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1. Introduction

These notes are based on lectures delivered at the ‘Summer School on Quantization’ at
Notre Dame University, May 31-June 4, 2011. Some additional material is included from
a lecture series at the IGA workshop in Adelaide, September 2011. The audience for the
summer school were postdoctoral and graduate students, with a variety of backgrounds.
I made an effort to keep the lectures at a moderate pace, and to present motivation and
foundational material, without going into technical details. These notes, while more detailed
than the actual lectures, are written with a similar audience in mind.

I thank David Li-Bland for his help in preparing this notes, and valuable comments.

2. Motivation: Moduli spaces of flat bundles

Suppose G is a compact, simply connected Lie group, and · an invariant inner product
(‘metric’) on its Lie algebra g. Let Σ be a closed, connected, oriented 2-manifold of genus
h

Σ =

Since G is assumed to be simply connected, any principal G-bundle over Σ is trivial. Let
A(Σ) = Ω1(Σ, g) be the infinite-dimensional affine space of connections on the trivial G-
bundle over Σ. (We are treating infinite-dimensional manifolds in an informal manner; in
any case we will soon pass to a finite-dimensional picture.) The group G(Σ) = Map(Σ, G)
acts on A(Σ) by gauge transformations,

g.A = Adg(A)− g∗θR.

(We denote by θR, θL ∈ Ω1(G, g) the right-invariant Maurer-Cartan form on G.) The
curvature

curv(A) = dA+ 1
2 [A,A] ∈ Ω2(Σ, g)

transforms nicely under this action: curv(g.A) = Adg curv(A). In particular, the subset
Aflat = {A ∈ Ω1(Σ, g)| curv(A) = 0} of flat connections is gauge invariant. Let

M(Σ) = Aflat(Σ)/G(Σ)

be the moduli space of flat connections on the trivial G-bundle over Σ. As observed by
Atiyah-Bott [11, 10], the space M(Σ) carries a natural symplectic structure, depending
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2 E. MEINRENKEN

only on the choice of the metric · on g. Here the symplectic form is obtained by symplectic
reduction, as follows. (We suggest the book [19] for background on symplectic reduction;
this particular example is discussed on p. 158 of the book.) First, the affine space A(Σ)
carries a symplectic form, given on tangent vectors a, b ∈ TAΩ1(Σ, g) = Ω1(Σ, g) by

ωA(a, b) =
∫

Σ
a · b.

The action of the gauge group G(Σ) preserves this 2-form, and is in fact Hamiltonian, with
moment map the curvature curv : A(Σ)→ Ω2(Σ, g). That is,

ω(ξA(Σ), ·) = −d
∫

Σ
curv ·ξ.

Here the integral on the right hand side is the function A 7→
∫
Σ curv(A) · ξ, and ‘d’ is the

exterior differential on the infinite-dimensional manifold A(Σ). The moduli space is hence
recognized as a symplectic reduction

M(Σ) = A(Σ)//G(Σ) = curv−1(0)/G(Σ).

To see thatM(Σ) is finite-dimensional, choose a base point x0 on Σ, and let G(Σ, x0) ⊂
G(Σ) be the gauge transformations that are trivial at the base point. For any flat connection
A on Σ, its holonomy along a based loop in Σ depends only on the homotopy class of that
loop. It hence determines a group homomorphism κ(A) : π1(Σ;x0)→ G. Under the gauge
action of g ∈ G(Σ), κ(g.A) = Adg(x0)(κ(A)). Conversely (using that G is simply connected),
any homomorphism π1(Σ;x0)→ G arises from a flat connection. Hence there is a canonical
identification,

Aflat(Σ)/G(Σ, x0) ∼= Hom(π1(Σ;x0), G),

equivariant for the action of G(Σ)/G(Σ, x0) ∼= G. In particular,

M(Σ) = Hom(π1(Σ;x0), G)/G.

To be more explicit, we use a presentation of the fundamental group. This is done, as
usual, by cutting the surface along A-cycles (winding around the handles) and B-cycles
(going along the handles), as in the picture:

A1

B1

A2

B2

A1

B1

A1

B1A2

B2

A2

B2

After cutting, the surface becomes a polygon with 4h sides, where h is the genus (number
of handles) of the surface. Each handle gives rise to a word AiBiA

−1
i B−1

i , and we obtain
the relation

∏h
i=1AiBiA

−1
i B−1

i = 1 since the boundary of the polygon is contractible. Thus

π1(Σ;x0) =
〈
A1, B1, . . . , Ah, Bh|

h∏
i=1

AiBiA
−1
i B−1

i

〉
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is a presentation of the fundamental group. Letting ai, bi ∈ G be the holonomies of a
connection along the paths Ai, Bi we obtain,

Hom(π1(Σ;x0), G) = Φ−1(e)

where Φ: G2h → G is the map

Φ(a1, b1, . . . , ah, bh) =
h∏

i=1

aibia
−1
i b−1

i ,

and finally
M(Σ) = Φ−1(e)/G.

From this description, it is evident that M(Σ) is a compact space. If h ≥ 2, then the
subset Φ−1(e)reg of points whose stabilizer in G equals the center Z(G) ⊂ G, is open and
dense in Φ−1(e). One may check that Φ has maximal rank at such points. It follows that
Φ−1(e)reg/G is a smooth symplectic manifold of dimension (2h− 2) dimG.

In the 1990s, the holonomy picture was used as a starting point for finite-dimensional
constructions of the symplectic form on the moduli space, and an investigation of its coho-
mology. Important references include [31, 33, 34, 38, 40, 41, 65]. Jeffrey and Huebschmann
[34, 38] developed an approach where the logarithm of the map Φ is viewed as a moment
map, proving that M(Σ) can be written as a symplectic quotient of a finite-dimensional
Hamiltonian G-space. Unfortunately, since the ‘logarithm’ is not globally defined, one can-
not take this Hamiltonian space to be compact, and consequently many of the standard
techniques of Hamiltonian geometry do not apply. One of the purposes of the theory of
group-valued moment maps is to provide a more natural framework, in which the holonomy
map Φ(a1, b1, . . . , ah, bh) =

∏h
i=1 aibia

−1
i b−1

i (rather than its logarithm) is directly viewed
as a moment map.

3. Group-valued moment maps

Given a Lie group G, we denote by θL ∈ Ω1(G, g) the left-invariant Maurer-Cartan
form and by θR ∈ Ω1(G, g) the right-invariant Maurer-Cartan form. In terms of a matrix
representation of G, we have

θL = g−1 dg, θR = dgg−1.

Suppose g carries an Ad(G)-invariant non-degenerate symmetric bilinear form (‘metric’),
denoted by a dot ‘·’. Thus Adg(ξ1) ·Adg(ξ2) = ξ1 · ξ2 for all ξ1, ξ2 ∈ g. We denote by

η = 1
12 [θL, θL] · θL ∈ Ω3(G)

the Cartan 3-form. Since θR = Adg θ
L and since · is invariant, we may also write η =

1
12 [θR, θR] · θR. Thus η is a bi-invariant form on G, and hence it is closed: dη = 0.

Definition 3.1 (Alekseev-Malkin-M [3]). A q-Hamiltonian G-space (M,ω,Φ) is aG-manifold
M , with a G-invariant 2-form ω ∈ Ω2(M) and a G-equivariant map Φ ∈ C∞(M,G), called
the moment map, satisfying

(i) ι(ξM )ω = −1
2Φ∗(θL + θR) · ξ, ξ ∈ g

(ii) dω = −Φ∗η,
(iii) ker(ω) ∩ ker(dΦ) = 0.
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Here the G-equivariance of Φ is relative to the conjugation action on G.

