t=0
Φ∗

tf.

Proof. We first prove the identity Φt1 ◦ Φt2 = Φt1+t2 for t1, t2 ∈ R. Let x ∈ M .
Given t2, both γ(s) = Φs(Φt2(x)) and γ̃(s) = Φs+t2(x) are integral curves for X. Indeed,

d

ds
γ̃(s) =

d

du
Φu(x)|u=s+t2 = XΦu(x)|u=s+t2 = Xγ̃(s).

Since γ, γ̃ have the same initial value, they coincide on their domain of definition. In
particular, γ(t1) = γ̃(t1) which proves Φt1(Φt2(x)) = Φt1+t2(x). In particular, if X is
complete, this equation holds for all t1, t2. Setting t1 = t, t2 = −t we see that Φ−t is a
smooth inverse to Φt. Conversely, if Φt is a global flow, define X by Xx = ∂

∂t
|t=0Φt(x).

Using local coordinates, one checks that this defines a smooth vector field. �

Exercise 3.11. How much of this theorem goes though for incomplete vector fields?

Exercise 3.12. Show that the map Φt : Rm → Rm given by multiplication by et is
a global flow, and give a formula for the generating vector field. More generally, if A is
any m×m matrix, show that the map

Φt(x) = etAx

is a global flow, and find its generating vector field.

Exercise 3.13. Let X ∈ X(N), Y ∈ X(M) be vector fields and F ∈ C∞(N,M) a
smooth map. Show that X ∼F Y if and only if it intertwines the flows ΦX

t ,Φ
Y
t : That is,

F ◦ ΦX
t = ΦY

t ◦ F.

Exercise 3.14. Show that for any vector field X ∈ X(M) and any x ∈ M with
Xx 6= 0, there exists a local chart around x in which X is given by the constant vector
field ∂

∂x1 . Hint: Show that if S is an embedded codimension 1 submanifold, with x ∈ S
and Xx 6∈ TxS, the map U × (−ǫ, ǫ) → M is a diffeomorphisms onto its image, fo some
open neighborhood U of x in S. Use the time parameter t and a chart around x ∈ U to
define a chart near x.

For any vector field X ∈ X(M) and any diffeomorphism F ∈ C∞(N,M), we define
F ∗X ∈ X(N) by

F ∗X(F ∗f) = F ∗(X(f)).
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Thus F ∗ : X(M) → X(N) is just the inverse map to F∗ : X(N) → X(M). Any complete
vector field X ∈ X(M) with flow Φt gives rise to a map Φ∗

t : X(M) → X(M). One
defines the Lie derivative LX of a vector field Y ∈ X(M) by

LX(Y ) =
d

dt

∣∣∣
t=0

Φ∗
tY ∈ X(M).

In fact, this definition also makes sense for incomplete X: (To define the restriction of
LXY to an open set U ⊂ M with compact closure, let ǫ > 0 be small enough such
[−ǫ, ǫ] ⊂ Ix for all x ∈ U . Then Φt : U 7→ Φt(U) is defined for |t| < ǫ, and the equation
above makes sense.)

Theorem 3.15. For any X,Y ∈ X(M), the Lie derivative LXY is just the Lie bracket
[X,Y ]. One has the identity

[LX , LY ] = L[X,Y ].

Proof. Let Φt = ΦX
t be the flow of X. For f ∈ C∞(M) we calculate,

(LXY )(f) =
d

dt
|t=0(Φ

∗
tY )(f)

=
d

dt
|t=0Φ

∗
t (Y (Φ∗

−t(f)))

=
d

dt
|t=0(Φ

∗
t (Y (f)) − Y (Φ∗

t (f))

= X(Y (f)) − Y (X(f))

= [X,Y ](f).

The identity [LX , LY ] = L[X,Y ] just rephrases the Jacobi identity for the Lie bracket. �

The definition of Lie derivative gives the formula

(1)
d

dt
(ΦX

t )∗Y = (ΦX
t )∗(LXY )

by the calculation, d
dt

(ΦX
t )∗Y = d

du
|u=0(Φ

X
u+t)

∗Y = (ΦX
t )∗ d

du
|u=0(Φ

X
u )∗Y . From this we

obtain:

Theorem 3.16. Let X,Y be two complete vector fields, with flows ΦX
t and ΦY

s . Then
[X,Y ] = 0 if and only if ΦX

t and ΦY
s commute for all t, s: ΦX

t ◦ ΦY
s = ΦY

s ◦ ΦX
t .

Proof. Suppose [X,Y ] = 0. Then

d

dt
(ΦX

t )∗Y = (ΦX
t )∗LXY = (ΦX

t )∗[X,Y ] = 0

for all t. Hence (ΦX
t )∗Y = Y for all t, which means that Y is ΦX

t -related to itself.
It follows that ΦX

t takes the flow ΦY
s of Y to itself, which is just the desired equation

ΦX
t ◦ ΦY

s = ΦY
s ◦ ΦX

t . Conversely, by differentiating the equation ΦX
t ◦ ΦY

s = ΦY
s ◦ ΦX

t

with respect to s, t, we find that [X,Y ] = 0. �
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Thus [X,Y ] measures the extent to which ΦX
t and ΦY

t fail to commute. This can be
made more precise:

Exercise 3.17. Suppose X,Y are complete vector fields, and f ∈ C∞(M).
a) Prove the formula for the kth order Taylor expansion of (ΦX

t )∗f :

(ΦX
t )∗f =

k∑

j=0

tj

j!
(X)j(f) +O(tk+1).

Formally, one writes (ΦX
t )∗ = exp(tX).

b) Let Ft be the family of diffeomorphisms,

Ft = ΦX
−t ◦ ΦY

−t ◦ ΦX
t ◦ ΦY

t .

Show that
F ∗

t f = f + t2 [X,Y ](f) +O(t3).

4. Differential forms

4.1. Super-algebras. A super-vector space is a vector space E with a Z2-grading.
Elements of degree 0 mod 2 are called even, and elements of degree 1 mod 2 are called
odd. Thus a super-vector space is simply a vector space with a decomposition E =
E0 ⊕ E1. Elements in E0 are called even and those in E1 are called odd. We will also
write E0 = Eeven and E1 = Eodd, in particularly if E carries other gradings that might
be confused with the Z2-grading. The space End(E) of endomorphisms has a splitting

End(E) = End(E)0 ⊕ End(E)1,

where End(E)0 consists of endomorphisms preserving the splitting E = E0 ⊕ E1, and
End(E)1 consists of endomorphisms taking E0 to E1 and E1 to E0. A = End(E) is a
first example of a super-algebra, that is, a Z2-graded algebra 1 A = Aeven ⊕ Aodd such
that

AkAl ⊆ Ak+l mod 2

for k, l ∈ {0, 1}. The sign conventions of supermathematics decrees:

Super-sign convention: A minus sign appears whenever two odd el-
ements interchange their position.

Physicists thinks of elements of odd degree as “fermions”, and those of even degree
as “bosons”. Her are some examples of the super-sign convention. The tensor product
of super-algebras A,B is defined to be the usual tensor product A⊗B, with Z2-grading

(A⊗ B)k =
⊕

l+m=k mod 2

Al ⊗ Bm,

and algebra structure

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)m1l2(a1a2) ⊗ (b1b2)

1In this course, “algebra” always means an associative algebra over R with unit 1.
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for ai ∈ Ali , bj ∈ Bmj . Also, if A is any super-algebra, the super-commutator of two
elements a1 ∈ Ak1 and a2 ∈ Ak2 is defined by

[a1, a2] = a1a2 − (−1)k1k2a2a1 ∈ Ak1+k2 .

Proposition 4.1. The super-commutator is super-skew symmetric,

[a1, a2] = −(−1)k1k2 [a2, a1]

and satisfies the super-Jacobi identity,

[a1, [a2, a3]] + (−1)k1(k2+k3)[a2, [a3, a1]] + (−1)k3(k1+k2)[a3, [a1, a2]] = 0.

Proof. Exercise. �

More generally, a super-space E with bracket [·, ·] satisfying these identities is called
a super-Lie algebra.

An derivation of a superalgebra A of degree r ∈ {0, 1} is a linear map D : A → A
such that

D(ab) = D(a)b+ (−1)kraD(b)

for all a ∈ Ak and b ∈ Al. Note that any derivation is determined by its values on
generators for the algebra, and that D(1) = 0 for any derivation D. We denote

Der(A) = Der0(A) ⊕ Der1(A)

the space of super-derivations.

Exercise 4.2. Show that Der(A), with bracket the super-commutator of endomor-
phisms, is super-Lie algebra. If A is super-commutative, show that Der(A) is also an
A-module (by multiplication from the left).

Exercise 4.3. Suppose A is a super-algebra. Show that the map ǫ : A → End(A)
taking a ∈ A to the operator ǫ(a) of multiplication (from the left) by a is a homomor-
phism of super-algebras, i.e. it preserves products and degrees.

Exercise 4.4. Let E,F be super-vector spaces. Define the tensor product of two
endomorphisms of finite degree, in such a way that it respects the sign convention of
supermathematics. Show that with this definition,

End(E ⊗ F ) = End(E) ⊗ End(F ).

Many super-vector spaces arise as Z-graded algebras E =
⊕

k∈Z
Ek, by reducing the

degree mod 2:

Eeven =
⊕

k∈Z

E2k, Eodd =
⊕

k∈Z

E2k+1.

In this case, we will call E a Z-graded super-vector space. Ordinary vector spaces E can
be viewed as super-vector spaces by putting Eeven = E, Eodd = 0.
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4.2. Exterior algebra. We now give our main example of a graded algebra. Let
E be a finite dimensional real vector space. (The example to keep in mind is E = TxM ,
the tangent space to a manifold. But other examples will appear as well.)

For any finite dimensional vector space E over R, one defines ∧0E∗ = R, ∧1E∗ = E∗,
and more generally

∧kE∗ = {antisymmetric k-linear maps ω : E × · · · × E︸ ︷︷ ︸
k times

→ R}.

Thus ω ∈ ∧kE∗ if it is linear in each argument and satisfies

ω(vσ(1), . . . , vσ(k)) = sign(σ)ω(v1, . . . , vk)

for any v1, . . . , vk ∈ E and any permutation σ of the index set 1, . . . , k. Each ∧kE∗ is
a finite dimensional vector space. If e1, . . . , en is a basis for E, any ω is determined by
its values on ei1 , . . . , eik for any i1 < . . . < ik. Since the number of ordered k-element
subsets of {1, . . . , n} is n!

k!(n−k)!
, it follows that

dim∧kE∗ =
n!

k!(n− k)!

for k ≤ n, and ∧kE∗ = 0 for k > n. Note dim∧n−kE∗ = ∧kE∗. Non-zero elements of
the 1-dimensional vector space ∧nE∗ are called volume elements. The direct sum of the
vector space ∧kE∗ is denoted2

∧E∗ =
n⊕

k=0

∧kE∗,

its dimension is dim∧E∗ = 2n, the number of subsets of {1, . . . , n}.
The graded algebra structure on the vector space ∧E∗ is the so-called called wedge

product.
For ω1 ∈ ∧k1E∗ and ω2 ∈ ∧k2E∗ one defines ω1 ∧ ω2 ∈ ∧kE∗, k = k1 + k2 by

anti-symmetrization

(ω1 ∧ ω2)(v1 . . . , vk) =
1

k1!k2!

∑

σ∈Sk

sign(σ)ω1(vσ(1), . . . , vσ(k1))ω2(vσ(k1+1), . . . , vσ(k))

where σ runs over all permutations. The wedge product extends to all of ∧E∗ by linearity.
For example, if f1, f2 ∈ E∗ then

(f1 ∧ f2)(v1, v2) = f1(v1)f2(v2) − f1(v2)f2(v1).

More generally, if f1, . . . , fk ∈ E∗,

(2) (f1 ∧ · · · ∧ fk)(v1, . . . , vk) = det(fi(vj)).

The following properties of the wedge product are left as an exercise.

2In the infinite dimensional case dimE = ∞, one defines the exterior algebra somewhat differently.
Fortunately, we will only be concerned with finite dimensions.
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Proposition 4.5. (a) The wedge product is associative and super-commutative.
(b) Let e1, . . . , en be a basis of E and f 1, . . . , fn the dual basis of E∗. For each

ordered subset I = {i1, . . . , ik} ⊂ {1, . . . , n} let f I = f i1 ∧ . . . ∧ f ik . Then
{f I |#I = k} is a basis for ∧kE∗.

Exercise 4.6. If E1, E2 are two finite dimensional vector space, show that

∧(E1 ⊕ E2)
∗ = ∧E∗

1 ⊗ ∧E∗
2

(tensor product of graded algebras).

There are two important operations on ∧E∗ called exterior multiplication and con-
traction. Exterior multiplication is just the algebra homomorphism

ǫ : ∧E∗ → End(∧E∗)

for the graded commutative algebra ∧E∗. Thus ǫ(ω)(β) = ω ∧ β. For v ∈ E, one defines
the contraction operator

ιv : ∧kE∗ → ∧k−1E∗

by ιv(ω)(v2, . . . , vk) = ω(v, v2, . . . , vk). Sometimes we write ιv = ι(v).
Thus ιv ∈ End−1(∧E∗). Clearly ιv ◦ ιv = 0. Hence also

[ιv, ιw] = ιv+w ◦ ιv+w = 0.

If f1, . . . , fk are vectors in E∗,

(3) ιv(f1 ∧ · · · ∧ fk) =
∑

j

(−1)j+1fj(v)f1 ∧ · · · ∧ f̂j ∧ · · · ∧ fk.

This follows from the definition of the wedge product, or equivalently by expanding the
determinant on the right hand side of (2) at the first column.

Theorem 4.7. The contraction operator ιv is a super-derivation of degree −1 of
∧E∗. One has

[ιv, ǫ(ω)] = ǫ(ιvω).

Proof. Let f1, . . . , fr be vectors in E∗. From (3) we read off that for any l ≤ r,

ιv(f1 ∧ · · · ∧ fr) = ιv(f1 ∧ · · · ∧ fl)∧ (fl ∧ · · · ∧ fr) + (−1)l(f1 ∧ · · · ∧ fl)∧ ιv(fl ∧ · · · ∧ fr).

By linearity, it follows that

ιv(ω ∧ β) = ιvω ∧ β + (−1)lω ∧ ιvβ

for ω ∈ ∧lE∗ and β ∈ ∧E∗, proving that ιv is a super-derivation. The identity [ιv, ǫ(ω)] =
ǫ(ιvω) is just re-phrasing the same condition. �

For any linear map A : F → E the dual map A∗ : E∗ → F ∗ extends uniquely to an
algebra homomorphism A∗ : ∧E∗ → ∧F ∗. Thus if f1, . . . , fk ∈ E∗,

A∗(f1 ∧ · · · ∧ fk) = (A∗f1 ∧ · · · ∧ A∗fk).
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In particular, any endomorphism of E gives rise to an endomorphism of ∧E∗. For any
1-parameter group At = exp(tL) of automorphisms, we obtain a 1-parameter group
A∗

−t = exp(−tL)∗ of automorphisms of ∧E∗. It follows that −L∗ : E∗ → E∗ extends to
a derivation DL of degree 0 of ∧E∗. One has

DL(f1 ∧ · · · ∧ fk) = −
∑

j

(−1)j+1L∗(fj)f1 ∧ · · · f̂j · · · ∧ fk.

(Don’t confuse DL with the algebra homomorphism (−L)∗ : ∧E∗ → ∧E∗ !).

Exercise 4.8. a) Show that the map End(E) → Der0(∧E∗), L 7→ DL is a Lie
algebra homomorphism.

b) For v ∈ E, L ∈ End(E), show that [DL, ιv] = −ιL(v). (Hint: Since both sides are
derivations, it suffices to check on generators.)

After this lengthy discussion of linear algebra, let us return to manifolds.

4.3. Differential forms.

Definition 4.9. For any manifold M and any x ∈ M , the dual space T ∗
xM :=

(TxM)∗ of the tangent space at x is called the cotangent space at x. The elements of
T ∗

xM are called covectors. Elements of ∧kT ∗M are called k-forms on TxM .

Any function f ∈ C∞(M) determines a covector dxf ∈ T ∗
xM , called its exterior

differential at x, by

(df)x(v) := v(f), v ∈ TxM.

If U ⊂ Rm is an open subset with coordinates x1, . . . , xm (viewed as functions on U), we
can thus define 1-forms

(dxi)x ∈ T ∗
xU.

This 1-forms are the dual basis to the basis ∂
∂xi

∣∣∣
x

of TxU : Indeed,

(dxi)x

(
∂

∂xj

∣∣
x

)
=

∂

∂xj
(xi)

∣∣
x

= δij.

A differential k-form on M is a family of k-forms on tangent spaces TxM depending
smoothly on the base point, in the following sense:

Definition 4.10. A differential k-form on M is a C∞(M)-linear map

ω : X(M) × . . .× X(M)︸ ︷︷ ︸
k times

→ C∞(M)

that is anti-symmetric and C∞(M)-linear in each argument. The space of k-forms is
denoted Ωk(M), the direct sum of all Ωk(M) is denoted Ω(M). In particular, Ω0(M) =
C∞(M).
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For any x ∈ M there is a natural evaluation map Ωk(M) → ∧kT ∗
xM, ω 7→ ωx such

that
ω(X1, . . . , Xk)|x = ωx((X1)x, . . . , (Xk)x).

Similarly, if U ⊂M is open, one can define the restriction ω|U ∈ Ωk(U) such that

ω(X1, . . . , Xk)|U = ω|U((X1)|U , . . . , (Xk)|U).

If U, V are two open subsets, and ωU , ωV are forms on U and V with ωU |U∩V = ωV |U∩V

then there is a unique form ωU∪V ∈ Ω(U ∪ V ) restricting to ωU and ωV , respectively.
One defines the wedge product on Ω(M) by anti-symmetrization, similar to the wedge

product on ∧E∗. It is uniquely defined by requiring that all the evaluation maps Ω(M) →
∧T ∗

xM are algebra homomorphisms. Wedge product makes Ω(M) into a graded super-
commutative super-algebra. For X ∈ X(M), one denotes by ιX = ι(X) ∈ Der−1(Ω(M))
the operator of contraction by X, and for µ ∈ Ω(M) one denotes by ǫ(µ) the operator
of left multiplication by µ. As before, we have [ιX , ιY ] = 0 and [ιX , ǫ(µ)] = ǫ(ιXµ).

4.4. The exterior differential. The magic fact about the algebra of differential
forms is the existence of a canonical derivation d of degree 1. For any function f ∈
C∞(M) one defines df ∈ Ω1(M) by the equation,

(df)(X) = X(f).

It has the property d(fg) = fdg + gdf . In particular, if U ⊂ Rm is an open subset, we
have 1-forms dx1, . . . , dxm ∈ Ω1(U). Writing dxI = dxi1 ∧ · · · ∧ dxik for any k-element
subset i1 < . . . < ik, the most general k-form on U reads

ω =
∑

I

ωIdx
I

where ωI ∈ C∞(U) are recovered as

ωI = ω(
∂

∂xi1
, . . . ,

∂

∂xik
).

Theorem 4.11. The map d : Ω0(M) → Ω1(M), f 7→ df extends uniquely to a
super-derivation of degree 1 on Ω(M), called exterior differential, with d(df) = 0. The
exterior differential has property

d ◦ d = 0.

Proof. It suffices to prove existence and uniqueness for the restrictions to elements
of an open cover (Uα)α∈A. Indeed, once we know that dω|Uα

exist and are unique, then
the forms dω|Uα

agree on overlaps Uα ∩ Uβ by uniqueness, so they define a global form
dω. In particular, we may take (Uα)α∈A to be a covering by coordinate charts. This
reduces the problem to open subsets U ⊂ Rm.

The derivation property of d forces us to define d : Ωk(U) → Ωk+1(U) as follows,

d(
∑

I

ωIdx
I) =

∑

I

dωI ∧ dxI =
∑

j

∑

I

∂ωI

∂xj
dxj ∧ dxI .
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We have

d2(
∑

I

ωIdx
I) =

∑

jk

∑

I

∂2ωI

∂xk∂xj
dxk ∧ dxj ∧ dxI = 0,

by equality of mixed partials. It remains to check d is a derivation. For ω = fdxI ∈ Ωk

and ν = gdxJ ∈ Ωl we have

d(ω ∧ ν) = d(fdxI ∧ gdxJ)

= d(fg) ∧ dxI ∧ dxJ

= (fdg + gdf) ∧ dxI ∧ dxJ

= df ∧ dxI ∧ gdxJ + (−1)kf ∧ dxI ∧ dg ∧ dxJ

= (dω) ∧ ν + (−1)kω ∧ dν.

�

Let us write out the exterior differential on M = R3, with coordinates x, y, z. On
functions,

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz,

so d is essentially the gradient. On 1-forms ω = fdx+ gdy + hdz,

dω =
(∂g
∂x

−
∂f

∂y

)
dx ∧ dy +

(∂h
∂y

−
∂g

∂z

)
dy ∧ dz +

(∂f
∂z

−
∂h

∂x

)
dz ∧ dx,

so d is essentially the curl, and on 2-forms ω = fdy ∧ dz + gdz ∧ dx+ hdx ∧ dy,

dω =
(∂f
∂x

+
∂g

∂y
+
∂h

∂z

)
dx ∧ dy ∧ dz,

so d is essentially the divergence. In general, one should think of d as the proper abstract
setting for grad, curl, div.

4.5. Functoriality. Any smooth map F ∈ C∞(N,M) between manifolds gives rise
to an algebra homomorphism

F ∗ : Ω(M) → Ω(N)

such that (F ∗ω)x = F ∗(ωx).

Theorem 4.12. F ∗ commutes with exterior differential:

F ∗ ◦ d = d ◦ F ∗.

Proof. The algebra Ω(M) is generated by all functions f ∈ C∞(M) together with
all differentials df . That is, any differential form can be written as a finite linear com-
bination of expressions

f0df1 ∧ · · · ∧ dfk,
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and finally by linearity it holds everywhere. This follows by choosing a finite atlas of M
and a subordinate partition of unity. 3 Hence, it suffices to check the the identity on
functions f and differentials df .

For f ∈ C∞(M), and any x ∈M, v ∈ TxM , we have

(F ∗(df))x(v) = (df)F (x)(dxF (v)) = (dxF (v))(f) = v(F ∗f) = d(F ∗f)x(v).

Thus F ∗ ◦ d = d ◦ F ∗ on functions. On differentials df :

F ∗(d(df)) = 0, d(F ∗(df) = d(d(F ∗f)) = 0.

�

For instance, if U ⊂ Rm and V ⊂ Rn are open subsets with coordinates xi, yj, and
F ∈ C∞(U, V ), with components F j = F ∗yj, we have

F ∗dyj = dF ∗yj = dF j =
∑

i

∂F j

∂xi
dxi.

If dimU = dimV = m, we obtain in particular

F ∗(dy1 ∧ · · · ∧ dym) = det(
∂F j

∂xi
) (dx1 ∧ · · · ∧ dxm).

Suppose X ∈ X(M) is a complete vector field, with flow Φt. Then we have a 1-
parameter group of automorphisms Φ∗

t of Ω(M). We define the Lie derivative to be its
generator:

LXω =
d

dt
|t=0Φ

∗
tω.

The definition extends to incomplete vector fields: If U is any open subset with compact
closure, the map Φt : U → M exists for |t| < ǫ, and the equation defines LXω|U .

We have now defined three kinds of derivations of Ω(M): The contraction ιX , the
Lie derivative LX , and the exterior differential d. Recall that the graded commutator of
two derivations is again a derivation.

Theorem 4.13. One has the following identities:

[d, d] = 0,

[LX , d] = 0,

[ιX , d] = LX ,

[ιX , ιY ] = 0,

[LX , LY ] = L[X,Y ],

[LX , ιY ] = ι[X,Y ].

3We mentioned earlier that any manifold admits a finite atlas, although we never proved this. The
following proof can be easily modified to close this gap: it is enough to check the identity on functions
supported in coordinate charts, where the fi for i > 0 can be taken as coordinate functions.
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Proof. The first equation is just [d, d] = 2d2 = 0. Since (Φt
X)∗ and d commute,

[LX , d] = 0 by definition of LX . The other identities can be checked on generators f, df
of Ω(M) (using that two derivations are equal if and only if they agree on generators).
For instance, the third equation is verified by the calculations,

[ιX , d](f) = ιXdf = (df)(X) = X(f) = LXf

and

[ιX , d](df) = ιXddf + dιXdf = dLXf = LXdf.

The fourth equation is obvious since both sides vanish on generators. The fifth equation,
on functions f , is just the definition of the Lie bracket, and on df follows since Lie
derivatives and d commute. In the last equation, both sides vanish on functions, and on
df we have

[LX , ιY ](df) = [[LX , ιY ], d](f) = [LX , [ιY , d]](f) = [LX , LY ](f) = L[X,Y ](f) = ι[X,Y ]df.

(Alternatively, the last equation follows by direct application of the definition of the Lie
derivative.) �

These identities are of fundamental importance in the Cartan’s calculus of differential
forms. It is somewhat remarkable that contractions, Lie derivatives and d form a graded
Lie subalgebra of the graded Lie algebra of derivations!

Proposition 4.14. For any ω ∈ Ωk(M) and any X0, . . . , Xk ∈ X(M),

(dω)(X0, . . . , Xk) =
∑

j

(−1)jXj(ω(X0, . . . , X̂j, . . . , Xk))

+
∑

i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk)

Proof. We give the proof for k = 2, which will show the relevant pattern. The left
hand side is ιX2

ιX1
ιX0

dω. Using the commutation relations between d and contractions,
we find

ιX2
ιX1

ιX0
dω = ιX2

ιX1
LX0

ω − ιX2
ιX1

dιX0
ω

= ιX2
ιX1

LX0
ω − ιX2

LX1
ιX0

ω + LX2
ιX1

ιX0
ω.

The desired identity now follows by permuting the Lie derivatives in each term all the
way to the left. For example, the first term gives

ιX2
ιX1

LX0
ω = ιX2

LX0
ιX1

ω − ιX2
ι[X0,X1]ω

= LX0
ιX2

ιX1
ω − ι[X0,X2]ιX1

ω − ιX2
ι[X0,X1]ω.

�

For example, if ω is a 1-form,

dω(X0, X1) = X0(ω(X1)) −X1(ω(X0)) − ω([X0, X1]).
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Exercise 4.15. Let U be an open subset of Rm, and X =
∑
Xi

∂
∂xi a vector field.

Let Γ = dx1 ∧ · · · ∧ dxm be the standard “volume form”. Show that

LXΓ = (
∑

i

∂Xi

∂xi
) Γ.

Conclude that the flow of X is volume preserving if and only if the divergence divΓ(X) =
(
∑

i
∂Xi

∂xi ) vanishes everywhere.

4.6. Orientation of manifolds. A diffeomorphism F : U → V between open
subsets of Rm is called orientation preserving if for all x ∈ U , the Jacobian DxF has
positive determinant.

An atlas (Uα, φα) for a manifold M is said to be oriented if all transition functions
φα ◦ φ−1

β are orientation preserving. If such an atlas exists, M is called orientable.
An orientable manifold M with an oriented atlas is called an oriented manifold. A
Map F ∈ C∞(N,M) between oriented manifolds of the same dimension are orientation
preserving if its expressions in oriented charts are orientation preserving.

Orientability of manifolds M is closely related to the existence of volume forms. A
volume form is an m-form Λ ∈ Ωm(M), with Λx 6= 0 for all x ∈M .

Theorem 4.16. A manifold M is orientable if and only if it admits a volume form.
Any volume form Λ on a manifold M defines a unique orientation, with the property
that for all oriented charts (Uα, φα),

φ∗
α(dx1 ∧ · · · dxn) = fα Λ|Uα

where fα > 0 everywhere. Two volume forms Λ,Λ′ define the same orientation if and
only if Λ′ = fΛ with f > 0.

Proof. Suppose M is orientable, and let (Uα, φα)α∈A be an oriented atlas. Choose a
partition of unity χα subordinate to the cover (Uα)α∈A. The form Λα = φ∗

α(dx1∧· · · dxm)
is a volume form on Uα. Set

Λ =
∑

α

χα Λα.

Then Λ is a volume form on M . Indeed, if v1 . . . , vm is an oriented basis of TmM ,
each of the forms (Λα)x with x ∈ Uα takes positive values on v1 . . . , vm. Hence so does∑

α χα(x) (Λα)x. �

Exercise 4.17 (Oriented double cover). Let M be a connected manifold. The tan-
gent space at any point x ∈M has exactly two orientations. The choice of an orientation
on x also induces orientations on “nearby” points. Let π : M̂ → M be the map with
fibers π−1(x) the two possible orientations on x. Show that M̂ has a natural structure of
an oriented manifold, with π a local diffeomorphism. Show that M is orientable if and
only if M̂ is disconnected, and the choice of an orientation is equivalent to the choice of
a component of M̂ . One calls M̂ the oriented double cover of M . What is the oriented
double cover for RP (2)? For the Klein bottle?
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If M,N are two oriented manifolds, with orientations defined by volume forms
ΓM ,ΓN , the direct product M × N carries an orientation defined by the volume form
π∗

MΓM ∧ π∗
NΓN , where πM , πN are the projections from M ×N to the two factors.

Exercise 4.18. Let F : N →M be a smooth map between oriented manifolds, and
suppose a ∈ M is a regular value. Then any choice of volume forms ΓN ,ΓM defines a
volume form ΓS on the level set S = F−1(a). In particular, S is oriented.

Suppose M is an oriented manifold with boundary ∂M . We define an orientation
on ∂M as follows: Given x ∈ ∂M , let v1 ∈ TxM\Tx∂M be an outward pointing vector.
That is, v1(f) ≤ 0 for any function f ∈ C∞(M) with f ≥ 0 on M . Call a basis v2, . . . , vm

of Tx∂M oriented if v1, . . . , vm is an oriented basis of TxM .

4.7. Integration on manifolds. Let U ⊂ Rm be open. The integral of a compactly
supported differential form α ∈ Ωk(U) is defined to be 0 unless k = m. For

ω = fdx1 ∧ · · · ∧ dxm ∈ Ωm(U),

with f a compactly supported smooth function on U , one defines∫

U

ω =

∫
· · ·

∫
f(x1, . . . , xm) dx1dx2 · · · dxm

as a Riemann integral.
Recall the change of variables formula for the Riemann integral: If F : V → U is a

diffeomorphism, then
∫

U

ω =

∫
· · ·

∫
(F ∗f)(y1, . . . , ym) det(

∂F i

∂yj
)dy1dy2 · · · dym

Since det(∂F i

∂yj )dy1dy2 · · · dym is just the pull-back under F of the form dx1dx2 · · · dxm,

this can be written in more compact form,∫

U

ω =

∫

F−1(U)

F ∗ω.

This formula shows that integration is independent of the choice of coordinates, and is
used to extend integration to manifolds:

Theorem 4.19. Let M be an oriented manifold of dimension m. There is a unique
linear map

∫
M

: Ωcomp(M) → R such that for all oriented charts (U, φ) of M , and any
form ω with compact support in U ,

(4)

∫

M

ω =

∫

φ(U)

(φ−1)∗ω.

Proof. Choose an atlas (Uα, φα) and a partition of unity χα subordinate to the
cover {Uα}. For any compactly supported form ω on M , define∫

M

ω :=
∑

α

∫

φα(Uα)

(φ−1
α )∗(χαω).
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This has the required property (4), since if ω is supported in a chart (U, φ), the change
of variables formula shows

∑

α

∫

φα(Uα)

(φ−1
α )∗(χαω) =

∑

α

∫

φ(U)

(φ−1)∗(χαω) =

∫

φ(U)

(φ−1)∗ω.