Remark 3.2. In the original definition [3], an alternative version of condition (iii) was used,
requiring

(iii′) ker(ωm) = {ξM (m)| AdΦ(m) ξ = −ξ}.
However, assuming conditions (i), (ii) one may show that (iii’) is equivalent to (iii). This
was observed by Bursztyn-Crainic [18] and Xu [67], independently.

Remark 3.3. In [3], the theory of group-valued moment maps was developed under the
assumption that the metric · on g is positive definite, which only happens if the adjoint group
G/Z(G) is compact. Using the more conceptual approach via Dirac geometry, initiated by
[18], the main results all generalize to possibly non-compact groups (e.g. semi-simple Lie
groups with · the Killing form on g), as well as to the holomorphic category. For details,
see [2, 51].

Let us contrast the definition of q-Hamiltonian spaces with the usual definition of a
Hamiltonian G-space. The latter is given by a G-manifold M with an invariant 2-form ω
and an equivariant map Φ: M → g∗ satisfying the conditions,

(i) ι(ξM )ω = −〈dΦ, ξ〉,
(ii) dω = 0,
(iii) ker(ω) = 0.

Remark 3.4. Assuming (i),(ii), the condition ker(ω) = 0 can be shown to be equivalent to
a condition ker(ω) ∩ ker(dΦ) = 0.

We will now discuss the main examples and basic properties of q-Hamiltonian spaces parallel
to their Hamiltonian counterparts.

3.1. Examples.

3.1.1. Coadjoint orbits, conjugacy classes. The first examples of Hamiltonian G-spaces are
the orbits O ⊂ g∗ of the co-adjoint action

g.µ = (Adg−1)∗µ, g ∈ G, µ ∈ g∗.

(The choice of an invariant metric on g identifies the coadjoint and adjoint actions; hence
we will denote the coadjoint action also by Adg µ := (Adg−1)∗µ.) The moment map is the
inclusion Φ: O ↪→ g∗. The 2-form on the coadjoint orbit O is determined by the moment
map condition, and is given at any point µ ∈ O by the formula

ω(ξO, ξ′O)µ = 〈µ, [ξ, ξ′]〉, ξ, ξ′ ∈ O.
Similarly, the first examples of q-Hamiltonian G-spaces are the orbits of the conjugation
action on G. The moment map for a conjugacy class is the inclusion Φ: C ↪→ G, and the
2-form is uniquely determined by the moment map condition:

ω(ξC , ξ′C)a = 1
2(Ada−Ada−1)ξ · ξ′.

Since dΦ is injective in this example, condition (iii) is automatic. Note that the 2-form ω
may well-be degenerate: If elements of C square to central elements, the 2-form is even zero.
Note also that conjugacy classes may be odd-dimensional (e.g. the conjugacy class C ∼= S1

of O(2) consisting of reflections in the plane) or non-orientable (e.g. the conjugacy class
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C ∼= RP (2) of SO(3) consisting of rotations by π). On the other hand, one can show that
connected q-Hamiltonian G-spaces for connected, simply connected groups G are always
even-dimensional and oriented (see [7, 4]).

3.1.2. Cotangent bundles, the double. The cotangent bundle T ∗G, with the cotangent lift
of the G × G-action on G, (g1, g2).a = g1ag

−1
2 , is an example of a Hamiltonian G × G-

space. Using left trivialization T ∗G ∼= G × g∗ of the cotangent bundle, the cotangent
action reads (g1, g2).(a, µ) = (g1ag−1

2 ,Adg2 µ). The two components of the moment map
are Φ1(a, µ) = Ada(µ), Φ2(a, µ) = −µ.

Similarly, an example of a q-Hamiltonian G×G-space is the double D(G) ∼= G×G, with
action

(g1, g2).(a, b) = (g1ag−1
2 , g2bg

−1
1 )

moment map components

Φ1(a, b) = ab, Φ2(a, b) = a−1b−1,

and 2-form

ω = 1
2a
∗θL · b∗θR + 1

2a
∗θR · b∗θL

(here we view a, b as maps D(G) → G). Replacing the variable b with d = ba makes this
look similar to the action on T ∗G in left trivialization; for instance Φ1 = Ada(d), Φ2 = d−1.

One can also consider T ∗G with the cotangent lift of the conjugation action, with cor-
responding moment map (a, µ) 7→ Ada µ − µ. The q-Hamiltonian analogue is the double
D(G) = G × G 1 with the action g.(a, b) = (Adg(a),Adg(b)), with moment map the Lie
group commutator

Φ(a, b) = aba−1b−1,

and with the 2-form

ω = 1
2a
∗θL · b∗θR + 1

2a
∗θR · b∗θL + 1

2(ab)∗θL · (a−1b−1)∗θR.

This is a special case of the fusion operation to be discussed below.

3.1.3. Linear spaces, spheres. The space Cn = R2n, with its standard symplectic form, is
a Hamiltonian U(n)-space. Similarly, the even-dimensional sphere S2n is a q-Hamiltonian
U(n)-space, where the action is defined by the embedding U(n) ↪→ SO(2n) ⊂ SO(2n + 1).
This example was found independently in [7], [36] for n = 2, and generalized to higher
dimensions by Hurtubise-Jeffrey-Sjamaar [35]. There is a similar pair of examples, due
to Eshmatov [24], of a Hamiltonian Sp(n)-action on the quaternionic space Hn, and a
q-Hamiltonian Sp(n)-action on quaternionic projective space H P(n).

1We use the bold face notation to indicate that we consider the double as a G-space, rather than as a
G×G-space.
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3.1.4. Moduli spaces of surfaces with boundary. Assume G simply connected. Let Σ be a
compact, connected surface with a single boundary component. Fix a base point x0 ∈ ∂(Σ)
on the boundary, and let

M(Σ) = Aflat(Σ)/G(Σ;x0)

be the moduli space of flat connections on Σ, up to gauge transformations that are trivial at
x1. The spaceM(Σ) carries a residual action of G(Σ)/G(Σ;x1) ∼= G, and the map taking the
holonomy around ∂Σ descends to a G-equivariant map Φ: M(Σ) → G. A generalization
of the Atiyah-Bott gauge theory construction discussed above gives 2-form ω on M(Σ),
making (M(Σ), ω,Φ) into a q-Hamiltonian G-space. More generally, if Σ has r boundary
components, fix one base point on each boundary component. Then the moduli spaceM(Σ)
of flat connections modulo based gauge transformations is a q-Hamiltonian Gr-space. It
turns out that the space associated to a cylinder (2-punctured sphere) is isomorphic to
D(G), while the space associated to a 1-punctured torus is isomorphic to D(G).

3.2. Basic constructions: products. Given two Hamiltonian G-spaces, their direct
product, with the diagonal G-action and with the sum of moment maps and 2-forms, is
again a Hamiltonian G-space. For q-Hamiltonian spaces, the product operation uses the
product of the moment maps, but it is necessary to modify the sum of the 2-forms.

Proposition 3.5. [3] Suppose (Mi, ωi,Φi), i = 1, 2 are two q-Hamiltonian G-spaces. Then
their fusion product

(M1 ×M2, ω1 + ω2 + 1
2Φ∗1θ

L · Φ∗2θR,Φ1Φ2),

is again a q-Hamiltonian G-space.

Here the modification of the 2-form is required due to the following property of the 3-form
η under group multiplication Mult : G×G→ G,

Mult∗η = pr∗1 η + pr∗2 η − 1
2dpr∗1 θ

L · pr∗2 θ
R,

where pr1,pr2 : G × g → G are the two projections. More generally, if (M,ω, (Φ1,Φ2)) is
a q-Hamiltonian G×G-space, then we obtain a q-Hamiltonian G-space (Mfus, ωfus,Φfus),
where Mfus is M with the diagonal G-action, Φfus = Φ1Φ2 and ωfus = ω + 1

2Φ∗1θ
L · Φ∗2θR.