Conversely, this equation also shows uniqueness of an integration map satisfying (4). �

We will often use the following notation: If M is any manifold, and S ⊂ M is an
oriented embedded submanifold, and ι : S →M the inclusion map, one defines

∫

S

: Ω(M) → R,

∫

S

ω :=

∫

S

ι∗α.

4.8. Integration over the fiber. Let M,B be manifolds of dimension m, b, and
let

π : M → B

be a submersion. We have proved that each fiber π−1(y) ⊂M of π is a smooth embedded
submanifold of dimension f = m− b. Moreover, for any x ∈M there exists a local chart
(U, φ) around x such, in the coordinates x1, . . . , xm defined by φ, the map π is just
projection onto the last b coordinates.

To define the operation “integration over the fibers” we need to assume that each
fiber π−1(y) is oriented, and that the orientation “depends smoothly on y”.

Definition 4.20. A fiberwise orientation for the submersion π : M → B is an
equivalence class of forms Γπ ∈ Ωm−b(M) such that for each y ∈ B, the pull-back of
Γπ to the fiber π−1(y) is a volume form for π−1(y). Two such forms Γπ,Γ

′
π are called

equivalent if their pull-backs to each fiber π−1(y) differ by a positive function on π−1(y).

For example, if M,B are oriented by volume forms ΓM ,ΓB, one obtains a fiberwise
orientation by letting Γπ any m−b-form with ΓM = Γπ∧ΓB. The form Γπ is not uniquely
defined by this property, but its pull-back to the fibers is.)

Theorem 4.21. Let M,B be manifolds of dimension m, b, and π : M → B be a
submersion with smoothly oriented fibers. There exists a unique linear map

π∗ : Ωcomp(M) → Ωcomp(B)

of degree b−m with the following properties:
a) For all y ∈ B the diagram

Ωcomp(M) //

π∗

��

Ωcomp(π
−1(y))

R

��

Ωcomp(B) // Ω({y}) = R

commutes. Here the horizontal maps are pull-back under the inclusion.
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b) For all ν ∈ Ωcomp(M) and all α ∈ Ω(B),

π∗ν ∧ α = π∗(ν ∧ π
∗α).

The map π∗ is called integration over the fiber,

Proof. Since π∗ has degree −f = −(m − b), it vanishes on forms of degree less
then f . On forms of degree f it is determined by property (a). In general, any form on
M can be written as a locally finite sum of f -forms on M , wedged with pull-backs of
forms on B. (This is easily seen locally, and the global statement follows by choosing a
partition of unity.) Hence, uniqueness is clear and it suffices to prove existence. Again,
by partition of unity it suffices to prove existence in charts. By the normal form theorem
for submersions, we can cover M by charts U , with image a direct product of open sets
φ(U) = V ×W , such that π becomes projection to the first f ≤ m coordinates. This
reduces the theorem to the product situation. �

4.9. Stokes’ theorem. Integration can be extended to manifoldsM with boundary.
Recall that manifolds with boundary are defined similar to manifolds, but taking the half
space x1 ≤ 0 as the target space for the coordinate charts. The boundary ∂M of M is
a manifold of dimension m − 1. It inherits an orientation from a given orientation on
M , as follows: (...) Let x ∈ ∂M , and v1 ∈ TXM an outward-pointing tangent vector at
x. A basis v2, . . . , vn a basis of Tx(∂M) is oriented if and only if v1, . . . , vn is oriented.
That is, in local coordinates identifying U with an open subset of {x1 ≤ 0} and ∂U with
an open subset of the subspace {x1 = 0}, the orientation is given by the volume form
dx2 ∧ . . . ∧ dxm.

Theorem 4.22 (Stokes). If M is an oriented manifold with boundary, and τ is a
compactly supported form, then ∫

M

dτ =

∫

∂M

τ.

Proof. We may assume that the support of τ is contained in some coordinate chart
(U, φ), where φ(U) is an open subset of the half space {x1 ≤ 0}. Write

τ =
m∑

i=1

fidx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm

where each fi has compact support. Then

dτ =
m∑

i=1

(−1)i+1 ∂fi

∂xi

dx1 ∧ · · · ∧ dxm.

Using Fubini’s theorem, we can change the order of integration, and in the ith term
integrate over the xi-variable first. Thus all terms, except the term for i = 1, vanish.
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We find
∫

U

dτ =

∫ ∞

−∞

· · ·

∫ ∞

−∞

· · ·
(∫ 0

−∞

∂f1

∂x1
dx1

)
∧ dx2 · · · ∧ dxm

=

∫

∂U

f1dx
2 · · · ∧ dxm =

∫

∂U

τ.

�

One can view Stokes’ theorem as a geometric version of Green’s formula from calculus.
Two maps F0, F1 ∈ C∞(S,M) are called (smoothly) homotopic if there exists a map

F ∈ C∞([0, 1] × S,M) such that F (0, ·) = F0 and F (1, ·).

Corollary 4.23. Suppose S is an oriented manifold, and F0, F1 : S → M two
smooth maps which are smoothly homotopic. For any closed form ω on M ,

∫

S

F ∗
1ω =

∫

S

F ∗
0ω.

Proof. Using Stokes’ theorem,
∫

S

F ∗
1ω − F ∗

0ω =

∫

[0,1]×S

d(F ∗
t ω) =

∫

[0,1]×S

F ∗
t dω = 0.

�

The following generalizes Stokes’ theorem to submersions.

Theorem 4.24. If π : M → B is a submersion between oriented manifolds (without
boundary),

(−1)m−bd ◦ π∗ = π∗ ◦ d.

More generally, if M has a boundary, and ∂π := π|∂M is also a submersion, then

(−1)m−bd(π∗ω) = π∗(dω) − (∂π)∗ω.

4.10. Homotopy operators. Suppose F0, F1 ∈ C∞(N,M) are called (smoothly)
homotopic. Let

h := π∗ ◦ F
∗ : Ω(M) → Ω(N)

be the operator of degree −1, defined as a composition of pull-back by F and integration
over fibers of π : [0, 1] ×N → N .

Theorem 4.25. The map h is a homotopy operator between F ∗
0 , F

∗
1 . That is,

h ◦ d + d ◦ h = F ∗
1 − F ∗

0 : Ω(M) → Ω(N).

Proof. Let ι0, ι1 denote the inclusion of the two boundary componentsN×{0}, N×
{1}. Since the fibers of π are 1-dimensional, we have

π∗d + dπ∗ = (∂π)∗ = ι∗1 − ι∗0.
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Therefore

hd + dh = π∗F
∗d + dπ∗F

∗

= (π∗d + dπ∗)F
∗

= (∂π)∗ ◦ F
∗

= (F ◦ ι1)
∗ − (F ◦ ι0)

∗

= F ∗
1 − F ∗

0 .

�

Corollary 4.26 (Poincare Lemma). Suppose U ⊂ Rm is an open ball of radius R
around 0, possibly R = ∞. If ω ∈ Ωk(U), with k > 0, is closed (i.e. dω = 0) then ω is
exact, i.e. ω = dα for some α.

Proof. Let F : [0, 1] × U → U be the map F (t, x) = tx. Then F1 is the identity
map, and F0 is the constant map taking everything to the orgin. Thus F ∗

0ω = 0 since
we assume the degree of ω is positive, and of course F ∗

1ω = ω. Let h be the homotopy
operator for F . Then

ω = F ∗
1ω − F ∗

0ω = dhω + hdω = dhω = dα

where α = hω. �

Note that the homotopy operator provides an explicit primitive for the closed form
ω.

Examples 4.27. Let h be the homotopy operator for Rm, corresponding to the
retraction F (t, x) = tx. Consider the volume form Γ = dx1 ∧ · · · ∧ dxm on Rm. Then

F ∗Γ =
∑

j

(−1)j+1tm−1dt ∧
∑

j

(−1)jxjdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm + . . .

where . . . denotes terms not involving dt. Thus

hΓ =
1

m

∑

j

(−1)j+1xjdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm

The right hand sides is proportional to the volume form Ψ on Sm−1. More precisely, one
has

hΓ = c rmΨ

where r = ||x|| and c is a certain constant.
Next, consider a 1-form ω =

∑
i fidx

i. Then

F ∗ω =
∑

i

xifi(tx)dt+ . . .

so that

hω =
∑

i

xi

∫ 1

0

fi(tx)dt.
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If ω is closed, one checks that dhω = ω.

Exercise 4.28. Let E =
∑

j x
j ∂

∂xj be the Euler vector field on Rm. Show that if ω

is a closed k-form ω =
∑

I ωIdx
I where the coefficients are polynomials of degree l, we

have

hω =
1

k + l
ι(E)ω.

5. De Rham cohomology

5.1. Definition. Let M be a manifold. The exterior differential d on Ω(M) gives
us a complex

0 −→ Ω0(M)
d

−→ Ω1(M)
d

−→ · · ·
d

−→ Ωm(M) −→ 0.

called the de Rham complex. The subspace of closed forms

Zk(M) = {α ∈ Ωk(M)| dα = 0}

is called the space of cocycles, and the space of exact forms

Bk(M) = d(Ωk−1(M)) ⊂ Ωk(M)

is the space of coboundaries. One writesB(M) =
⊕m

k=0B
k(M) and Z(M) =

⊕m
k=0 Z

k(M).
Since d squares to zero, every k-coboundary is a k-cocycle. The converse is not true in
general, and the obstruction is measured by the cohomology

Hk(M) = Zk(M)/Bk(M)

We write Z(M) =
⊕m

k=0 Z
k(M) and B(M) =

⊕m
k=0B

k(M) and call

H(M) =
m⊕

k=0

Hk(M)

the the de Rham cohomology of M . The numbers

bk = dimHk(M)

are called the Betti numbers of the manifold M . (We will see later that bk < ∞ if M is
compact.) The polynomial

p(t) =
∑

k

bkt
k

is called the Poincare polynomial of M . Note that Z(M) is a graded algebra under wedge
product. Moreover, B(M) is an ideal in Z(M), since (dβ) ∧ γ = d(β ∧ γ) for β ∈ Ω(M)
and γ ∈ Z(M). Thus H(M) becomes a super-commutative graded algebra.

We have seen that on Rm (and more generally, on star-shaped open subset fo Rm),
every closed form of degree k > 0 is also exact. Thus

Hk(Rm) =

{
R for k = 0,
0 otherwise

.
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Examples 5.1. (a) Since B0(M) = 0, the zeroth cohomology space is just
H0(M) = Z0(M). A function f ∈ Ω0(M) is a cocycle if and only is f is
constant on connected components of M . Thus Z0(M) is the space of locally
constant functions, and b0 is simply the number of connected components.

(b) Suppose M is a manifold of dimension m, d vanishes on m-forms since there are
no m+ 1-forms. Thus

Zm(M) = Ωm(M).

When is such a form exact? Suppose M is connected, orientable and compact,
and let ΓM be a volume form on M defining the orientation. Then

∫
M

Γ > 0. If
Γ = dω for some m−1-form ω, then we would have

∫
M

Γ =
∫

M
dω = 0 by Stokes’

theorem. This contradiction shows that Γ represents a non-trivial cohomology
class in Hm(M). We will show later that indeed, if M is compact, orientable
and connected Hm(M) is 1-dimensional, and is spanned by the class of Γ. If M
is non-compact or non-orientable this is usually false.

(c) Let us try to get a feeling for H1(M). If α ∈ Ω1(M) is exact, α = df then
the integral

∫
S1 γ

∗α along any closed path γ : S1 → M vanishes, by Stokes’
theorem: ∫

S1

γ∗α =

∫

S1

γ∗df =

∫

S1

dγ∗f = 0.

The converse is true as well: If α ∈ Ω1(M) is such that
∫

S1 γ
∗α is always 0, then

the integral of α along a path λ : [0, 1] → M depends only on the end points.
One can then define a function f by fixing x0 ∈M and setting f(x) =

∫
[0,1]

λ∗α

for any path from x0 to x. It is not hard to see that the function f obtained in
this way is smooth and satisfies df = α. (Indeed, in a coordinate chart around
x0, the function f is just the image under the homotopy operator from Poincare’s
Lemma.)

Similarly, α is closed if and only if the integral along closed paths does not
change under smooth homotopies of the path. We has already seen one direction
of this statement. The opposite direction can be seen as follows: Suppose α is
not closed. then there exists x0 ∈M with dα 6= 0 at x0. Choose X ∈ X(M) such
that ι(X)dα 6= 0 near x0, and a loop γ0 never tangent to X. Using the flow of ǫX
(with ǫ > 0 sufficiently small), we can construct a homotopy γ : [0, 1]×S1 →M
of this loop. Then

∫
[0,1]×S1 γ

∗dα 6= 0, showing by Stokes’ theorem that the

integral of α along γt changes.

Exercise 5.2. Show more generally that a k-form ω is closed if and only if for all
maps F : Sk →M , the integral of F ∗ω depends only on the homotopy class of F .

5.2. Homotopy invariance. For any F ∈ C∞(N,M), the pull-back map F ∗ :
Ω(M) → Ω(N) is a homomorphism of graded algebras commuting with d. Hence it
defines an algebra homomorphism F ∗ : H(M) → H(N).
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Theorem 5.3 (Homotopy invariance). If F0, F1 ∈ C∞(N,M) are smoothly homo-
topic, then the induced maps F ∗

0 , F
∗
1 : H(M) → H(N) are equal.

Proof. We have to show that the map F ∗
1 − F ∗

0 : Ω(M) → Ω(N) induces the zero
map in cohomology. Thus, we have to show that if β ∈ Z(M) then F ∗

1 β −F ∗
0 β ∈ B(N).

Let h : Ω(N) → Ω(M) be the homotopy operator for a smooth homotopy between
F0, F1:

F ∗
1 − F ∗

0 = h ◦ d + d ◦ h : Ω(M) → Ω(N).

Apply this equation to β, using dβ = 0:

F ∗
1 β − F ∗

0 β = d(hβ).

�

Two maps F : N → M and G : M → N are called homotopy inverses if F ◦ G is
homotopic to IdM and G ◦ F homotopic to IdN . In this case, the theorem shows:

Corollary 5.4. Suppose F : N → M and G : M → N are homotopy inverses.
Then F ∗ : H(M) → H(N) is an isomorphism with inverse G∗ : H(N) → H(M).

Proof. According to the theorem, the maps G∗◦F ∗ : H(M) → H(M) and F ∗◦G∗ :
H(N) → H(N) are the identity maps. �

Definition 5.5. Let N be a submanifold of a manifold M . A smooth map F :
[0, 1] ×M → M such that F (0, ·) = IdM and F (1, x) ∈ N for all x ∈ M is called a
deformation retraction from M onto N . It is called a strong deformation retraction if
F (t, x) = x for all t ∈ [0, 1] and x ∈ N .

As a special case, one has:

Proposition 5.6. If M admits a strong deformation retraction onto an embedded
submanifold N , then the inclusion map ι : N →M gives an isomorphism ι∗ : H(M) →
H(N).

Proof. Let F : [0, 1]×M →M be a strong deformation retraction. Let π : M → N
be the map thus obtained, i.e. ι ◦ π = F (1, ·) : M → N . Then F gives a homotopy
between IdM and ι◦π. But π◦ι = IdN . Thus ι and π are homotopy inverses; in particular
ι∗ is an isomorphism in cohomology. �

This Proposition once again explains Poincare’s Lemma: Since Rm admits a strong
deformation retraction onto a point, its cohomology is trivial.

6. Mayer-Vietoris

6.1. Exact sequences. A (finite or infinite) sequence of vector spaces and maps

· · · −→ E −→ E ′ −→ E ′′ −→ · · ·
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is called exact at E ′ if the kernel of the map E ′ → E ′′ is equal to the image of the map
E → E ′. The sequence is called exact if it is exact everywhere. An exact sequence of
the form

0 −→ F
ι

−→ E
π

−→ G −→ 0

is called short exact. This has the following interpretation: Exactness at F means that
the map ι : F → E is injective. That is, we can think of F as a subspace of E. Exactness
at G means that the map π : E → G is surjective. Thus we may think of G as a quotient
space G = E/ ker(π). Exactness at E tells us that ker(π) = im(ι) ∼= F . Putting all this
together, we conclude that F is a subspace of E and G = E/F .

Exercise 6.1. Let A : F → E be any linear map. Show that the sequence

0 −→ ker(A) −→ F
A

−→ E −→ E/ im(A) −→ 0

is exact.

Suppose the sequence

0 −→ E
ι

−→ E ′ k
−→ E ′′ −→ · · ·

is exact. Then E can be thought of as a subspace of E ′, and the map k : E ′ → E ′′

vanishes exactly on E ⊂ E ′. That is, k descends to an injective map E ′/E → E ′′. Thus
we obtain a new exact sequence

0 −→−→ E ′/E
k

−→ E ′′ −→ · · ·

Exercise 6.2. Show that if the sequence 0 → E0 → · · · → Ek → 0 is exact, then
the alternating sum of dimensions vanishes:

∑

i

(−1)i dimEi = 0.

6.2. Differential complexes. The de Rham complex (Ω(M), d) is an example of
a differential complex. Since we will encounter many more examples of differential com-
plexes later on, it is useful to treat them in generality.

Let E =
⊕

k∈Z
Ek be a graded vector space, and d : E → E a linear map of degree

1. That is, d is a collection of maps

(5) · · · −→ Ek d
−→ Ek+1 d

−→ Ek+2−→· · ·

One calls (E, d) a differential complex if d squares to 0. The kernel of the map d :
Ek → Ek+1 is called the space of k-cocycles, and is denoted Zk(E). The image of the
map d : Ek−1 → Ek is called the space of k-coboundaries and is denoted Bk(E). Since
d ◦ d = 0, Bk(E) is a subspace of Zk(E). The quotient space

Hk(E) = Zk(E)/Bk(E)

is called the kth cohomology of the complex (E, d). We denote H(E) =
⊕

k∈Z
Hk(E).

Note that H(E) = 0 if and only if the sequence (5) is exact.
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(In the special case E = Ω(M), we will continue to write B(M), Z(M), H(M) rather
than B(Ω(M)), Z(Ω(M), H(Ω(M)).

Definition 6.3. Let (E, d) and (E ′, d) be two differential complexes. A linear map
Φ : E → E ′ of degree 0 is called a homomorphism of differential complexes or cochain
map, if Φ ◦ d = d ◦ Φ.

A cochain map Φ : E → E ′ takes cocycles to cocycles, hence it gives a map in
cohomology, which we denote by the same letter:

Φ : H(E) → H(E ′).

For example, if F : M → N is a smooth map of manifolds, it defines a cochain map
Φ = F ∗ : Ω(N) → Ω(M), and therefore H(N) → H(M).

Definition 6.4. A homotopy operator (or “chain homotopy”) between two cochain
maps Φ0,Φ1 : E → E ′ is a linear map h : E ′ → E of degree −1, with property

h ◦ d + d ◦ h = Φ1 − Φ0.

If such a map h exists, Φ0,Φ1 are called chain homotopic. Two cochain maps Φ : E → E ′

and Ψ : E ′ → E are called homotopy inverse if Φ ◦ Ψ : F → F and Ψ ◦ Φ : E → E are
both homotopic to the identity, if such maps exist, E,E ′ are called homotopy equivalent.

For example, if F0, F1 : N → M are smoothly homotopic, we had constructed a
homotopy operator between Φ1 = F ∗

1 and Φ0 = F ∗
0 . As in this special case, we see:

Proposition 6.5. Chain homotopic cochain maps induce equal maps in cohomology.
If two differential complexes E,E ′ are homotopy equivalent, their cohomologies are equal.

Suppose now that E,F,G are differential complexes, and let

0 −→ E
j

−→ F
k

−→ G −→ 0

be a short exact sequence where all maps are homomorphisms of differential complexes.
We will construct a map δ : H(G) → H(E) of degree +1 called the connecting ho-
momorphism. This is done as follows: Let [γ] ∈ Hk(G) be a given cohomology class,
represented by γ ∈ Zk(G). Since k : F → G is surjective, we can choose, β ∈ F k with
k(β) = γ. Then

k(dβ) = d(k(β)) = dγ = 0.

Thus, dβ ∈ ker(k) = im(j). Since j is injective, there is a unique α ∈ Ek+1 with
j(α) = dβ. Then j(dα) = dj(α) = ddβ = 0, so dα = 0. Set

δ([γ]) = [α].

One has to check that this definition does not depend on the choices of γ and β. For
example, if β′ ∈ F k is another choice with k(β′) = γ, then k(β′ − β) = 0, so β′ − β ∈
ker(k) = im(j). Since j is injective, there is a unique element φ ∈ Ek with j(φ) = β′−β.
Thus if α′ ∈ Ek+1 is the unique element such that j(α′) = dβ′, we have α′ − α = dφ,
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so [α′] = [α]. Similarly, one checks that the definition does not depend on the choice of
representative γ for [γ].

Theorem 6.6. Let
0 −→ E

j
−→ F

k
−→ G −→ 0

be a short exact sequence of homomorphisms of differential complexes with connecting
homomorphism δ. Then there is a long exact sequence in cohomology,

· · · −→ Hk(E)
j

−→ Hk(F )
k

−→ Hk(G)
δ

−→ Hk+1(E) −→ · · ·

where the connecting homomorphism δ : Hk(G) → Hk+1(E) is defined as follows: For
γ ∈ Zk(G), δ([γ]) = [α] where α ∈ Zk+1(E) is an element with j(α) = dβ for k(β) = γ.

Proof. Let us check exactness atHk(G). We have to check two inclusions, (i)im(k) ⊂
ker(δ) and (ii) ker(δ) ⊂ im(k).

(i) Suppose β ∈ Zk(F ). We have to show that δ[k(β)] = 0. By construction of the
connecting homomorphism, δ[k(β)] = [α] where j(α) = dβ = 0. Thus α = 0.

(ii) Suppose γ ∈ Zk(G) with δ[γ] = 0. We will show that there exists a closed element
β ∈ Zk(F ) such that γ = k(β). Start by choosing any β ∈ F k with k(β) = γ, and let
α ∈ Ek+1 be the unique element with j(α) = dβ. By definition of δ, 0 = δ[γ] = [α], thus
α = dφ for some φ ∈ Ek. Define β′ = β − j(φ). Then β′ is closed:

dβ′ = dβ − j(dφ) = dβ − j(α) = 0,

and k(β′) = k(β) = γ since k ◦ j = 0. Exactness at Hk(F ) and Hk(E) is checked
similarly. �

Theorem 6.7 (Mayer-Vietoris). Suppose M = U ∪ V where U, V are open, and let
χU , χV be a partition of unity subordinate to the cover of U, V . The sequence

0 −→ Ωp(U ∪ V )
j

−→ Ωp(U) ⊕ Ωp(V )
k

−→ Ωp(U ∩ V ) −→ 0

where j(α) = (α|U , α|V ) and k(β, β′) = β|U∩V − β′|U∩V is exact. It induces a long exact
sequence

0 −→ · · · −→ Hp(U∪V ) −→ Hp(U)⊕Hp(V ) −→ Hp(U∩V )
δ

−→ Hp+1(U∪V ) −→ · · · −→ 0

The connecting homomorphism takes the cohomology class of γ ∈ Zp(U ∩V ) to the class
of δ(γ) ∈ Zp+1(U ∪ V ), where

δ(γ)|U = d(χV γ), δ(γ)|V = −d(χUγ).

The formula for δ(γ) makes sense, since on the overlap U ∩ V ,

d(χV γ) − (−d(χUγ)) = d((χU + χV )γ) = dγ = 0.

Proof. Exactness at Ωp(M) is obvious since the map Ωp(M) → Ωp(U) ⊕ Ωp(V ) is
clearly injective. The kernel of the map Ωp(U)⊕Ωp(V ) −→ Ωp(U ∩V ) consists of forms
β, β′ with β|U∩V = β′|U∩V . These are exactly the forms which patch together to a global
form α on M , with β = α|U and β′ = α|V . This shows exactness at Ωp(U) ⊕ Ωp(V ). It
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remains to check surjectivity of the last map ψ : Ωp(U) ⊕ Ωp(V ) −→ Ωp(U ∩ V ). Let
α ∈ Ωp(U ∩V ). Choose a partition of unity χU , χV subordinate to the cover U, V . Then
χV α is zero in a neighborhood of U\U ∩ V , hence it extends by 0 to a form β on U .
Similarly −χUα is zero in a neighborhood of V \U ∩ V , hence it extends by 0 to a form
β′ on V .

On U ∩ V we have β|U∩V − β′|U∩V = α. This shows that k is surjective. Any short
exact sequence of chain complexes induces a long exact sequence in cohomology. �

As a first application of the Mayer-Vietoris sequence, we can now compute the coho-
mology of the sphere.

Example 6.8. Let M = Sm, and U, V the covering by the complements of the
south pole and north pole, respectively. The intersection U ∩ V smoothly retracts onto
the equatorial Sm−1. Since Hk(U) = Hk(V ) = 0 for k > 0, Mayer-Vietoris gives
isomorphisms

Hk(Sn) ∼= Hk−1(U ∩ V ) = Hk−1(Sn−1)

for k > 1. By induction, we get Hk(Sn) = H1(Sn−k+1). In low degrees, if n > 1,
Mayer-Vietoris is an exact sequence

0 −→ R −→ R ⊕ R −→ R −→ H1(Sn) −→ 0.

Here the map R⊕R −→ R is easily seen to be surjective, so R −→ H1(Sn) must be the
zero map, so H1(Sn) = 0. For n = 1 we have H1(S1) = 0. We conclude,

Hk(Sn) =

{
R for k = 0, n,
0 otherwise

.

Thus p(t) = 1 + tn is the Poincare polynomial.

7. Compactly supported cohomology

If M is non-compact, one can also study the compactly supported de Rham cohomol-
ogy: Working with the complex of compactly supported forms

0 −→ Ω0
comp(M)

d
−→ Ω1

comp(M)
d

−→ · · ·
d

−→ Ωm
comp(M) −→ 0

one defines Hp
comp(M) as the cohomology of this complex,

Hp
comp(M) = Hp(Ωm

comp(M)).

If M is compact, Hcomp(M) agrees with the usual cohomology, but for non-compact
manifolds it is quite different. For instance, if M has no compact component,

H0
comp(M) = 0.

This follows since Z0
comp(M) consists of locally constant functions of compact support,

and there are no such if M has no compact component. It is also different in higher
degree: For instance,

(6) H1
comp(R) = R
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in contrast to H1(R) = 0. To see (6), let α ∈ Ω1
comp(R). Write α = f dt, where t is

the coordinate on R, and f ∈ C∞
comp(R). Suppose α = dF . Then, by the fundamental

theorem of calculus, F (t) =
∫ t

−∞
f(s)ds + c, where c is a constant. Let T > 0 so that

supp(f) ⊂ [−T, T ]. Then F (t) is equal to F (∞) = c +
∫
α for t > T and equal to

F (−∞) = c for t < −T . This shows that α = dF for a compactly supported function
F , if and only if

∫
R
α = 0. If we take f to be a “bump function”, i.e. a compactly

supported function of integral 1, it follows that the class of α0 = fdt ∈ Ω1
comp(R)

generates H1
comp(R). Indeed, [α0] ∈ H1

comp(R) is non-zero, and for any α ∈ Ω1
comp(R), we

have α− cα0 ∈ B1
comp(R) (thus [α] = c[α0]) since its integral is zero.

This example shows that in general, the map

Hk
comp(M) → Hk(M).

induced by the inclusion Zk
comp(M) → Zk(M) is neither injective nor surjective.

Theorem 7.1. Let M be a compact manifold, and x ∈M . Then

Hk
comp(M\{x}) = Hk(M)

for all k > 0.

Proof. Let ω ∈ Ωk(M) be closed. On any contractible open neighborhood U of x,
ω|U = dβ for some form β ∈ Ω(U). Choose a function χ ∈ C∞(M) supported on U with
χ = 1 near x. Then ω − d(χβ) is cohomologous to ω and vanishes near x. This shows
that the natural map Hk

comp(M\{x}) → Hk(M) is surjective. Let us now show that it is

injective. Suppose ω ∈ Ωk
comp(M\{x}) is closed as a form on M , that is ω = dβ where

β ∈ Ω(M). We have to show that β can be chosen to be 0 near x.
Let U be a contractible open neighborhood of x such that ω vanishes near x. Then

dβ = 0 on U , i.e. β is closed on U . If k > 1, we can argue as before: Write β|U = dγ
and replace β by β − d(χγ). This shows that ω is also the differential of a compactly
supported form. If k = 1, β has degree 0 so this argument doesn’t work. But in this
case, f = β is just a function which equals a constant a = f(x) near x. We may replace
f by f − a to produce a compactly supported function with differential ω. �

Theorem 7.2.

Hk
comp(R

m) =

{
R for k = m,
0 otherwise

.

Proof. This follows from the cohomology of Sm, since Rm is diffeomorphic to Sm

minus a point. �

Let us discuss some of the properties of Hcomp. If F ∈ C∞(M,N) is a proper map,
pull-back F ∗ induces a chain map Ωcomp(N) → Ωcomp(M) hence a map Hcomp(N) →
Hcomp(M). (A map is called proper if the pre-image of any compact set is compact.)

One proves as before that Hcomp is homotopy invariant, but only under proper ho-
motopies. This is why, for example, the compactly supported cohomology of Rm is not
the cohomology of a point.
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Similarly, if U ⊂M is an open subset, one has a natural restriction map

Ω(M) → Ω(U),

but this map does not take Ωcomp(M) into Ωcomp(U) (unless U is a connected component
of M , the inclusion map is not proper.) On the other hand, one has a natural “extension
by 0” map

Ωcomp(U) → Ωcomp(M),

but there is no such map from Ω(U) to Ω(M). As a consequence, the Mayer-Vietoris
sequence for Ωcomp(·) looks different from that for Ω(·).

Theorem 7.3 (Mayer-Vietoris for cohomology with compact support). Suppose M =
U∪V where U, V are open, and let χU , χV be a partition of unity subordinate to the cover
{U, V }. The sequence

0 −→ Ωp
comp(U ∩ V )

j
−→ Ωp

comp(U) ⊕ Ωp
comp(V )

k
−→ Ωp

comp(U ∪ V ) −→ 0,

where j(α) = (α,−α) and k(β, β′) = β + β′, is exact for all p. Hence there is a long
exact sequence in compactly supported cohomology,

· · · → Hp
comp(U ∩V ) → Hp

comp(U)⊕Hp
comp(V ) → Hp

comp(U ∪V )
δ
→ Hp+1

comp(U ∩V ) → · · · .

The connecting homomorphism δ : Hp
comp(U ∪ V ) → Hp+1

comp(U ∩ V ) takes the class of
γ ∈ Zp

comp(U ∪ V ) to the class of

δ(γ) := dχU ∧ γ = −dχV ∧ γ.

Note that the formula for δ(γ) is well-defined since dχU = −dχV ∈ Ω1
comp(U ∩ V ).

Proof. This is very similar to the proof of Mayer-Vietoris for Ω(·), and is left as an
exercise. �

Again, the direct sum Hcomp(M) is an algebra under wedge product. Since the wedge
product of a compactly supported form with any form is compactly supported, we see
that Hcomp(M) is a module for the algebra H(M).

8. Finite-dimensionality of de Rham cohomology

Using the Mayer-Vietoris sequence, we will now show that H(M) is for any compact
manifold M , or more generally for all manifolds of so-called “finite type”.

Definition 8.1. A cover {Uα}α∈A is called a good cover if all finite non-empty in-
tersections of the sets Uα are diffeomorphic to Rm. A manifold admitting a finite good
cover is called of finite type.

Theorem 8.2. Every given cover of a manifold M has a refinement which is a good
cover.
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Sketch of proof. We won’t give the full proof here, which requires some elements
from Riemannian geometry. The idea is as follows. Choose a Riemannian metric g on
M . That is, g is a symmetric C∞(M)-bilinear form X(M) × X(M) → C∞(M), with
the property that g(X,X)x > 0 if Xx 6= 0. Using g one can define the length of curves

γ : [a, b] →M as length(γ) =
∫ b

a
g(γ̇, γ̇)1/2 dt. An open set U ⊂M is called geodesically

convex, that is any two points in U are joined by a unique (up to re-parametrization)
curve γ : I → U of shortest length.