Remark 3.6. The fusion property finds a natural proof within the framework of Dirac
structures [2, 18, 51] . Here, the axioms of a q-Hamiltonian are absorbed into a morphism
of Manin pairs (strong Dirac morphism) fromM intoG, equipped with the so-called Cartan-
Dirac structure. Since group multiplication in G is again a morphism of Manin pairs, the
fusion operation becomes simply a composition of morphisms.

As an application, the space G2h, with G acting diagonally by conjugation and with mo-
ment map Φ(a1, b1, . . . , ah, bh) =

∏h
i=1 aibia

−1
i b−1

i carries the structure of a q-Hamiltonian
G-space as an h-fold fusion of the double D(G). The following nice way of looking
at the 2-form was described by Pavol Ševera in [58]. For any manifold X, the space
C∞(X,G)× Ω2(X) has a group structure

(q1, ω1)(q1, ω2) = (q1q2, ω1 + ω2 + 1
2q
∗
1θ

L · q∗2θR).
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Take X = G2h, with elements x = (a1, b1, . . . , ah, bh), and let q1, . . . , q4h : G2g → G be the
maps

x 7→ a1, b1, a
−1
1 , b−1

1 , a2, b2, a
−1
2 , b−1

2 , . . . , a−1
h , b−1

h .

Then (q1, 0) · · · (q4h, 0) = (Φ, ω) defines the q-Hamiltonian 2-form ω ∈ Ω2(G2h) and the
moment map Φ.

The name ‘fusion’ corresponds to the fusion of surfaces, as in the following example. See
[54] for a similar discussion for Hamiltonian loop group actions.

Example 3.7 (Fusion of moduli spaces). Suppose G is simply connected. For any compact,
oriented surface Σ with boundary component, with a marked point on each boundary
component, we denote by M(Σ) the moduli space of flat connections on Σ, up to gauge
transformations that are trivial at the marked points. (See Section 3.1.4.) Suppose Σ has
(at least) two boundary components. For instance, Σ could be a disjoint union of two
surfaces Σ1 and Σ2 with one boundary component, as in the following picture.

Then the fusion M(Σ)fus is naturally identified with the moduli space M(Σfus) of the
surface Σfus,

which is obtained by joining the two boundary components of Σ by a pair of pants: the
two pant legs are attached to two boundaries.

For example, the moduli space of flat connections on the cylinder can be identified with the
double D(G) ∼= G×G, a q-Hamiltonian G×G space. Fusing D(G) with itself, we obtain
the moduli space D(G) of flat connections on the punctured torus.

One can construct the punctured surface of genus h by joining h copies of the punctured
torus together with h− 1 pairs of pants.
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. . .

Thus, the moduli space of flat g-connections on the punctured surface of genus h is

M(Σh) := D(G)× · · · ×D(G)︸ ︷︷ ︸
h

∼= G2h.

3.3. Reduction. Symplectic reduction of q-Hamiltonian G-spaces works just the same as
for ordinary Hamiltonian spaces. Suppose (M,ω,Φ) is a q-Hamiltonian G-space, such that
the group unit e is a regular value of the moment map. Then it is automatic that the
G-action on Φ−1(e) has discrete stabilizers. If G is compact (or more generally if the action
is proper), it follows that the quotient

M//G = Φ−1(e)/G

is an orbifold. Furthermore, the pull-back of ω to Φ−1(e) is basic, and the resulting 2-form
on M//G is symplectic – even though ω itself was neither closed nor non-degenerate. This is
possible because ωm is non-degenerate for all m ∈ Φ−1(e), and since its pull-back to Φ−1(e)
is closed. If e is a singular value of Φ the space M//G is a singular symplectic space in the
sense of Sjamaar-Lerman [60].

As an application of reduction, we obtain a symplectic structure on the moduli space of
flat G-bundles, viewed as a symplectic quotient,

M(Σh) = G2h//G.

Note that e is never a regular value of Φ: G2h → G, since Φ−1(e) contains the point
(e, . . . , e) whose stabilizer is the entire group G. More generally, if C1, . . . , Cr ⊂ G are
conjugacy classes,

(1) M(Σr
h, C1, . . . , Cr) = (G2h × C1 × · · · × Cr)//G

is the moduli space of flat G bundles over a surface with r boundary components, with
holonomies around boundary circles in prescribed conjugacy classes Cj .

C1 C2 C3

One of the main results in [3] asserts that, for G compact and simply connected, the
symplectic structure obtained by q-Hamiltonian reduction coincides with that coming from
the Atiyah-Bott construction.

3.4. Convexity theorem. We next describe some convexity results for q-Hamiltonian
spaces. Here we assume that the group G is compact and simply connected.
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3.4.1. Weyl chamber, alcove. We fix a maximal torus T in G, with Lie algebra t ⊂ g. An
open Weyl chamber in t is a connected component of the set

{ξ ∈ t| ker(adξ) = t} = {ξ ∈ t| Gξ = T},
while an open alcove is a connected component of the set

{ξ ∈ t| ker(eadξ − 1) = t} = {ξ ∈ t| Gexp ξ = T},
here Gζ resp. Gg are the stabilizers of ζ ∈ g resp. g ∈ G under the adjoint action. Pick
an open Weyl chamber, let t+ be its closure, and let A be the unique closed alcove with
0 ∈ A ⊂ t+.

{ξ | ker(adξ) = t} {ξ | ker(eadξ − 1) = t}

0 0

t+

A

Let t∗+ be the image of t+ under the isomorphism t ∼= t∗ defined by the invariant metric on
g. (This does not depend on the choice of metric.)

The fundamental Weyl chamber labels the set of coadjoint orbits O ⊂ g∗, in the sense
that every such orbit is of the form G.µ for a unique element µ ∈ t∗+. (See [16, Ch. IX, §2,
Proposition 7].) Similarly, the fundamental Weyl alcove labels the conjugacy classes C ⊂ G,
in the sense that every conjugacy class is of the form G. exp ξ for a unique ξ ∈ A. (See [16,
Ch. IX, §5, Corollary 2].)

3.4.2. Convexity theorem. The following result is known as the Hamiltonian convexity the-
orem.

Theorem 3.8 (Atiyah [9], Guillemin-Sternberg [28, 30], Kirwan [45]). Let (M,ω,Φ) be a
compact connected Hamiltonian G-space. Then

(a) the fibers of Φ are connected,
(b) the set

∆(M) = {µ ∈ t∗+| µ ∈ Φ(M)}
is a convex polytope.

Similarly, the q-Hamiltonian convexity theorem states:

Theorem 3.9 (M-Woodward [54]). Let (M,ω,Φ) be a compact connected q-Hamiltonian
G-space. Then

(a) the fibers of Φ are connected,
(b) the set

∆(M) = {ξ ∈ A| exp ξ ∈ Φ(M)}
is a convex polytope.
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The result was phrased in [54] in terms of Hamiltonian loop group actions; the formulation
in terms of q-Hamiltonian spaces follows using the equivalence theorem in [3].

3.4.3. Eigenvalue problems. The Hamiltonian convexity theorem has nice applications to
eigenvalue problems. Let Rn

+ be the set of λ ∈ Rn with λ1 ≥ · · · ≥ λn. For a complex
Hermitian n × n matrix A, let λ(A) ∈ Rn

+ be its ordered tuple of eigenvalues. One then
has:

Corollary 3.10 (Horn polytope). Let µ, µ′ ∈ Rn
+ be given. Then the set γ ∈ Rn

+ for which
there exist Hermitian matrices A,A′ with

λ(A) = µ, λ(A′) = µ′, λ(A+A′) = γ,

is a convex polytope.