Geodesically convex open sets are diffeomorphic to Rm, and the intersection of two
geodesically convex sets is again geodesically convex. Thus any cover consisting of
geodesically convex open sets is a good cover. It can be shown that for any point
x ∈M , there exists ǫ > 0 such that the set U of points that can be joined by a curve of
length < ǫ is a geodesically convex open neighborhood of x. This shows that any cover
can be refined to a good cover. �

In particular, every compact manifold is of finite type.

Theorem 8.3. For any manifold of finite type, the de Rham cohomology H(M) and
the compactly supported de Rham cohomology Hcomp(M) are finite dimensional.

Proof. Suppose U, V are open subsets of M , and suppose H(U), H(V ), H(U ∩V )
are all finite dimensional. Exactness of the Mayer-Vietoris sequence

−→ Hk−1(U ∩ V )
α

−→ Hk(U ∪ V )
β

−→ Hk(U) ⊕Hk(V ) −→ · · ·

shows

dim(Hk(U ∪ V )) = dim(kerβ) + dim(imβ)

= dim(imα) + dim(im β)

≤ dimHk−1(U ∩ V ) + dimHk(U) + dimHk(V ) <∞.

Now let U1, . . . , UN be a finite good cover of M . For each l ≤ N , the open subsets
U1 ∪ . . . ∪ Ul and (U1 ∪ . . . ∪ Ul) ∩ Ul+1 =

⋃
j≤l(Uj ∩ Ul+1) have a finite good cover

by l open sets. Hence, by induction on l they all have finite dimensional de Rham
cohomology, and by the Mayer-Vietoris argument it follows that U1 ∪ . . . ∪ Ul ∪ Ul+1

has finite dimensional de Rham cohomology. A similar argument applies to cohomology
with compact supports. �

Note that the theorem is not true, in general, for manifolds of infinite type: For
instance, any manifold with an infinite number of components certainly has infinite-
dimensional H0.

9. Poincare duality

Let M be an oriented manifold. Recall that we have defined a linear map∫

M

: Ωcomp(M) → R
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equal to zero on forms of degree k < dimM . Since the wedge product of a compactly
supported form and any form is compactly supported, we can use this to define a bilinear
form

Ω(M) × Ωcomp(M) → R, (α, β) 7→

∫

M

α ∧ β.

Since
∫

M
◦d = 0 (Stokes’ theorem), integration descends to a linear map

∫

M

: Hcomp(M) → R.

Thus we have a bilinear pairing

H(M) ×Hcomp(M) → R, ([α, β]) 7→

∫

M

α ∧ β.

Let P : H(M) → Hcomp(M)∗ be the map defined by

P ([α])([β]) =

∫

M

α ∧ β.

Note that P takes Hp(M) to Hm−p
comp(M). The main theorem of this section is:

Theorem 9.1 (Poincare duality). The map P : Hp(M) → Hm−p
comp(M)∗ is an isomor-

phism for all p.

The proof is based on the following

Lemma 9.2. Let M = U ∪ V where U, V are open subsets of M . Then there is a
commutative diagram

−→ Hp(U ∪ V ) //

(−1)p−1 D

��

Hp(U) ⊕ Hp(V ) //

D

��

Hp(U ∩ V ) //

D

��

Hp+1(U ∪ V ) −→

(−1)p D

��

−→ Hm−p
comp(U ∪ V )∗ // Hm−p

comp(U)∗ ⊕ Hm−p
comp(V )∗ // Hm−p

comp(U ∩ V )∗ // Hm−p−1
comp (U ∪ V )∗ −→

Here the upper horizontal map is the Mayer-Vietoris sequence in cohomology, and the
lower horizontal map is the dual of the Mayer-Vietoris sequence in compactly supported
cohomology.

Proof. Let α ∈ Z(U ∪ V ) and (β, β′) ∈ Zcomp(U) ⊕ Zcomp(V ). We have
∫

U

α|U ∧ β +

∫

V

α|V ∧ β′ =

∫

U∪V

α ∧ (β + β′)

which shows commutativity of the first square. Commutativity of the second square is
obtained similarly. To prove commutativity of the third square, let χU , χV be a partition
of unity for U, V . Let γ ∈ Zp(U ∩ V ) and α ∈ Zm−p−1

comp (U ∪ V ). We have to show
∫

U∪V

δ(γ) ∧ α = (−1)p

∫

U∩V

γ ∧ δ(α).
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Recall that

δ(γ)|U = d(χV γ), δ(γ)|V = −d(χUγ).

and that

δ(α) = d(χUα) = dχU ∧ α.

We have

(δ(γ) ∧ α)|U = d(χV ) ∧ γ|U ∧ α|U = (−1)pγ|U ∧ dχV ∧ α|U .

Since dχV ∧ α|U is compactly supported in U ∩ V , we see that (δ(γ)∧ α)|U is supported
in U ∩ V . Switching the roles of U, V , we find that δ(γ) ∧ α is supported in U ∩ V , and
compute ∫

U∪V

δ(γ) ∧ α = (−1)p

∫

U∩V

γ ∧ δ(α),

as desired. �

Proof of Poincare duality. We give the argument for finite type manifolds;
the general case is covered in Greub-Halperin-Vanstone. As in the proof of finite dimen-
sionality of H(M), the proof is based on induction on the number of elements in a good
cover (Ui)

N
i=1. For l ≤ N , let U =

⋃
i≤l Ui, V = Ul+1. Then the induction hypothesis

applies to U, V, U ∩ V . Hence the corresponding Poincare duality maps are all isomor-
phisms. The following algebraic fact implies that H(U ∪ V ) → Hcomp(U ∪ V )∗ is then
an isomorphism as well. �

Lemma 9.3 (Five-Lemma). Let

E1

α1

��

j1
// E2

α2

��

j2
// E3

α3

��

j3
// E4

α4

��

j4
// E5

α5

��

F1
k1

// F2
k2

// F3
k3

// F4
k4

// F5

be a commutative diagram of vector spaces and linear maps. Suppose the rows are exact,
and that α1, α2, α4, α5 are isomorphisms. Then α3 is also an isomorphism.

Proof. We will only show injectivity of the map α3. The proof of surjectivity is
very similar and is left as an exercise. Suppose x3 ∈ E3 is in the kernel of α3. We have
to show x3 = 0. Since

α4(j3(x3)) = k3(α3(x3)) = 0,

and α4 is injective, we have j3(x3) = 0. Thus x3 ∈ ker(j3) = im(j2). Thus we can write
x3 = j2(x2). We have

k2(α2(x2)) = α3(j2(x2)) = α3(x3) = 0.

Thus α2(x2) ∈ ker(k2) = im(k1). Thus we can write α2(x2) = k1(y1). Since α1 is
surjective, we can write y1 = α1(x1). Then

α2(j1(x1)) = k1(α1(x1)) = k1(y1) = α2(x2).
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Since α2 is injective, this shows j1(x1) = x2. Thus x2 ∈ im(j1) = ker(j2). It follows that
x3 = j2(x2) = 0. �

Poincare duality has many applications. As a first consequence, we can finally get a
handle on the top degree cohomology.

Corollary 9.4. For every connected oriented manifold M , one has Hm
comp(M) = R,

and

Hm(M) =

{
R if M is compact,
0 if M is non-compact.

If M is connected but non-orientable, one has Hm(M) = Hm
comp(M) = 0.

Proof. For the case M oriented, all the facts are immediate by Poincare duality,
and using that H0

comp(M) = 0 if M is non-compact, and equal to R if M is compact. Note
that if M is compact, the non-trivial generator of Hm(M) is represented by a volume
form. Suppose now that M is non-orientable. Let M̃ be the oriented double cover.
Let σ : M̃ → M̃ be the orientation-reversing diffeomorphism inducing the identity on
M . The de-Rham complex Ω(M̃) = Ω(M̃)+ ⊕ Ω(M̃)− splits into the direct sum of σ-
invariant and anti-invariant forms. Both summands are invariant under d, and Ω(M̃)+

is identified with Ω(M). Similarly H(M̃) = H(M̃)+ ⊕H(M̃)−, where H(M̃)+
∼= H(M).

If M is non-compact, we conclude Hm(M) = 0 since Hm(M̃) = 0. If M is compact,
then so is H(M̃). Since the volume form is anti-invariant, its class is in Hm(M̃)−. Thus
Hm(M) = Hm(M̃)+ = 0. �

Suppose M is a manifold, and S ⊂M a compact, oriented, embedded submanifold of
dimension k. Integration over S defines a linear map

∫
S

: Hk(M) → R, in other words it

is an element of Hk(M)∗. Let [τ ] ∈ Hm−p
comp(M) be the class defined by Poincare duality.

It is called the Poincare dual class to S. By definition, if α ∈ Zk(M), we have∫

S

α =

∫

M

α ∧ τ.

One may think of τ as some kind of delta measure along S, keeping in mind however
that this equation only holds true for closed forms α.

In fact, it is not important that S is an embedded submanifold: If S is any compact,
oriented manifold of dimension k ≤ m and ι ∈ C∞(S,M), we can define a Poincare dual
class [τ ] ∈ Hm−k

comp(M) by the condition
∫

S

ι∗α =

∫

M

α ∧ τ

for all α ∈ Z(M). Since the left side depends only on the homotopy class of ι, it
follows that [τ ] is invariant under homotopies of ι. Note furthermore that if U ⊂M is a
neighborhood of the image ι(S), the Poincare dual of S in U also serves as a Poincare dual
in M . In other words, one may choose the Poincare dual to be supported in arbitrary
small neighborhoods of ι(S).
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Example 9.5 (Poincare dual of a circle inside an annulus). The Poincare dual of
S1 ⊂ R2 inside the annulus U = {x ∈ R2| 1/2 < |x| < 2} is given by the 1-form τ ,
written in polar coordinates as

τ = F ′(r)dr

where F (r) = 0 for r > 1 + ǫ and F (1) = 0 for r < 1 − ǫ. To see this, we have to check
the defining equation for the Poincare dual. Let α = f(r, φ)dr + g(r, φ)dφ be a closed
form on U . Since α is closed, ∂f

∂φ
= ∂g

∂r
. We calculate, using integration by parts,

∫

R2

α ∧ τ =

∫

R2

g(r, φ)F ′(r)dφ ∧ dr

= −

∫

R2

g(r, φ)F ′(r)dr ∧ dφ

=

∫

R2

∂

∂r
(g(r, φ)F (r))drdφ−

∫

R2

∂g

∂r
(r, φ)F (r)drdφ

=

∫

S1

g(1, φ)dφ−

∫

R2

∂f

∂φ
(r, φ)F (r)dφdr

=

∫

S1

g(1 − ǫ, φ)dφ

=

∫

r=1−ǫ

α

=

∫

r=1

α.

Note that τ is exact in Ω(U) and also in Ωcomp(R
2), since τ = dF .

Example 9.6 (Intersection number). Let M be a manifold, and S, S ′ two compact
submanifolds manifolds of complementary dimension, dimS + dimS ′ = dimM . Say
dimS = p and dimS ′ = m − p. Let [τ ] ∈ Hm−p

comp(S) and [τ ′] ∈ Hp
comp(S

′) be the two
cohomology classes. The intersection number of S, S ′ is defined as the integral,

i(S, S ′) :=

∫

M

τ ∧ τ ′.

We will see later (?) that this is always an integer. Already at this stage, one can see
that i(S, S ′) = 0 if S ∩ S ′ = {0}. (Why?)

Example 9.7 (Linking number). Let M be any 3-manifold with H1(M) = 0. (E.g.,
M simply connected.) Let γ, γ′ : S1 →M be two smooth loops with γ(S1)∩γ′(S1) = ∅.
Let U,U ′ be disjoint open neighborhoods of the images of γ, γ′. Let τ ∈ Ω2

comp(U)

represent the Poincare dual of γ in U and τ ′ ∈ Ω2
comp(U

′) represent the Poincare dual

of γ′ in U ′. Extend τ, τ ′ by 0 to forms on M . Since H2
comp(M) = H1(M)∗ = 0, we can

write τ = dβ and τ ′ = dβ′, where β, β′ have compact (but usually not disjoint) support.
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One defines the linking number of γ, γ′ by the equation

(7) lk(γ, γ′) =

∫

M

β ∧ τ ′.

Integration by parts shows that the linking number is anti-symmetric in γ, γ′. We claim
that lk(γ, γ′) is independent of all the choices involved in its definition. Suppose τ̃ ′ =
τ ′ + dγ, where γ ∈ Ω1

comp(U
′). Then the right hand side of (7) does not change, since

∫

M

β ∧ dγ = −

∫

M

dβ ∧ γ = −

∫

M

τ ∧ γ = 0

(since τ, γ have disjoint support.) Furthermore, the choice of U,U ′ does not matter, since
the Poincare duals may be represented by a form supported in an arbitrarily small open
neighborhood of the images of γ, γ′.

The linking number is invariant under smooth isotopies of γ, γ′, provided the curves
remain disjoint:

Finally, note that lk(γ, γ′) = 0 if it is possible to contract one loop to a point while
keeping it disjoint from the other loop during the retraction.

Since τ, τ ′ have disjoint support, it follows that β is closed on the support of τ ′. That
is, we have

lk(γ, γ′) =

∫

S1

(γ′)∗β = −

∫

S1

γ∗β′.

It turns out that the linking number is always an integer. Let us prove this for the
special case γ : S1 →֒ R3 is the unit circle in the x− y plane. Let ǫ > 0 be small. After
applying some isotopy to γ′ in M\γ(S1), we may assume that γ′ meets the region |z| < ǫ
in a number of line segments, and does not meet the region |z| < ǫ, |r − 1| < ǫ. Let n+

(resp. n−) be the number of line segments in the region r < 1 − ǫ going from z = −ǫ to
z = ǫ, (resp from z = ǫ to z = −ǫ). We claim that

lk(γ, γ′) = n+ − n−.

Indeed, the Poincare dual of γ may be represented by a form

τ = dF ∧ dG = d(FdG)

where F = F (r) is equal to 1 for r < 1 − ǫ and F (r) = 0 for r > 1 + ǫ, and G = G(z) is
equal to 1 for z > ǫ and equal to 0 for z < −ǫ. Let β = FdG. Note that β is supported
the region r ≤ 1 + ǫ, |z| < ǫ. The integral

∫
S1(γ

′)∗β is a sum of integrals over the line
segments described above. But β = dG on the region U ′ ∩ {|r − 1| < ǫ}. Thus each
integral over a line segment is calculated by Stokes, and gives ±1 depending on whether
the line segment travels from z = −ǫ to z = ǫ or vice versa.

Exercise 9.8. Generalize the above concept of linking number to disjoint, immersed
compact submanifolds S, S ′ of a manifold M , with dimensions dimS+dimS ′ = dimM−
1. What are the conditions on H(M) so that the definition makes sense?
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10. Mapping degree

Let M,N be compact, connected, oriented manifolds of equal dimension m, and
F ∈ C∞(N,M) a smooth map. Let ΓM ,ΓN be volume forms defining the orientation,
normalized to have total integral equal to 1. Thus [ΓM ] ∈ Hm(M) corresponds to 1
under the isomorphism

∫
M

: Hm(M) → R. The mapping degree of F is defined to be

deg(F ) =

∫

N

F ∗ΓM .

Basic properties of the mapping degree, which follow immediately from the definition,
are: (1) deg(F ) depends only on the smooth homotopy class of F . (2) or any ω ∈
Ωm(M), one has

∫
N
F ∗ω = deg(F )

∫
M
ω. (3) Under composition of maps, deg(F ◦G) =

deg(F ) deg(G). (4) If F is a diffeomorphism, then deg(F ) = 1 if F preserves orientation
and deg(F ) = −1 if F reverses orientation.

Example 10.1. Let F : Sm → Sm be the diffeomorphism x 7→ −x. The standard
volume form Γ on Sm transforms according to F ∗Γ = (−1)m+1Γ. Thus F preserves
orientation if and only if m is odd. We conclude deg(F ) = (−1)m+1. Thus F cannot be
homotopic to the identity map if m is even.

We will now show that the mapping degree is always an integer, and also give an
alternative interpretation of the degree. Without proof we will use Sard’s theorem,
which implies that for every smooth map between compact manifolds, the set of regular
values is open and dense. (Recall that points that are not in the image are regular
values, according to our definition.) Thus let x ∈ M be a regular value of F . Since
dimM = dimN , the pre-image F−1(x) is zero dimensional, i.e. is a finite collection of
points y1, . . . , yd. For each i = 1, . . . , d, let ǫi = ±1, according to whether or not the
tangent map Tyi

N → TxM preserves or reverses orientation.

Theorem 10.2. The mapping degree is given by the formula,

deg(F ) =
d∑

i=1

ǫi,

for any regular value x with pre-images y1, . . . , yd, and ǫi defined as above. In particular,
deg(F ) is an integer.

Proof. Let U be a connected open neighborhood of x, with the property that U is
contained in the set of regular values of F . Let ω ∈ Ωm

comp(U) be a form of total integral

1. Thus deg(F ) =
∫

N
F ∗ω. Choosing U sufficiently small, the pre-image F−1(U) is

a disjoint union
∐d

i=1 Vi where Vi is an open neighborhood of yi. Then F restricts to
diffeomorphisms Vi → U , which are orientation preserving if ǫi = 1 and orientation
reversing if ǫi = −1. Thus

deg(F ) =

∫

N

F ∗ω =
d∑

i=1

∫

Vi

(F |Vi
)∗ω =

d∑

i=1

ǫi

∫

U

ω =
d∑

i=1

ǫi.
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�

Corollary 10.3. Suppose deg(F ) 6= 0. Then F is surjective.

Proof. Apply the Theorem to any x in the complement of the image of F . �

Example 10.4 (Fundamental theorem of algebra). Let p(z) =
∑d

i=0 aiz
i be a poly-

nomial of degree d > 0, with ad = 1. The map p : C → C takes ∞ to ∞, so it extends to
a map F p : S2 → S2 where we view S2 as the one point compactification of C. The map
F p is smooth. Replacing ai with tai for i < d, we see that F p is homotopic to the map
defined by the polynomial q(z) = zd. The equation q(z) = 1 has exactly d solutions,
given by the dth roots of unity. Since holomorphic maps are orientation preserving at
all regular points, it follows that

deg(F p) = deg(F q) = d.

Thus F p is surjective. This shows that the equation p(z) = a has at least one solution,
for all a ∈ C. (In fact, we see that for an open dense subset of values, it has exactly d
solutions.)

Example 10.5. View S1 as the unit circle in R2 = C, and let the kth power map
Pk : S1 → S1 be the restriction of the map C → C, z 7→ zk. If Γ = (2π)−1dθ is the
standard volume form on S1, we have P ∗

k Γ = kΓ. Thus deg(Pk) = k.

Theorem 10.6. Two maps F0, F1 : S1 → S1 are smoothly homotopic if and only if
they have the same mapping degree.

Proof. Since homotopy is an equivalence relation, it suffices to show that any
smooth map F : S1 → S1 of degree k is homotopic to Pk. In fact, since F ◦ P−k

has mapping degree 0, it suffices to consider the case k = 0. In this case, F ∗Γ has
integral 0. Locally, F ∗Γ = (2πi)−1d log(F ). But since integration is an isomorphism
H1(S1) → R, we know that F ∗

1 Γ = df for some globally defined function f ∈ C∞(S1).
That is,

F (z) = e2πif(z)

for all z ∈ S1. Let Ft(z) := e2πit f(z). Then Ft defines a smooth homotopy between F1

and F0 = Π0. �

11. Kuenneth formula

Suppose the manifold M is a direct product M = B × F . Let πB, πF denote the
projections from M to the two factors. The bilinear map

Ω(B) × Ω(F ) → Ω(M), (α, β) 7→ π∗
Bα ∧ π∗

Fβ

is a chain map, hence it induces a map in cohomology,

(8) H(B) ⊗H(F ) → H(B × F ) = H(M).
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Theorem 11.1 (Kuenneth theorem). Suppose B (or F ) is of finite type. Then the
map (8) is an isomorphism. That is,

Hp(B × F ) =

p⊕

j=0

Hj(B) ⊗Hp−j(F ).

Put differently, the Kuenneth theorem says that any class in H(B × F ) has a repre-
sentative of the form,

γ =
N∑

i=1

π∗
Bαi ∧ π

∗
Fβi.

Proof. Let us temporarily introduce the notation

Hp(B;F ) :=

p⊕

j=0

Hj(B) ⊗Hp−j(F )

(since the following long exact sequences would get too long otherwise.) We want to
show that the natural map Hp(B;F ) → Hp(B×F ) is an isomorphism. The idea is once
again to use induction on the number l of open sets in a good cover. Note first that the
Kuenneth theorem holds for B = Rn, since B × F retracts onto {0} × F in this case.
Thus the Theorem is true for l = 0. For the induction step, we use the Mayer-Vietoris
sequence. Suppose B = U ∪ V . We have the Mayer-Vietoris sequence

· · · → Hj(U ∪ V ) → Hj(U) ⊕Hj(V ) → Hj(U ∩ V ) → Hj+1(U ∪ V ) → · · · .

Tensor with Hp−j(F ), and sum over j to obtain a new exact sequence,

· · · → Hp(U∪V ;F ) → Hp(U ;F )⊕Hp(V ;F ) → Hp(U∩V ;F ) → Hj+1(U∪V ;F ) → · · · .

Consider the diagram

Hp(U ∪ V ; F ) //

��

Hp(U ; F ) ⊕ Hp(V ; F ) //

��

Hp(U ∩ V ; F )
δ

//

��

Hp+1(U ∪ V ; F )

��

Hp((U ∪ V ) × F ) // Hp(U × F ) ⊕ Hp(V × F ) // Hp((U ∩ V ) × F )
δ

// Hp+1((U ∪ V ) × F )

We claim that this diagram commutes. As usual, this is fairly easy, except for the square
involving the connecting homomorphism. Thus let α ∈ Zj(U ∩V ) and β ∈ Zp−j(F ). Let
χU , χV be a partition of unity for U, V , and π∗

U∪V χU , π
∗
U∪V χV the corresponding partition

of unity for U × F , V × F . Then δ is realized on the level of cocycles. We have to show
that the two forms

δ(π∗
U∩V α ∧ π∗

Fβ),

π∗
U∪V (δα) ∧ π∗

Fβ
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are cohomologous. Recall that (δα)|U = d(χV α), (δα)|V = −d(χUα) so that δα is
actually supported in U ∩ V . Similarly, δ(π∗

U∩V α ∧ π∗
Fβ) is supported in (U ∩ V ) × F .

We calculate, on (U ∩ V ) × F ,

δ(π∗
U∩V α ∧ π∗

Fβ) = d(π∗
U∩V χV α ∧ π∗

Fβ)

= π∗
U∩V d(χV α) ∧ π∗

Fβ

= π∗
U∪V (δα) ∧ π∗

Fβ.

The Theorem now follows by induction on the number of elements in a good cover,
together with the Five-lemma. �

As an application, we obtain the cohomology of an m-torus

T = S1 × · · · × S1

︸ ︷︷ ︸
m times

.

As an algebra, H(S1) is an exterior algebra in one generator of degree 1. That is,
H(S1) = ∧R. (This just reflects the obvious fact that the volume form squares to 0.)
Consequently

H(T ) = H(S1) ⊗ · · · ⊗H(S1)

is an exterior algebra in M generators, i.e.

H(T ) = ∧R ⊗ · · · ⊗ ∧R ∼= ∧RN

as graded algebras.
It is convenient to introduce the following notation. For any manifold M , one calls

bk(M) = dim(Hk(M)) the kth Betti number and one defines a polynomial in one variable
t,

p(M)(t) =
dim M∑

k=0

bk(M) tk,

called the Poincare polynomial. For instance, p(Rm)(t) = 1 while p(Sm)(t) = 1 + tm.
Poincare duality for a compact connected oriented m-dimensional manifold M says

that

tmp(M)(t−1) = p(M)(t),

and the Kuenneth formula implies that

p(M1 ×M2) = p(M1)p(M2).

For instance, the Poincare polynomial for an m-torus T = S1 × · · · × S1 is p(T )(t) =
(1 + t)m.

There is also a Kuenneth theorem for compactly supported cohomology. It can
be derived using the Mayer-Vietoris sequence for compactly supported cohomology, or
simply by Poincare duality. One introduce Betti numbers bk(M)comp and a Poincare
polynomial p(M)comp as before.
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12. De Rham theorem

12.1. Cech cohomology. Let A be an abelian group, written additively. We are
mostly interested in the cases A = R,Z,Zp. Let M be a manifold, and U = {Uα} an
open cover of M . For any collection of indices α0, . . . , αp such that Uα0

∩ . . . ∩ Uαp
6= ∅,

let

Uα0...αp
= Uα0

∩ . . . ∩ Uαp

One defines the Cech complex

Č0(U , A)
δ

−→ Č1(U , A)
δ

−→ Č2(U , A)
δ

−→ · · ·

as follows. A Cech-p-cochain f ∈ Čp(U , A) is a function

f =
∐

fα0...αp
:

∐

α0...αp

Uα0...αp
→ A,

where each fα0...αp
: Uα0...αp

→ A. is locally constant, and anti-symmetric in its indices.
The differential is defined by the formula,

(δf)α0,...,αp+1
=

p+1∑

i=0

(−1)ifα0,...,cαi,...,αp+1

where the hat means that the entry is to be omitted. For example, if f ∈ Č0(U , A),

(δf)α0α1
= fα1

− fα0

if g ∈ Č1(U , A),

(δg)α0α1α2
= gα1α2

− gα0α2
+ gα0α1

.

We thus see that

δ(δf) = (fα2
− fα1

) − (fα2
− fα0

) + (fα1
− fα0

) = 0.

Exercise 12.1. Verify that δ ◦ δ = 0 in general.

The cohomology groups Ȟp(U , A) := Hp(Č(U , A)) are called Cech cohomology groups
with coefficients in A.

A nice feature of the Cech cohomology groups is that they are purely combinatorial,
reflecting the intersections of elements in our open cover. On the other hand, if we want
to use them to define invariants of a manifold, there is a problem that they do depend
on the cover.

If A → A′ is a homomorphism of abelian groups, one has an induced homomor-
phism of Cech cochain, and hence a homomorphism of cohomology groups, Ȟp(U , A) →
Ȟp(U , A′).

Example 12.2. Suppose each Uα is connected. A Cech 0-cocycle is just a collection
of elements fα ∈ A that agree on overlaps. That is, if M is connected, Ȟ0(U , A) = A.
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Example 12.3. Suppose M is connected and all Uα are diffeomorphic to Rm. If
ω ∈ Z1(M), we can choose να ∈ Ω0(Uα) such that dνα = ω|Uα

. Then fαβ := νβ − να is a
constant fαβ ∈ R, and clearly defines a 1-cocycle in Č0(U ,R). A different choice ν ′α differs
from να by a constant cα, thus fαβ = cβ − cα = (δc)αβ. Hence, the Cech cohomology
class of fαβ does not change. Similarly, if ω is cohomologous to ω′, the difference is the
differential dg of a global function g ∈ Ω0(M). But replacing να by ν ′α = να + g|Uα

, does
not change fαβ. The upshot is that there is a well-defined map

H1(M) → Ȟ1(U ,R).

Suppose [ω] is in the kernel of this map. This means that the να can be chosen such
that fαβ becomes a coboundary, i.e. fαβ = cβ − cα for some constants cα. Replacing
να by να − cα takes fαβ to 0. That is the new functions να agree on overlaps, and
define a function ν ∈ Ω0(M) with dν = ω. Thus [ω] = 0. This shows that the map
H1(M) → Ȟ1(U ,R) is injective. Conversely, suppose fαβ is a given Cech 1-cocycle.
Choose a partition of unity χα, and define να =

∑
γ χγfαγ. Then

νβ − να =
∑

γ

χγ(fβγ − fαγ) =
∑

γ

χγfβα = fβα

and therefore
dνβ − dνα = 0

Hence, there is a unique form ω ∈ Z1(M) with ω|Uα
= dνα. This shows that the map

H1(M) → Ȟ1(U ,R) is an isomorphism.

12.2. De Rham’s theorem.

Theorem 12.4 (De Rham). If U is a good cover, the Cech cohomology groups
Ȟp(U ,R) are canonically isomorphic to the de Rham cohomology groups Hp(M). In
particular, they are independent of the choice of good cover.

Note that in the case of a good cover, the open sets are in particular connected. Thus
the locally constant functions fα0...αp

are really just elements of the group A.
Below we will present A. Weil’s proof of de Rham’s theorem. A first step is to

introduce, for each q, another type of Cech complex

Č0(U ,Ωq)
δ

−→ Č1(U ,Ωq)
δ

−→ Č2(U ,Ωq)
δ

−→ · · ·

as follows. A Cech-p-cochain ω ∈ Čp(U ,Ωq) is a collection of q-forms ωα0...αp
∈ Ωq(Uα0...αp

),

anti-symmetric in its indices. The differential is defined as before. We define Ȟp(U ,Ωq) :=
Hp(Č(U ,Ωq)).

Theorem 12.5. Suppose U is a good cover. Then Ȟp(U ,Ωq) = 0 for all p > 0.

Proof. Let χα be a partition of unity subordinate to the given cover. Define an
operator

h : Čp(U ,Ωq) → Čp−1(U ,Ωq)
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by

(hω)α0...αp−1
=

∑

α

χαωαα0...αp−1

We verify that h is a homotopy operator: Indeed

δ(hω)α0...αp
=

∑

i,α

(−1)iχαωαα0...cαi...αp−1

and

h(δω)α0...αp
=

∑

α

χα(δω)αα0...αp

=
∑

α

χαωα0...αp
−

∑

i

(−1)iχαωαα0...cαi...αp
,

thus hδ + δh = Id on forms of degree p > 0. �

We now arrange Cp,q := Čp(U ,Ωq) as a double complex, as follows:

Č0(U ,Ω2)
δ

//

OO

Č1(U ,Ω2)
δ

//

OO

Č1(U ,Ω2)

OO

//

Č0(U ,Ω1)
δ

//

d

OO

Č1(U ,Ω1)
δ

//

d

OO

Č1(U ,Ω1) //

d

OO

Č0(U ,Ω0)
δ

//

d

OO

Č1(U ,Ω0)
δ

//

d

OO

Č1(U ,Ω0)

d

OO

//

Notice that the cohomology groups are trivial in both horizontal and vertical directions,
except in degree 0. One can make the double complex into a single complex, by letting

Kp :=

p⊕

j=0

Čj(U ,Ωp−j),

with differential, D = δ+(−1)pd. The factor (−1)p is necessary so thatD2 = 0. One calls
H(K,D) = H(Č(U ,Ω), D) the total cohomology of the double complex. A D-cocycle is
a collection (ν(0), . . . , ν(p)) of cochains ν(j) ∈ Čj(U ,Ωp−j) with D(ν(0) + . . . + ν(p)) = 0.
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This gives a set of equations,

dν(0) = 0

dν(1) = (−1)pδν(0)

dν(2) = (−1)p−1δν(1)

· · · · · ·

dν(p) = −δν(p−1),

0 = δν(p)

Lemma 12.6. The restriction map Ωp(M) → Č0(U ,Ωp) ⊂ Kp induces an isomor-
phism in cohomology,

Hp(M) = Hp(Č(U ,Ω), D).