In short, the possible eigenvalues of a sum of Hermitian matrices with prescribed eigen-
values form a convex polytope. Corollary 3.10 follows by identifying Hermitian matrices
with u(n)∗, the cone Rn

+ with the positive Weyl chamber t∗+, and matrices with prescribed
eigenvalues with coadjoint orbits O ⊂ u(n)∗. The Corollary is then an immediate con-
sequence of the Hamiltonian convexity theorem applied to a product of coadjoint orbits
O×O′. A description of the faces of this polytope in terms of explicit eigenvalue inequali-
ties was known as the Horn conjecture, this was solved by Klyachko [46] in 1994. For more
general compact groups, the inequalities for the moment polytopes of products of coadjoint
orbits in general were determined by Berenstein-Sjamaar [13].

The q-Hamiltonian convexity theorem has applications to multiplicative eigenvalue prob-
lems. The eigenvalues of any special unitary matrix A ∈ SU(n) may be written in the form
e2π

√
−1λ1(A), . . . , e2π

√
−1λn(A), for a unique λ(A) ∈ Rn with
n∑

i=1

λi(A) = 0, λ1(A) ≥ · · · ≥ λn(A) ≥ λ1(A)− 1.

Corollary 3.11 (M-Woodward). Given µ, µ′ ∈ Rn, the set

{γ ∈ Rn| ∃A,A′ ∈ SU(n) : λ(A) = µ, λ(A′) = µ′, λ(AA′) = γ},
is a convex polytope.

In short, the possible eigenvalues of a product of special unitary matrices with prescribed
eigenvalues forms a convex polytope. The corollary is obtained by applying Theorem 3.9 to
a fusion product of two conjugacy classes, C × C′. The problem of determining the faces of
this polytope was solved by Agnihotri-Woodward [1]. The moment polytope for products
of conjugacy classes in a general compact simply connected Lie group was determined by
Teleman-Woodward [61].

3.4.4. Connectivity of the fibers. Let us also note the following consequences of the first
part of Theorem 3.9, concerning connectivity of the fibers of the moment map.

Corollary 3.12. Let G be a compact, simply connected Lie group, and (M,ω,Φ) a compact
connected q-Hamiltonian G-space. Then the symplectic quotient M//G is connected.

In particular, the moduli spaces (1) are connected.
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Corollary 3.13. For any compact, simply connected Lie group G, the fibers of the com-
mutator map G×G→ G, (a, b) 7→ aba−1b−1 are connected.

This follows by applying Theorem 3.9 to the double D(G). Note that this result is not
easy to prove ‘by hand’.

3.4.5. Multiplicity-free spaces. An interesting class of HamiltonianG-spaces are the multiplicity-
free spaces. These are spaces such that the map M/G → ∆(M) is a homeomorphism;
equivalently, the symplectic quotients are 0-dimensional. In case G is a torus, Delzant [20]
proved that multiplicity-free spaces are determined by their moment polytopes. This re-
sult was extended by Woodward [66] to ‘reflective’ multiplicity-free spaces for non-abelian
groups. The classification of multiplicity-free spaces in general is more involved, and was
completed only recently by F. Knop [47] following Losev’s proof of the ‘Knop conjecture’.
The definition of multiplicity-free spaces carries over verbatim to the q-Hamiltonian set-
ting. For instance, the q-Hamiltonian SU(n)-space S2n and the q-Hamiltonian Sp(n)-space
H P(n) are multiplicity free. The following picture shows the moment polytopes for a re-
flective multiplicity free Hamiltonian SU(3)-space (left) and a reflective multiplicity free
q-Hamiltonian SU(3)-space (right). These examples are due to Chris Woodward.

3.5. Volume forms. The Liouville form of a symplectic manifold (M,ω) is the volume
form defined as Γ = 1

n!ω
n, or equivalently as the top degree part of the exponential of ω,

Γ = (expω)[top].

In local Darboux coordinates q1, p1, . . . , qn, pn, one has ω =
∑

i dqi ∧ dpi, and the Liouville
form is dq1∧dp1 · · ·∧dqn∧dpn. Given a compact Hamiltonian G-space (M,ω,Φ), one defines
the Duistermaat-Heckman measure [23] to be the push-forward on g∗ of the associated
measure, m = Φ∗|Γ|. It has interesting properties, and may be calculated using localization
techniques.

For a q-Hamiltonian G-space (M,ω,Φ), we saw that the 2-form ω may be degenerate
or even zero. Assuming that G is compact and simply connected, it turns out that there
is nevertheless a distinguished volume form on M . In particular, M carries a canonical
orientation. The construction involves a certain differential form on G.

Proposition 3.14. For any compact, simply connected Lie group G, the function g 7→
det(Adg +1

2 ) admits a smooth global square root, equal to 1 at g = e. Furthermore, there is
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a well-defined smooth differential form ψ ∈ Ω(G), given on the set where det(Adg +1) 6= 0
by

ψ = det1/2(1+Adg

2 ) exp(1
4

Adg −1
Adg +1θ

L · θL).

Note that the set where det(Adg +1) 6= 0 is open and dense in G. Note that the 2-
form inside the exponential becomes singular on the subset where det(Adg +1) = 0, but
the scalar factor in front of the exponential has zeroes there. The Proposition says that
the zeroes compensate the singularities, so that the form extends smoothly across the set
det(Adg +1) = 0.

Theorem 3.15. [7] Suppose G is compact and simply connected. For any q-Hamiltonian
G-space (M,ω,Φ), the top degree part of the form exp(ω)Φ∗ψ is a G-invariant volume form,

Γ = (eωΦ∗ψ)[top].

In particular, M is even-dimensional and carries a canonical orientation. A conceptual
explanation of the volume form is given in [2, 51], where the differential form ψ is identified
as a pure spinor, and the Theorem is interpreted as the non-degeneracy of a pairing between
two pure spinors. As shown in [7], the push-forward m = Φ∗|Γ| ∈ E ′(G) plays the role of
a Duistermaat-Heckman measure, with properties similar to the Hamiltonian Duistermaat-
Heckman measure. In particular, it encodes volumes of symplectic quotients, and for G
compact and simply connected it can be computed by localization [5].

3.6. Kirwan surjectivity. There are many other aspects of the Hamiltonian theory that
carry over the q-Hamiltonian setting, with suitable modifications. One result of central
importance for Hamiltonian spaces is the Kirwan surjectivity theorem. We assume that G
is compact. For any G-manifold M , let H•

G(M) be its equivariant cohomology ring with
coefficients in R. It may be realized as the cohomology of the Cartan complex (Ω•G(M),dG)
where

Ωk
G(M) =

⊕
2i+j=k

(Sig∗ ⊗ Ωj(M))G.

Viewing elements of ΩG(M) as G-equivariant polynomial maps β : g → Ω(M), the differ-
ential is given by

(dGβ)(ξ) = dβ(ξ)− ι(ξM )β(ξ), ξ ∈ g.

Example 3.16. (a) If (M,ω,Φ) is a Hamiltonian G-space, then ωG = ω + Φ ∈ Ω2
G(M)

is an example of a closed equivariant 2-form.
(b) If G carries an invariant metric ·, then

ηG(ξ) = η + 1
2(θL + θR) · ξ

defines a closed equivariant 3-form ηG ∈ Ω3
G(M). Conditions (i),(ii) in the definition

of a q-Hamiltonian G-space may be combined into a single condition dGω = −Φ∗ηG.