Proof. Surjectivity: Let (ν(0), . . . , ν(p)) be a D-cocycle. We have to show that it
is cohomologous to a cocycle in the image of the restriction map Ωp(M) → Č0(U ,Ωp).
Since δν(p) = 0 and the δ-cohomology is trivial, we can write ν(p) = δβ(p−1), where
β(p−1) ∈ Čp−1(U ,Ω0). Subtracting from (ν(0), . . . , ν(p)) the coboundary Dβ(p−1), we thus
achieve ν(p) = 0. Then δν(p−1) = ±dν(p) = 0. Thus we can write ν(p−1) = δβ(p−2), and
subtracting Dβ(p−2) we achieve ν(p−1) = 0. Proceeding in this manner, we successively
subtract D-coboundaries and arrange that ν(j) = 0 for all j > 0. The remaining ν(0) ∈
Č0(U ,Ω0) satisfies dν(0) = 0 and δν(0) = 0. Thus it is the restriction of a closed form
ω ∈ Ωp(M).

Injectivity: Let ω ∈ Zp(M) be a cocycle, and ν(0) ∈ Č0(U ,Ωp) be defined by re-
striction. Suppose ν(0) is the D-coboundary of some (β(0), . . . , β(p−1)) ∈ Kp−1. Then
δβ(p−1) = 0, so by adding a D-coboundary we can arrange β(p−1) = 0. Proceeding in
this manner, we can arrange that all β(j) = 0, except maybe β(0). The remaining form
β(0) satisfies δβ(0) = 0, which means that it is the restriction of a global form γ, and
(−1)pdβ(0) = ν(0), meaning that (−1)pdγ = ω. Thus [ω] = 0 and we are done. �

Notice that the proof was purely algebraic. It involved that the δ-cohomology is
trivial in positive degree, and that the kernel of the map δ : Č0(U ,Ωq) → Č1(U ,Ωq) is
exactly the image of the map Ωq(M) → Č0(U ,Ωq).

Hence, the proof works equally well with the roles of δ, d reversed. That is, we also
have

Lemma 12.7. The restriction map Čp(U ,R) → Čp(U ,Ω0) ⊂ Kp induces an isomor-
phism in cohomology,

Ȟp(U ,R) = Hp(Č(U ,Ω), D).

Putting the two Lemmas together, we have proved de Rham’s theorem:

Ȟp(U ,R) = Hp(Č(U ,Ω), D) = Hp(M).
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As one application, one can introduce the notion of integral de Rham classes: Indeed, the
inclusion Z → R induces a homomorphism of Cech cochains, hence a map in cohomology
Ȟp(U ,Z) → Ȟp(U ,R) = Hp(M). Classes in the image of this map are called integral.

One important consequence of de Rham’s theorem is that they are topological invari-
ants (since the Cech cohomology groups are). Hence they cannot be used to distinguish
different manifold structures on a given topological space.

12.3. Relative cohomology. Let Φ ∈ C∞(M,N) be a smooth map. Define a
complex

Ωp(Φ) := Ωp−1(M) ⊕ Ωp(N)

with differential, d(α, β) = (Φ∗β− dα, dβ). It is straightforward to check that d squares
to 0. A class in Hp(Φ) is called a relative de Rham cohomology class for the map Φ. Thus
classes in Hp(M) are represented by closed p-forms β on N together with a primitive
α ∈ Ωp−1(M) for the pull-back Φ∗β. The sequence

0 −→ Ωp−1(M) −→ Ωp(Φ) −→ Ωp(N) −→ 0,

where the first map takes α to (−1)p(α, 0) and the second map takes (0, β) to β, is
an exact sequence of differential complexes. Hence it induces a long exact sequence in
cohomology:

−→ Hp−1(M) −→ Hp(Φ) −→ Hp(N) −→ Hp(M) −→ · · ·

An immediate consequence is that if M is contractible, then Hp(Φ) = Hp(N) for p > 0,
while if N is contractible, then Hp(Φ) = Hp−1(M) for p > 0.

Suppose A is an abelian group, and Ui, Vi are good covers of M,N such that Φ(Ui) ⊂
Vi. Such covers exist: Start with a good cover Vi of N , and replace the cover Φ−1(Vi) by
a good refinement Ui. (We may use the same index set, if we allow the same Vi to appear
several times.) Let Č•(M,A), Č•(N,A) be the Cech complexes for the given covers. We
then have a pull-back map Φ∗ : Č•(N,A) → Č•(M,A) which one can use to define

Čp(Φ, A) = Čp−1(M,A) ⊕ Čp(N,A)

with differential

δ(µ, ν) = (Φ∗ν − δ(µ), δ(ν)).

Again, we have a long exact sequence

−→ Ȟp−1(M,A) −→ Ȟp(Φ, A) −→ Ȟp(N,A) −→ Ȟp(M,A) −→ · · ·

De Rham’s theorem extends to relative cohomology:

Theorem 12.8. There is a canonical isomorphism Hp(Φ) ∼= Ȟp(Φ,R).

Proof. As in the proof of de Rham’s theorem, it is useful to introduce auxiliary
Cech cohomology groups. Consider the double complex

Cp,q := Čp(Φ,Ωq) = Čp−1(M,Ωq) ⊕ Čp(N,Ωq)
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with the obvious differentials d, δ. Since we are working with good covers, and since
the complex Ωp(Φ) is acyclic if M,N are contractible, it follows that the columns of the
double complex are acyclic. We claim that the rows are acyclic as well. To this end, we
need to generalize Theorem 12.5 to our setting. Indeed, let hN , hM denote the homotopy
operators for the Cech complexes of M,N , cf. Theorem 12.5. Then

h : Čp(Φ,Ωq) → Čp−1(Φ,Ωq), h(α, β) = (hM(Φ∗(hNβ) − α), hNβ)

is a homotopy operator for the complex Č•(Φ,Ωq). We verify:

hδ(α, β) = h(Φ∗β − δα, δβ)

= (hM(Φ∗(hNδβ) − Φ∗β + δα), hNδβ)

= (hM(−Φ∗δ(hNβ) + δα), hNδβ)

= (hMδ(α− Φ∗(hNβ)), hNδβ)

while

δh(α, β) = δ(hM(Φ∗(hNβ) − α), hNβ)

= (Φ∗(hNβ) + δhM(α− Φ∗(hNβ)), δhNβ).

Adding the two expressions, we obtain

hδ(α, β) + δh(α, β) = (α, β)

as desired. Hence the proof of de Rham’s theorem goes through as before. �

13. Fiber bundles

13.1. Fiber bundles and vector bundles. In first approximation, a fiber bundle
with fiber F is a smooth map π : E → B with fibers diffeomorphic to a given fiber F ,
in such a way that E is locally the product of the base and the fiber:

Definition 13.1. A fiber bundle over with standard fiber F is a manifold E (called
the total space) together with a map π : E → B to another manifold B (called the base),
with the following property: There exists an open covering Uα of B, and diffeomorphisms

Ψα : π−1(Uα) → Uα × F

such that
prUα

◦Ψα = π|π−1(Uα).

A smooth map σ : B → E is called a section of E if π ◦ σ = IdB. The space of sections
is denoted Γ∞(B,E).

Note that it follows from the definition that π is smooth and that it is a surjective
submersion. The maps Ψα are called local trivializations of the fiber bundle.

For every subset S ⊂ B, we denote ES = π−1(S). In particular, taking S to be a
point b ∈ B, Eb is the fiber π−1(b). If U ⊂ B is an open neighborhood, EU is again a
fiber bundle.
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Definition 13.2. Two fiber bundles π : E → B and π′ : E ′ → B with standard
fiber F are called isomorphic if there exists a diffeomorphism Ψ : E → E ′ such that
π′ ◦ Ψ = π.

The direct product E = B × F with π : E → B the projection to the first factor, is
a fiber bundle called the trivial bundle. A bundle is called trivializable if it isomorphic
to the trivial bundle. Clearly, existence of sections is a necessary (but not sufficient)
condition for a fiber bundle to be isomorphic to the trivial bundle.

Exercise 13.3. a) View S1 ⊂ R2 = C as the unit circle in the complex plane, with
coordinates z ∈ C. Let k be a non-zero integer. The map C → C, z 7→ zk restricts to
a map π : S1 → S1. Construct local trivializations to show that π is non-trivial fiber
bundle with fiber Zk = Z/kZ.

b) Classify the fiber bundles π : E → S1 with fiber Z2, up to isomorphism. How
about fiber Zk for arbitrary integers k ≥ 2?

Exercise 13.4. Show that the map π : Sm → RP (m) makes Sm into a fiber bundle
with fiber Z2.

Exercise 13.5 (Hopf fibration). Complex projective space may e defined as a quo-
tient of S2n+1 ⊂ Cn+1 by the relation, z′ ∼ z if and only if z′ = cz, where c ∈ S1 ⊂ C

is a complex number of absolute value 1. Let π : S2n+1 → CP (n) be the quotient map.
Show that that π is a fiber bundle with fiber F = S1. For n = 1, this becomes a fiber
bundle π : S3 → S2 = CP (1) called the Hopf fibration.

Lemma 13.6. If B is smoothly contractible, then any fiber bundle E over B is iso-
morphic to the trivial bundle.

Sketch of proof. Let S : I × B → B be a smooth retraction onto b ∈ B. Let
F = Eb be the fiber over b. Given a Riemannian metric on E, there exists a unique
smooth lift Ŝ : I × E → E such that for all t ∈ I,

π(Ŝ(t, x)) = S(t, π(x))

and such that

∂Ŝ

∂t
(t, x) ∈ (TxFπ(x))

⊥.

For each y ∈ B, the restriction of Ŝ to π−1(y) × {1} is a diffeomorphism Ey → Eb = F .
The map

Ψ : E → B × F, x 7→ (π(x), Ŝ(x, 1))

is the desired isomorphism with the trivial bundle. �

Definition 13.7. Let π : E → B be a fiber bundle. A smooth map σ : B → E is
called a section of π if π ◦ σ = idB. The set of sections is denoted Γ∞(B,E).
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13.2. Vector bundles. A vector bundle is a fiber bundle whose fibers have the
structure of vector spaces. More precisely:

Definition 13.8. Let M be a manifold. A real (resp. complex) vector bundle of
rank k over M is a fiber bundle π : E → M with standard fiber F = Rk (resp. Ck),
such that all fibers Ex (x ∈M) carry the structure of real (resp. complex) vector spaces,
and such that the local trivializations EUα

∼= Uα × F can be chosen fiberwise R-linear
(resp. C-linear). An isomorphism of vector bundles π : E → M and π′ : E ′ → M is a
fiber bundle isomorphism that is fiberwise linear.

One can think of a vector bundle as a family of vector spaces smoothly parametrized
by the base. Suppose E is a real vector bundle with local trivializations Ψα : EUα

∼=
Uα × Rk. On Uαβ the map

Ψα ◦ Ψ−1
β : Uαβ × Rk → Uαβ × Rk

has the form

Ψα ◦ Ψ−1
β (x, v) = (x, gαβ(x).v)

where gαβ(x) ∈ GL(k,R), the group of invertible k×k-matrices. The transition functions
gαβ : Uαβ → GL(k,R) have the cocycle property,

gαβgβγ = gαγ

on Uαβγ. Conversely, given any cover Uα of a manifold M , and any collection of functions
gαβ : Uαβ → GL(k,R) with the cocycle property, there is a unique vector bundle having
the gαβ’s as transition functions. Indeed, E may be defined as a quotient

E =
∐

α

(Uα × Rk)/ ∼

where for any x ∈ Uαβ and v ∈ Rk, (x, v) ∈ Uβ×Rk is declared equivalent to (x, gαβ(v)) ∈
Uα × Rk.

13.3. Examples of vector bundles.

Examples 13.9. (a) Let M = Sn ⊂ Rn+1 be the unit sphere. Define E ⊂
Sn ×Rn+1 to be the set of pairs (x, v) with x · v = 0. Then E is a vector bundle
of rank n. The map (x, v) 7→ (−x,−v) is a vector bundle homomorphism.

(b) Let M = RP (n). Each point x ∈ RP (n) represents a 1-dimensional subspace of
Ex ⊂ Rn. Let

E ⊂ RP (n) × Rn+1

be the set of all (x, v) such that v is in the 1-dimensional subspace determined
by x. Then E is a vector bundle of rank 1 (also called a (real) line bundle). It
is called the tautological bundle over projective space.
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(c) This example generalizes: Let M = GrR(k, n) be the Grassmannian of k-planes
in Rn. By definition, each x ∈ M represents a k-dimensional subspace of Ex ⊂
Rn. Let

E ⊂ GrR(k, n) × Rn

be the set of al (x, v) such that v is contained in the k-dimensional subspace
parametrized by x. The total space of this vector bundle is called the Stiefel
manifold.

(d) Let M be a manifold with atlas {(Uα, φα)}. For each Uαβ, the map φα ◦ φ−1
β :

φβ(Uαβ) → φα(Uαβ) is a diffeomorphism. For x ∈ Uαβ let gαβ(x) ∈ GL(k,R) be
the Jacobian of the map φα ◦ φ−1

β at φβ(x). Clearly, the gαβ satisfy the cocycle
condition. The resulting vector bundle is the tangent bundle TM of M . Its
fibers (TM)x are canonically identified with the tangent spaces TxM . (Recall
that any choice of chart identifies TxM ∼= Rk, and a change of chart changes
the identification by the Jacobian of the change of coordinates.) The space of
sections is just the space of vector fields:

X(M) = Γ∞(M,TM).

Note that it seems somewhat miraculous from this perspective that X(M) carries
a natural Lie bracket.

(e) Let S be an embedded submanifold of a manifold M . Then the restriction TM |S
is a vector bundle over S, containing TS. The quotient bundle NS := TM |S/TS
with fibers (NS)x := TxM/TxS is again a vector bundle called the normal bundle
of S in M .

All standard constructions for vector spaces carry over to vector bundles. Thus,
if E → M is a vector bundle, one can form the dual bundle E∗ → M with fibers
(E∗)x = E∗

x, and the exterior powers ∧pE →M with fibers (∧pE)x = ∧pEx. If E ′ ⊂ E is
a vector subbundle, one can form the quotient bundle E/E ′ with fibers (E/E ′)x = Ex/E

′
x.

Similarly, one defines tensor products, direct sums, ...

Exercise 13.10. Work out the details of all these claims. E.g., show that the disjoint
union E∗ :=

∐
x∈M E∗

x carries a natural structure of a vector bundle. What are the
transition functions?

Starting from the tangent bundle TM one can form the dual bundle T ∗M = (TM)∗,
with sections Γ∞(M,T ∗M) = Ω1(M). One can also form ∧kT ∗ M , with sections
Γ∞(M,∧kT ∗M) = Ωk(M). If S ⊂ M is any submanifold, one can consider the re-
striction TM |S → S; sections of TM |S are called vector fields along S. The quotient
bundle NS := TM |S/TS is called the normal bundle to S in M . Given a Riemannian
metric on M , one identifies NS with the orthogonal complement of TS in TM |S, that is
one has a splitting TM |S = TS ⊕NS.

We will need the following fact about the normal bundle.
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Theorem 13.11. Suppose M is a manifold, S a compact embedded submanifold, and
NS the normal bundle of S inside M . Then there exist open neighborhoods V of S in
M and U of S in NS, and a diffeomorphism Ψ : U → V such that Ψ restricts to the
identity map on S.

That is, the normal bundle NS serves as a “local model” for a neighborhood of S in
M .

Sketch of proof. Put a Riemannian metric on M . Suppose for simplicity that
M is geodesically complete. (That is, all geodesics exist for all time.) Then NS gets
identified with the set of all vectors in TMS that are orthogonal to TS. Geodesic flow
defines a map NS × R → M . Let Ψ be the restriction of this map to NS × {1}. One
verifies that the tangent map along S ⊂ NS is invertible , so by the implicit function
theorem Ψ is a diffeomorphism on a neighborhood U of S. �

14. The Thom class

14.1. Thom isomorphism. Let π : E → M be a rank k vector bundle over a
compact manifold M of dimension m. Since E retracts onto M , the pull-back map
induces an isomorphism

π∗ : Hp(M) ∼= Hp(E).

Let us suppose that both M and E carry orientations. Then Poincare duality tells us
that we have a dual isomorphism,

Hq
comp(E) → Hq−k(M).

where q = m+ k − p. This isomorphism has a simple meaning: Suppose β ∈ Z(M) and
α ∈ Zcomp(E). Then

∫

E

π∗β ∧ α =

∫

M

π∗(π
∗β ∧ α) =

∫

M

β ∧ π∗α,

where π∗ is integration over the fibers.

Theorem 14.1 (Thom isomorphism). Let π : E → M be a rank k vector bundle
over a compact manifold M , with a fiberwise orientation. Then integration over the
fibers defines an isomorphism,

π∗ : Hp
comp(E) → Hp−k(M).

Remark 14.2. The argument given above only applies to the case where M is also
oriented (and E carries the induced orientation.) However, one can show that this
assumption is not necessary. One can also drop the assumption that M be compact,
if one replaces Hp

comp(E) with the cohomology of the complex of forms with compact
support in fiber direction.
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In particular, there is a unique class [Th(E)] ∈ Hk
comp(E), called the Thom class,

with property
π∗ Th(E) = 1.

A representative of the Thom class is called a Thom form. Now let ι : M → E be the
inclusion of the zero section.

Lemma 14.3. The Thom class has the property

[π∗(Th(E) ∧ α)] = [ι∗α]

for all [α] ∈ H(M).

Proof. Let β = ι∗α. The inclusion ι is a homotopy inverse to the projection π,
since π ◦ ι = IdM and since ι ◦ π is homotopic to IdE. Therefore, the pull-back maps
ι∗, π∗ are inverse to each other in cohomology, and [α] = [π∗β]. We have

π∗(Th(E) ∧ π∗β) = π∗ Th(E) ∧ β = β,

by the properties of the fiber integration map. �

Remark 14.4. The definition of the Thom for extends to non-compact manifolds
M that need not be orientable. All that is required is a fiberwise orientation of the
vector bundle π : E → M . A differential form ω ∈ Ω(E) is said to have fiberwise
compact support if for all compact subsets K ⊂M , the intersection π−1(K) ∩ supp(ω)
is compact. The space Ωf.c.(E) of differential forms with fiberwise compact support
is a differential complex, and one defines the corresponding cohomology with fiberwise
compact support Hf.c.(E). One can prove that the fiber integration map defines an
isomorphism π∗ : Hf.c.(E) → H(M), and one defines the Thom class to be the inverse
image of 1 ∈ H0(M) under this isomorphism. The space Ωf.c.(E) is a module for Ω(E)
under wedge product, and in cohomology one once again has Lemma 14.3.

Definition 14.5. The class Eul(E) := ι∗ Th(E) ∈ Hk(M) is called the Euler class
of the oriented rank k vector bundle E. If M be a compact oriented manifold, one calls
Eul(TM) the Euler class of the manifold M .

Note that e(M) = 0 if the tangent bundle can be trivialized.

Definition 14.6. Suppose K =
⊕

p≥0K
p is a differential complex with finite dimen-

sional cohomology H(K) =
⊕

p∈Z
Hp(K). The polynomial p(K)(t) =

∑
p t

p dimHp(K)

is called the Poincare polynomial of (K, d), and p(K)(−1) ∈ Z is the Euler characteristic.
In particular, if K = Ω(M), one calls p(M) := p(Ω(M)) the Poincare polynomial of M
and p(M)(−1) the Euler characteristic of M .

Theorem 14.7 (Gauss-Bonnet-Chern). Let M be a compact oriented manifold. Then
the Euler characteristic of M equals the integral of its Euler class,∫

M

Eul(TM) =
∑

i

(−1)i dimH i(M).

In particular, this integral is an integer.
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Theorem 14.7 is quite remarkable, in that it expresses a topological quantity (the
alternating sum of de Rham cohomology groups) in local terms, as the integral of a
differential form over the manifold.

Remarks 14.8. a) The full Gauss-Bonnet-Chern theorem gives, in addition, a con-
crete prescription how to represent Eul(TM) in terms of “curvature invariants”. (The
classical Gauss-Bonnet theorem says that for any compact connected oriented 2-manifold
Σ, the integral of the so-called Gauss curvature equals the Euler characteristic 2 − 2g,
where g is the genus = number of handles.

b) Of course, Eul(TM) = 0 whenever the tangent bundle ofM is trivial. For instance,
it can be shown (see e.g. the book on characteristic classes by Milnor-Stasheff) that the
tangent bundle of any compact oriented 3-manifold is trivial.

c) Note that pM(−1) = 0 if dimM is odd. This follows by putting t = −1 in the
equation for Poincare duality, pM(t−1) = t−mpM(t).

The proof of Theorem 14.7 requires some preparation. Let ι : ∆ ⊂ M ×M be the
diagonal, and [τ∆] its Poincare dual. Now let N∆ → ∆ denote the normal bundle of ∆
in M ×M .

Lemma 14.9. There is an isomorphism ι∗N∆ = T∆.

Proof. Choose a Riemannian metric on M , and let M ×M be equipped with the
product metric. For any x ∈M , the tangent space to ∆ at ι(x) consists of vectors (v, v),
and its normal space of vectors (v,−v) where v ∈ TxM . �

By the tubular neighborhood theorem, a small neighborhood of ∆ in M × M is
modeled by a neighborhood of ∆ in N∆. This gives

e(M) =

∫

M

Eul(TM)

=

∫

∆

Eul(T∆)

=

∫

∆

Eul(N∆)

=

∫

∆

τ∆.

We calculate the integral of τ∆ as follows. Let ωj ∈ Zpj(M) be cocycles such that [ωj]
are a basis for the vector space H(M). Let νj ∈ Zm−pj(M) be forms representing the
Poincare duals, i.e. ∫

M

ωj ∧ νk = δjk.

Let pr1, pr2 : M ×M →M denote the projections to the two factors. By the Kuenneth
theorem, pr∗1 ωj ∧ pr∗2 νk represent a basis of H(M ×M).
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Lemma 14.10. The expansion of [τ∆] in the basis [pr∗1 ωj ∧ pr∗2 νk] reads,

[τ∆] =
∑

j

(−1)pj [pr∗1 ωj ∧ pr∗2 νj].

Proof. To find the coefficient cjk of [pr∗1 ωj ∧ pr∗2 νk], consider the integral

(9)

∫

M×M

(pr∗1 νj ∧ pr∗2 ωk) ∧ τ∆ =

∫

∆

(pr∗1 νj ∧ pr∗2 ωk).

The left hand side is given by

∑

ab

cab

∫

M×M

(pr∗1 νj ∧ pr∗2 ωk) ∧ (pr∗1 ωa ∧ pr∗2 νb)

=
∑

ab

cab (−1)pa(pk+m−pj)

∫

M×M

pr∗1(ωa ∧ νj) ∧ pr∗2(ωk ∧ νb)

=
∑

ab

cab (−1)pa(pk+m−pj)

∫

M

(ωa ∧ νj)

∫

M

(ωk ∧ νb)

= cjk(−1)pj(pk+m−pj).

The right hand side of (9) can be written as an integral over M , using the diagonal
embedding ι : M → ∆ ⊂M ×M

∫

M

ι∗(pr∗1 νj ∧ pr∗2 ωk) =

∫

M

νj ∧ ωk = (−1)pk(m−pj)δjk.

Comparing the two results, we have found

cjk = (−1)pj pkδjk = (−1)pjδjk,

�

Using this result we calculate,

e(M) =

∫

∆

τ∆

=
∑

j

(−1)pj

∫

∆

pr∗1 ωj ∧ pr∗2 νj

=
∑

j

(−1)pj

∫

M

ωj ∧ νj

=
∑

j

(−1)pj

=
∑

p

(−1)p dimHp(M),
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proving Theorem 14.7. The calculation just given has the following generalization. For
any smooth map F : M →M from M to itself, let ι : Γ = {x, F (x)|x ∈M} →֒M ×M
be its graph, and τΓ the Poincare dual.

Using our basis ωj for H(M), introduce the components of F ∗ : H(M) → H(M) by
F ∗ωj =

∑
k Akjωk. Thus

Akj =

∫

M

(F ∗ωj) ∧ νk

Again, one expand [τΓ] in terms of our basis for H(M ×M):

[τΓ] =
∑

jk

cjk[pr∗1 ωj ∧ pr∗2 νk].

We have ∫

M×M

(pr∗1 νj ∧ pr∗2 ωk) ∧ τΓ =

∫

Γ

pr∗1 νj ∧ pr∗2 ωk.

The left hand side is cjk(−1)pj(pk+m−pj) as before. For the right hand side we obtain,
∫

Γ

pr∗1 νj ∧ pr∗2 ωk =

∫

M

ι∗(pr∗1 νj ∧ pr∗2 ωk)

=

∫

M

νj ∧ F
∗ωk

= (−1)pk(m−pj)Ajk.

Comparing the two results we obtain,

cjk = (−1)pjpkAjk.

If we integrate τΓ over the diagonal ∆, we obtain, therefore
∫

∆

τΓ =
∑

jk

(−1)pjpkAjk

∫

∆

ωj ∧ νk

=
∑

jk

(−1)pjpkAjkδjk

=
∑

j

(−1)pjAjj

=
∑

p

(−1)p tr(F ∗|Hp(M)).(10)

the alternating sum of the traces of the linear maps F ∗ : Hp(M) → Hp(M). This
integral has a nice geometric interpretation, as we shall explain in the following section.
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15. Intersection numbers

Let M be a manifold, and S, S ′ two embedded submanifolds with dimS + dimS ′ ≥
dimM . One says that S, S ′ intersect transversally if for all points x ∈ S ∩ S ′,

TxM = TxS ⊕ TxS
′.

Exercise 15.1. Suppose S, S ′ ⊂ M are submanifolds of dimensions k, k′ which in-
tersect transversally. Given x ∈ S ∩ S ′, show that there exists a coordinate chart (U, φ)
around x, with φ(x) = 0, such that φ(U ∩ S) is an open subset of {(x1, . . . , xk, 0 . . . , 0)}
and φ(U ∩ S ′) is an open subset of {(0, . . . , 0, xm−k′+1, . . . , xm)}. Conclude that S ∩ S ′

is an embedded submanifold of dimension k + k′ −m, with Tx(S ∩ S ′) = TxS ∩ TxS
′.

From the exact sequence

0 −→ Tx(S ∩ S ′) −→ TxS ⊕ TxS
′ −→ TxM −→ 0

one sees that orientations on S, S ′,M naturally induce an orientation on S ∩ S ′. In
particular, if S, S ′ have complementary dimensions, S∩S ′ is a discrete set of points, and
an orientation is given by assigning a ± sign to each element of S ∩ S ′. The plus sign
appears if and only if an oriented basis of TxS, followed by an oriented basis of TxS

′, is
an oriented basis for TxM .

Theorem 15.2. Suppose S, S ′ are compact oriented submanifolds of the oriented
manifold M , and that S, S ′ intersect transversally. Then the Poincare dual τS∩S′ of
S ∩ S ′ in M can be represented by the product of Poincare duals of S, S ′:

τS∩S′ = τS ∧ τS′ .

Sketch of proof. The key point is that the pull-back of τS to S ′ is the Poincare
dual of S ∩ S ′ inside S ′. (To see this, note that the restriction to S ∩ S ′ of the normal
bundle NS of S is the normal bundle of S ∩S ′ inside S ′. Hence, the Thom class Th(NS)
pulls back to the Thom class of NS|S∩S′ , since Thom forms are chratcerized by the
property that theirt integral over the fibers is 1. But the Thom class of the normal bundle
equals the Poincare dual for a tubular neighborhood. ). We can therefore compute,∫

M

α ∧ τS ∧ τS′ =

∫

S′

α ∧ τS =

∫

S∩S′

α

for all cocycles α, which shows that τS ∧ τS′ represents the Poincare dual of S ∩ S ′. �

In the special case that S, S ′ have complementary dimension and intersect transver-
sally. the Theorem shows that the intersection number

i(S, S ′) :=

∫

M

τS ∩ τS′ =

∫

S′

τS = (−1)(m−k)(m−k′)

∫

S

τS′

is an integer, in fact

i(S, S ′) =

∫

M

τS∩S′ =
∑

x∈S∩S′

ǫ(x),
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where ǫ(x) = ±1 according to whether the decomposition TxM = TxS ⊕ TxS
′ pre-

serves or reverses orientation. More generally, i(S, S ′) is an integer whenever S ′ can be
“perturbed” (i.e. homotoped) to have transversal intersection, since i(S, S ′) is invariant
under homotopies. (It is a result from differential topology that this is always possible.)

In the last section, we considered integrals
∫
∆
τΓ, where Γ = {(x, F (x)} is the graph

of a smooth map F : M → M . The intersection with the diagonal ∆ is in 1-1 corre-
spondence with the fixed points x = F (x) of F . When is the intersection transversal?

Lemma 15.3. ∆ and Γ are transversal, if and only if all fixed points x of F are
non-degenerate, that is,

det(dxF − I) 6= 0.

The sign ǫ(x) := ǫ(x, x) at any point of intersection is equal to the sign of the determinant
det(dxF − I).

Proof. Suppose x = F (x), so that (x, x) ∈ ∆ ∩ Γ. We have

T(x,x)∆ = {(v, v)| v ∈ TxM}, T(x,x)Γ = {(v, dxF (v))| v ∈ TxM}.

The map TxM ⊕ TxM ∼= T(x,x)∆ ⊕ T(x,x)Γ → T(x,x)M = TxM ⊕ TxM

(v, w) 7→ (v + w, v + dxF (w))

is described by a block matrix, (
1 1
1 dxF

)
.

This has determinant,

det

(
1 1
1 dxF

)
= det

(
1 0
1 dxF − 1

)
= det(dxF − 1).

Thus, ∆ and Γ are transversal if and only if dxF − I is invertible, and the sign of the
determinant gives ǫ(x, x). �

Putting this together with the formula (10), we obtain:

Theorem 15.4 (Lefschetz fixed point formula). Let F : M → M be a smooth map
from a compact oriented manifold to itself, with the property that all fixed points of F
are non-degenerate. For each fixed point x, let ǫ(x) = sign(det(dxF − I)). Then

∑

x=F (x)

ǫ(x) =
∑

p

(−1)p tr(f ∗|Hp(M)).

Note that the right hand side of this equation depends only on the smooth homotopy
class of the map F .

One can obtain a similar description for the integral
∫
∆
τ∆. The integral is equal

to
∫
∆
τΓ, where Γ is the graph of a smooth map F homotopic to the identity map. To

obtain such a map, pick a vector field X ∈ X(M), and let F t : M →M be its flow. We
want that for t sufficiently small, all fixed points of F t are non-degenerate. For small t,
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the fixed points of F t are exactly the zeroes of the vector field X. Let x ∈ M be such
a zero, Xx = 0. Since F t preserves x, we obtain a 1-parameter group of linear maps
dxF

t : TxM → TxM . Let A : TxM → TxM be the linear map A := ∂
∂t
|t=0dxF

t. Then
dxF

t = exp(tA). One calls A the linearization of X at x. One calls x a non-degenerate
zero of X if det(A) 6= 0. Let ǫ(x) := sign(det(A))

We have
det(dxF

t − I) = det(tA+ . . .) = tm det(A) + . . .

where . . . denotes higher order terms in the Taylor expansion. Thus x is a non-degenerate
zero for X if and only if it is a non-degenerate fixed point for F t, for t sufficiently small.
Let t > 0. Since sign(det((dxF

t − I)) = sign(det(A)) = ǫ(x) we obtain:

Theorem 15.5 (Poincare-Hopf). Let X be a vector field on a compact-oriented man-
ifold M with non-degenerate zeroes. Then

∑

x: Xx=0

ǫ(x) =
∑

p

(−1)p dimHp(M).

where ǫ(x) is the sign of the determinant of the linearization of X at x.

One way of constructing vector fields with non-degenerate zeroes comes from Morse
theory, cf. Milnor’s book.

The Poincare-Hopf and Lefschetz formula can sometimes be used to obtain a lot of
information on the Betti numbers, without any serious calculation.