Theorem 3.17 (Kirwan [44]). Let (M,ω,Φ) be a Hamiltonian G-space, with 0 a regular
value of the moment map Φ. Then the pull-back map

HG(M)→ HG(Φ−1(0)) ∼= H(M//G)

is a surjective ring homomorphism.
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Thus, all cohomology classes on the symplectic quotient are obtained from equivariant
cohomology classes on the unreduced space. For instance, the class [ωG] descends to the
class of the symplectic form on M//G. This result is the starting point for the calculation
of intersection pairings on M//G using localization on M , see e.g. [39], [62].

For a q-Hamiltonian G-space, the map HG(M)→ HG(Φ−1(e)) = H(M//G) need not be
surjective, in general. There are in fact examples where H2

G(M) = 0, so that the class of
the symplectic form on M//G need not lie in the image of this map. It turns out that the
correct version of the surjectivity theorem involves the topology of the group G. We assume
that G is compact and simply connected. As is well-known, the inclusion of bi-invariant
differential forms (∧g∗)G ∼= Ω(G)G×G ↪→ Ω(G) induces an isomorphism in cohomology.
Since the de Rham differential restricts to zero on bi-invariant differential forms, it follows
that

H(G) = (∧g∗)G.

On the other hand, it is known that the invariants (∧g∗)G are an exterior algebra over a
graded subspace P • ⊂ (∧•g∗)G of primitive elements.

(∧g∗)G = ∧P.

Here dimP = l equals the rank of G, and all homogeneous elements in P are of odd degree.
Let η1, . . . , ηl ∈ Ω2di−1(G) be a homogeneous basis of P , where η1 is the Cartan 3-form.
For instance, if G = SU(n + 1), the generators of (∧g∗)G are of degree 3, 5, 7, . . . , 2n + 1.
It turns out that each of the ηi admits an extension ηG

i ∈ Ω2di−1
G (G) to an equivariantly

closed form. These may be constructed using an equivariant version of the Bott-Shulman
complex [37] (see also [50]). In particular, ηG

1 = ηG.
Suppose now that (M,ω,Φ) is a q-Hamiltonian G-space. Define a new complex,

Ω̃G(M) = ΩG(M)[u1, . . . , ul],

where [u1, . . . , ul] denotes the graded ring of polynomials in given variables ui of degree
2di − 2, and with the differential

d̃G = dG +
l∑

i=1

Φ∗ηG
i

∂
∂ui
.

(Here Φ∗ηG
i acts by exterior multiplication, raising the degree by 2di − 1, while the differ-

entiation ∂
∂ui

lowers the degree by 2di − 2. We hence see that d̃G raises the degree by 1, as
required.) The cohomology of this complex is denoted H̃•

G(M). Let

(2) Ω̃•G(M)→ Ω̃•G(Φ−1(e))→ Ω•G(Φ−1(e))

be the cochain map, given by pull-back followed by the augmentation map for [u1, . . . , ul]
(setting these variables equal to zero). For instance, the element

ω + u1

is a cocycle (since dGω = −Φ∗ηG), and its image under the map (2) is simply the pull-back
of ω to Φ−1(e) (a closed, basic form).
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Theorem 3.18 (Kirwan surjectivity for q-Hamiltonian G-spaces). Suppose (M,ω,Φ) is
a q-Hamiltonian G-space, where G is compact and simply connected, and suppose e is a
regular value of Φ. Then the map

H̃•
G(M)→ H•

G(Φ−1(e)) = H•(M//G)

is a surjective ring homomorphism.

The surjectivity result was originally proved by Bott, Tolman and Weitsman [15] in terms
of Hamiltonian loop group actions. In unpublished work with A. Alekseev, we obtained
the reformulation above, using a ‘small model’ for the equivariant cohomology of the loop
group space. As an application, one obtains generators for the cohomology rings of moduli
spaces, see e.g. [50].

4. Quantization of Hamiltonian G-spaces

Our aim in these lectures is to explain the quantization of q-Hamiltonian G-spaces.
In this Section, we set the stage by reviewing aspects of the quantization of ordinary
Hamiltonian G-spaces. The term ‘quantization’ will be used in a wide sense. Ideally,
the quantization of a symplectic manifold should be Hilbert space, and a Hamiltonian G-
action (thought of as classical symmetries) should be quantized to define a representation
of G by unitary operators on the Hilbert space (thought of as quantum symmetries). The
method of geometric quantization produces such G-representations, but requires further
data and additional assumptions. Rather than dealing with concrete Hilbert spaces, we
will be content with isomorphism classes of G-representations. That is, we will take the
quantization of a Hamiltonian G-space to be a certain element of the representation ring
of G.

4.1. Background in representation theory. In this Section, we take G to be compact
and connected. For anyG-representation π : G→ Aut(V ), let χV ∈ C∞(G) be its character,
χV (g) = tr(π(g)). Characters have the properties

χV⊕W = χV + χW , χV⊗W = χV χW , χV ∗ = χ∗V ,

hence they form a subring R(G) ⊂ C∞(G) of the ring of complex-valued functions, invariant
under the involution ∗. As an additive group, R(G) is the Z-module spanned by the
characters of irreducible representations, also called the irreducible characters.

Fix a maximal torus T ⊂ G, with Lie algebra t ⊂ g, and let P ⊂ t∗ be the (real) weight
lattice. Thus µ ∈ t∗ lies in P if and only if the Lie algebra homomorphism

t→ u(1), ξ 7→ 2π
√
−1〈µ, ξ〉

exponentiates to a group homomorphism eµ : T → U(1). For any G-representation π : G→
Aut(V ), we define the weight spaces Vµ = {v ∈ V | ∀t ∈ T : π(t)v = eµ(t)v}, µ ∈ P , and
the set of weights

P (V ) = {µ ∈ P | Vµ 6= 0}.
Let t∗+ ⊂ t∗ be a choice of fundamental Weyl chamber. It is known that if V is irreducible,
then there is a unique weight µ ∈ P (V ) such that µ + ε has maximal length, for any
ε ∈ int(t∗+). This element µ ∈ P (V ) ∩ t∗+ is called the highest weight of V . By H. Weyl’s
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theorem, this sets up a 1-1 correspondence between the set of irreducible representations
and the set

P+ = P ∩ t∗+

of dominant weights of G. Thus, as a Z-module we have

R(G) = Z[P+],

with basis the irreducible characters χµ indexed by dominant weights µ ∈ P+. In the figure
below, the shaded area is the fundamental Weyl chamber for the group SU(3), while the
dominant weights are indicated as dots.

0

4.2. Quantization of Hamiltonian G-spaces. Suppose now that (M,ω,Φ) is a Hamil-
tonian G-space, with moment map Φ: M → g∗.

Definition 4.1. A pre-quantum line bundle L→M is a G-equivariant Hermitian line bundle
with connection ∇, such that

(a) curv(∇) = ω,
(b) The g-action on L is given by Kostant’s formula

ξL = Lift∇(ξM ) + 〈Φ, ξ〉∂θ

where ∂θ ∈ X(L) generates the S1-action on L.

Remarks 4.2. (a) The existence of a pre-quantum line bundle is equivalent to the inte-
grality of the 2-form ω.

(b) If G is simply connected, the existence of the pre-quantum lift of the G-action from
M to L is automatic. Indeed, the formula for ξL defines a Lie algebra action of g on
L by infinitesimal Hermitian automorphisms, and this Lie algebra action integrates
to a Lie group action.

(c) If a G-equivariant pre-quantum line bundle exists, then the choice of L is unique up
to a flat G-equivariant line bundle.

Given an equivariant pre-quantization, we obtain an element Q(M) of the representation
ring, as follows. Let J : TM → TM be a G-invariant compatible almost complex structure,
i.e. g(v, w) = ω(Jv,w) is a Riemannian metric. (In other words, every tangent space
admits an isomorphism TmM → Cn = R2n taking ωm to the standard symplectic structure∑n

i=1 e2i−1∧e2i and Jm to the standard complex structure e2i−1 7→ e2i, e2i 7→ −e2i−1.) The
space of G-invariant compatible almost complex structures is well-known to be contractible;
hence the particular choice of J is unimportant for what follows. Let TMC = T 1,0M⊕T 0,1M
be the decomposition into ±i eigenbundles of J . Then ∧T 0,1M is a spinor module over the
Clifford bundle C l(TM), where the Clifford action of T 0,1M is by exterior multiplication
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and that of T 1,0M is by contraction. (See Section 7 below.) Tensoring with L one obtains
a new spinor module,

S = ∧T 0,1M ⊗ L
Let /∂ : Γ(S) → Γ(S) be the associated Dirac operator, given by the covariant derivative
∇ : Γ(S) → Γ(T ∗M ⊗ S) followed by the Clifford action of T ∗M ∼= TM ⊂ C l(TM) on S.
Then /∂ is a G-equivariant elliptic operator, and hence it has a G-equivariant index. Let
S+, S− be the even, odd part of the spinor bundle.

Definition 4.3. The quantization Q(M) ∈ R(G) of the pre-quantized Hamiltonian G-space
(M,ω,Φ) is the G-index

Q(M) = indexG(/∂) = χker(/∂|S+ ) − χker(/∂|S− ).

For any given L, the construction of /∂ involves a few choices such as the choice of J
and of connections; however, the stability property of indices guarantees that Q(M) is
independent of those choice. (In fact, it turns out that for G connected, even the choice of
L does not affect Q(M). This is immediate from the equivariant index formula of Berline
and Vergne [14], cf. [49].) The basic properties of the quantization are as follows:

(a) Q(M1 ∪M2) = Q(M1) +Q(M2),
(b) Q(M1 ×M2) = Q(M1)Q(M2),
(c) Q(M∗) = Q(M)∗,
(d) Borel-Weil-Bott (weak version): G.µ, µ ∈ t∗+ is pre-quantized if and only if µ ∈ P+.

In this case,
Q(G.µ) = χµ.

Property (d) is a weak version of the Borel-Weil-Bott theorem: the strong version uses
Kähler quantization, and realizes the irreducible representation corresponding to µ as a
space of holomorphic sections of the pre-quantum line bundle.

Let R(G) → Z, χ 7→ χG be the group homomorphism defined on basis elements by
χG

µ = δµ,0. That is, χG is the coefficient of the basis element χ0 in χ. The map χ 7→ χG may
be regarded as the ‘quantum counterpart’ to symplectic reduction (taking the coefficient of
µ = 0 corresponds to setting the moment map value equal to 0). The following fact was
conjectured by Guillemin-Sternberg in the 1980s. (In [29], Guillemin and Sternberg gave a
full proof of a similar statement for Kähler quantization.)

Theorem 4.4 (Quantization commutes with reduction).

Q(M)G = Q(M//G).

Remark 4.5. The right hand side of this result requires some explanation. If 0 is a regular
value of the moment map, and G acts freely on the zero level set Φ−1(0), then M//G is
a symplectic manifold with pre-quantum line bundle L//G = L|Φ−1(0)/G. In this case,
the right hand side is defined as the (non-equivariant) index of the corresponding Spinc-
Dirac operator. If the action on the zero level set is only locally free, then L//G becomes an
orbifold line bundle over the orbifold M//G, and the index has to be interpreted accordingly
(using Kawasaki’s index theorem for orbifolds). In the most general case, one can define
the right hand side by a partial desingularization of M//G, reducing to the orbifold case.
In this generality, the result was proved in [53].
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Example 4.6. Let Nµ1µ2µ3 for µ1, µ2, µ3 ∈ P+ be the tensor coefficients, defined by

χµ1χµ2 =
∑

µ3∈P+

Nµ1µ2µ3χ
∗
µ3
.

Equivalently, Nµ1µ2µ3 = (χµ1χµ2χµ3)
G. Let Oi be the coadjoint orbits of µi ∈ P+. Then

Nµ1µ2µ3 = Q(O1 ×O2 ×O3//G),

realizing the tensor coefficients as an index.

Given a pre-quantized Hamiltonian G-space (M,ω,Φ), let N(µ) ∈ Z be the multiplicity
of χµ in the quantization Q(M),

Q(M) =
∑

µ∈P+

N(µ)χµ.

Thus N(0) = Q(M)G. For any µ ∈ t∗+, let M//µG = Φ−1(µ)/Gµ be the symplectic quotient
at level µ ∈ g∗. The shifting trick expresses M//µG as a reduction at 0:

M//µG = (M × (G.µ)∗)//G;

here (G.µ)∗ denotes the coadjoint orbit G.µ with minus the standard symplectic structure
and minus the inclusion as a moment map. Suppose µ ∈ P+ ⊂ g∗. Since

Q((G.µ)∗) = Q(G.µ)∗ = χ∗µ,

Theorem 4.4 shows that the multiplicity of 0 in Q(M×(G.µ)∗) equals the multiplicity N(µ)
of µ in Q(M). Thus

N(µ) = Q(M//µG).

4.3. Localization. In most cases, the ‘quantization commutes with reduction’ theorem is
not very practical for the calculation of weight multiplicities in Q(M). Instead, the result
is often used in the opposite direction: One obtains the indices of symplectic quotients
Q(M//µG) from the knowledge of Q(M). The main technique for the computation of
Q(M) is localization.

The Atiyah-Segal-Singer equivariant index theorem for elliptic operators, specialized to
the case of Spinc-Dirac operators, gives the formula

Q(M)(g) =
∑

F⊂Mg

∫
F

Â(F ) Ch(L|F , g)1/2

DR(νF , g)

where the sum is over fixed point manifolds F ⊂ Mg for the action of g. Here L is the
‘Spinc-line bundle’ L = L2⊗K−1, withK the canonical bundle, and νF is the normal bundle
to F . The terms Â(F ),Ch(L|F , g)1/2, and DR(νF , g) are certain characteristic classes of
TF, L|F , νF . (For details, see e.g. [52, Section 5.3].)

Remark 4.7. The fixed point formula can also be written in ‘Riemann-Roch form’,

Q(M)(g) =
∑

F⊂Mg

∫
F

Td(F ) Ch(L|F , g)
DC(νF , g)

,

which is often easier to use for computations. However, the ‘Spinc-form’ will be more
convenient for our discussion.
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Remark 4.8. If one tries develop a similar quantization procedure for q-Hamiltonian G-
spaces (M,ω,Φ), one is faced with several obstacles. First, the 2-form ω need not be
closed, hence it cannot be the curvature form of a line bundle. Secondly, since ω can be
degenerate, there is no obvious notion of ‘compatible complex structure’. (In fact, there
are examples of conjugacy classes C of compact, simply connected Lie groups not admitting
any Spinc-structure.) Hence, there is no suitable Dirac operator in sight. In the following
sections we will explain how to get around these problems.

5. The level k fusion ring

From the correspondence with Hamiltonian loop group spaces, we expect that the result
of the quantization procedure of q-Hamiltonian spaces should be an element not of the
representation ring but of the fusion ring of G, at suitable level.

For the remainder of these lecture notes, we will assume that G is compact, simply
connected and simple. We fix a maximal torus T and a fundamental Weyl chamber t∗+.
Recall that P+ = P ∩ t∗+ are the dominant weights. Let θ ∈ P+ be the highest root, i.e. the
highest weight of the adjoint representation of G on gC. The fundamental alcove has the
following description

A = {ξ ∈ t+| 〈θ, ξ〉 ≤ 1}.

We denote by ρ ∈ P+ the unique shortest weight in P+ ∩ int(t∗+); equivalently 2ρ is the
sum of the positive roots of G. The basic inner product · on g is the unique invariant inner
product such that θ · θ = 2 (using the identification g ∼= g∗ given by the inner product). We
will use the basic inner product to identify g and g∗. The dual Coxeter number of G is the
positive integer defined by

h∨ = 1 + θ · ρ.

For G = SU(N) one has h∨ = N .

Definition 5.1. Let k ∈ {1, 2, . . .}. The level k weights of G are the elements of

Pk = P ∩ kA.

The following pictures show the set of level k weights, as well as the weights ρ, θ, in two
examples. The shaded area is kA.
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ρ = θ ρ
θ

G = SU(3)
k = 3

G = Spin(5)
k = 4

For λ ∈ Pk define the special element

tλ = exp( λ+ρ
k+h∨ ) ∈ T.

Definition 5.2. The level k fusion ring (Verlinde algebra) is the quotient

Rk(G) = R(G)/Ik(G)

by the level k fusion ideal, Ik(G) = {χ ∈ R(G)| χ(tλ) = 0 ∀ λ ∈ Pk}.

The fusion ring Rk(G) plays an important role in conformal field theory (see e.g. [25]).
It is also known as the level k Verlinde algebra, after the physicist Erik Verlinde [63].

Remark 5.3. Rk(G) is also the fusion ring of level k projective representations of the loop
group LG. However, we will not need this interpretation here.

Some basic properties of the level k fusion ring are as follows:
(a) the unit and involution of R(G) descend to a unit and involution of Rk(G),
(b) Rk(G) has finite Z-basis the images τµ of χµ, µ ∈ Pk. Thus

Rk(G) = Z[Pk].

(c) Rk(G) has a trace,
Rk(G)→ Z, τ 7→ τG

where τG
µ = δµ,0.

(d) The integers
N (k)

µ1µ2µ3
= (τµ1τµ2τµ3)

G, µi ∈ Pk

are called the level k fusion coefficients. They encode the multiplication in Rk(G):

τµ1τµ2 =
∑

µ3∈Pk

N (k)
µ1µ2µ3

τ∗µ3
.

If µ1, µ2, µ3 ∈ P+ are fixed, the fusion coefficients become independent of k for
sufficiently large k, and coincide with the tensor coefficients:

N (k)
µ1µ2µ3

= Nµ1µ2µ3 , k >> 0.



20 E. MEINRENKEN

Example 5.4. For G = SU(2), it is not difficult to determine the level k fusion ring ‘by
hand’. Identify t ∼= R in such a way that P+ = {0, 1, . . .}. Here m ≥ 0 is realized as the
dominant weight for the m-th symmetric power of the defining representation, SmC2. We
have ρ = 1, θ = 2, and the alcove is the interval [0, 1] ⊂ R. Hence Pk = {0, 1, . . . , k}. The
product in R(SU(2)) is given by the well-known formula

χlχm = χl+m + χl+m−2 + . . .+ χ|l−m|.

Equivalently, the tensor coefficients are given by

Nm1m2m3 = 1

if m1 +m2 +m3 is even with mi ≤ 1
2(m1 +m2 +m3) for i = 1, 2, 3, and are zero in all other

cases. One finds that the level k fusion ideal is Ik(SU(2)) = 〈χk+1〉, and the quotient map
R(G)→ Rk(G) is ‘signed reflection’ across indices k + 1, 2k + 3, 3k + 5, . . ..

To illustrate, if k = 5 we find τ3τ4 = τ3 + τ1 since

χ3χ4 = χ7 + χ5 + χ3 + χ1,

and because χ7 7→ −τ5, χ5 7→ τ5 under the quotient map. For m1,m2,m3 ∈ {0, 1, . . . , k},
the SU(2) fusion coefficients at level k are given by

N (k)
m1m2m3

= 1

provided m1 +m2 +m3 is even with

mi ≤ 1
2(m1 +m2 +m3) ≤ k

for i = 1, 2, 3, and are zero in all other cases.

For a general compact simple Lie group G, the quotient map R(G)→ Rk(G) is a ‘signed
reflection’ for a shifted Stiefel diagram. We illustrate the quotient map for G = SU(3) and
level k = 3. Consider the set Pk of level k weights

3A

One can show that the weights Pk, shifted by ρ, are exactly the weights in the interior the
shifted alcove at level k + h∨:

Pk + ρ = P ∩ (k + h∨) int(A).

The affine reflections across the faces of the shifted alcove (k + h∨)A − ρ alcove generate
the ρ-shifted level k + h∨ Stiefel diagram, shown in the following picture.



21

3A

The shifted affine Weyl group is the group of transformations of t, generated by reflections
across these affine hyperplanes:

The last picture shows the weights that can be reflected into Pk. If µ ∈ P+ lies on the walls
of the shifted Stiefel diagram, then χµ lies in the kernel of the quotient map Rk(G). Other-
wise, the quotient map takes χµ to ±τν , where ν ∈ Pk is the unique level k weight related
to µ by a sequence of affine reflections, and where the sign (plus or minus) is given by the
parity (even or odd) of the required number of reflections.

Remark 5.5. It was shown by Gepner [27] and Bouwknegt-Ridout [17] that for G = SU(N),
the level k fusion ideal has the description

Ik(G) = 〈χ(k+1)$1
, . . . , χ(k+N−1)$1

〉,

where $1 (the first fundamental weight) is the highest weight of the defining representation
of SU(N) on CN . There is a similar presentation of the fusion ideal for the symplectic
group Sp(r). Explicit presentations of the fusion rings for the other simple groups, with
small numbers of generators, were obtained by C. Douglas in [22].

By definition of the ideal Ik(G), the evaluation maps

R(G)→ C, χ 7→ χ(tλ)

for λ ∈ Pk vanishes on Ik(G), hence they descend to the fusion ring:

Rk(G)→ C, τ 7→ τ(tλ).

After complexification, we obtain a new additive basis τ̃µ, µ ∈ Pk of Rk(G)⊗C, character-
ized by the property

τ̃µ(tλ) = δλ,µ.
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In the new basis, the product is diagonalized: τ̃µτ̃ν = δµ,ν τ̃ν . The two bases are related by
the S-matrix

S ∈ End(C[Pk]).

The S-matrix is the unique unitary matrix with properties

Sµ,ν = Sν,µ, S0,ν > 0

for µ, ν ∈ Pk, and such that

τµ =
∑
ν∈Pk

S−1
0,ν S

∗
µ,ν τ̃ν ;

In terms of the S-matrix, the fusion coefficients take on the form,

N (k)
µ1µ2µ3

=
∑
ν∈Pk

Sµ1,νSµ2,νSµ3,ν

S0,ν
.

6. Pre-quantization of q-Hamiltonian spaces

While the 2-form ω for a q-Hamiltonian G-space (M,ω,Φ) is not closed, in general, the
pair (ω,−η) defines a relative cocycle for the map Φ. To explain in more detail, we recall
the cone construction from homological algebra.

6.1. Relative cohomology.

Definition 6.1. Let F • : S• → R• be a cochain map between cochain complexes. The
algebraic mapping cone is the cochain complex

conek(F ) = Rk−1 ⊕ Sk, d(x, y) = (f(y)− dx,dy).

Its cohomology is denoted H•(F ), and is called the relative cohomology of the cochain map
F •.

The short exact sequence of cochain complexes 0 → Rk−1 → conek(F ) → Sk → 0 gives
rise to a long exact sequence of cohomology groups,

· · · → Hk−1(R)→ Hk(F )→ Hk(S)→ Hk(R)→ · · · .

The connecting homomorphism H•(S)→ H•(R) is just the map induced by F .
Given a smooth map Φ: M → N between manifolds, we define Ω•(Φ) = cone•(Φ∗) to be

the algebraic mapping cone for the pull-back of differential forms, Φ∗ : Ω•(N) → Ω•(M).
Its cohomology H•(Φ) := H•(Φ∗) is called the relative de Rham cohomology of the map
Φ. The usual isomorphism with the singular cohomology with real coefficients carries over
the the relative setting, and there is a coefficient homomorphism

H•(Φ,Z)→ H•(Φ) = H•(Φ,R).
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6.2. Definition of pre-quantization. For a q-Hamiltonian G-space, we have dω = −Φ∗η
and dη = 0. Hence

(ω,−η) ∈ Ω3(Φ)

is a cocycle. (In fact, working with equivariant forms the pair (ω,−ηG) is an equivariant
relative cocycle in Ω3

G(Φ), using the algebraic mapping cone for the Cartan complexes.)
Suppose G simple, simply connected, · the basic inner product.

Definition 6.2. [48, 52] Let (M,ω,Φ) be a q-Hamiltonian G-space, Φ: M → G. A level k
pre-quantization of (M,ω,Φ) is an integral lift of

k[(ω,−η)] ∈ H3(Φ,R).

There is an equivariant version of this condition, but for simply connected compact
groups G the equivariance is automatic. Indeed, in this case the natural map H•

G(X,Z)→
H•(X,Z) for a G-space X is an isomorphism in degrees ≤ 2, while for any G-map Φ the
map H•

G(Φ,Z)→ H•(Φ,Z) is an isomorphism in degrees ≤ 3. Cf. Krepski [48, Section 3].

Remark 6.3. The geometric interpretation of the pre-quantization condition involves ‘gerbes’.
Loosely speaking, the pre-quantization of the condition d(kω) = −kΦ∗η is given by a gerbe
over G, with 3-curvature form kη, together with a trivialization of the pull-back of this
gerbe to M , with kω the curvature form of the trivialization. See Shahbazi [59] for further
details.

6.3. Basic properties, examples. One has the following criterion for the integrality of
the relative form k(ω,−η) ∈ Ω3(Φ). For any manifoldM , let C•(M) be the chain complex of
smooth singular chains on M (i.e. Ck(M) consists of Z-linear combinations of smooth maps
∆k →M , where ∆k is the k-simplex). Recall that a closed differential form α ∈ Ωk(M) is
integral (i.e. its class [α] ∈ Hk(M,R) lies in the image of Hk(M,Z)) if and only if

∫
Σ α ∈ Z

for all k-cycles Σ ∈ Zk(M). This criterion extends to the relative case, so that we have:

Proposition 6.4. A q-Hamiltonian G-space (M,ω,Φ) is pre-quantizable at level k if and
only if for all Σ ∈ Z2(M), and any X ∈ C3(G) with Φ(Σ) = ∂X,

k(
∫

Σ
ω +

∫
X
η) ∈ Z.

Note that for given Σ, it suffices to check for any X, due to the integrality of η. In
particular, the criterion is satisfied if the second homology group H2(M,Z) is zero. Indeed,
in this case we can take X = Φ(Y ) with Y ∈ C3(M), ∂Y = Σ, and the criterion holds true
by Stokes’ theorem.

Example 6.5. The double D(G) = G × G, Φ(a, b) = aba−1b−1 is pre-quantizable for all
k ∈ N, since H2(D(G),Z) = 0.

Example 6.6. The q-Hamiltonian SU(n)-spaceM = S2n and the q-Hamiltonian Sp(n)-space
M = H P(n) are pre-quantized at all levels k ∈ N, since H2(M,Z) = 0 in these examples.

Recall that conjugacy classes C ⊂ G are parametrized by points in the alcove, where
ξ ∈ A corresponds to the conjugacy class C = G. exp ξ. We have:
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Example 6.7. The level k pre-quantized conjugacy classes C ⊂ G are those indexed by

ξ ∈ 1
kPk ⊂ A.

The following picture shows the pre-quantized conjugacy classes for SU(3) at level k = 3.

G = SU(3)
k = 3

In all these examples, the torsion subgroup ofH2(M,Z) is trivial, hence the pre-quantization
is unique.

Pre-quantizations are well-behaved with respects to products: If M1,M2 are level k-pre-
quantized q-Hamiltonian G-spaces, then their fusion product M1 ×M2 inherits a level k
pre-quantization. In particular, the q-Hamiltonian G-space D(G)h × C1 × · · · × Cr has a
level k pre-quantization, provided the conjugacy classes Cj have level k pre-quantizations.

Furthermore, if M is a level k pre-quantized q-Hamiltonian G-space, then the symplectic
quotient M//G inherits a pre-quantization at level k, i.e. for the k-th multiple of the sym-
plectic form. (If the symplectic quotient is singular, this statement should be interpreted
as in [53].)

7. Twisted Spinc-structures on q-Hamiltonian spaces

Besides the notion of pre-quantization, a key ingredient in the quantization of Hamilton-
ian G-spaces is the existence of a canonical Spinc-structure (defined by a compatible almost
complex structure). For q-Hamiltonian G-spaces, there need not be a Spinc-structure in
general, but it turns out that there is a canonical twisted Spinc-structure.

7.1. Spinc-structures. We will use the following viewpoint toward Spinc-structures. Given
a Euclidean vector space V , let C l(V ) denote its complex Clifford algebra. Thus C l(V )
is the complex unital algebra with generators v ∈ V and relations v1v2 + v2v1 = 2〈v1, v2〉.
Using a basis e1, . . . , en ∈ V to identify V ∼= Rn, the Clifford algebra has basis the products
eI = ei1 . . . eik for I = {i1, . . . , ik} ⊂ {1, . . . , n} with i1 < · · · < ik, with the convention
e∅ = 1. Thus, C l(V ) = ∧(V ) ⊗ C as a vector space. The Clifford algebra carries a Z2-
grading, where the even (resp. odd) part is spanned by products of an even (resp. odd)
number of elements of V .

Definition 7.1. Suppose dimV is even. A spinor module over C l(V ) is a Z2-graded Hermit-
ian vector space S, together with an isomorphism C l(V )→ End(S) preserving Z2-gradings
and involutions ∗.

A concrete spinor module is obtained by the choice of an orthogonal complex structure
J ∈ End(V ): Let V C = V 1,0 ⊕ V 0,1 be the decomposition into ±i eigenspaces of J , the
space ∧V 0,1 is a spinor module, with Clifford action of generators v = v1,0 + v0,1 given
by ι(v1,0) + ε(v0,1) (here ι denotes contraction, ε is exterior multiplication). One has the
following fact:
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Proposition 7.2. For any two spinor modules S,S′ over C l(V ), the space

HomC l(V )(S,S
′)

of linear maps S→ S′ intertwining the Clifford actions is 1-dimensional.

These definitions generalize to Euclidean vector bundles V → M in an obvious way.
In particular, we define a spinor module over C l(V ) to be a Z2-graded Hermitian vector
bundle S→M , together with an even isomorphism of ∗-algebra bundles C l(V )→ End(S).
Given an orthogonal complex structure J on V , the bundle ∧V 0,1 → M is such a spinor
module.

Definition 7.3. A Spinc-structure on an even rank Euclidean vector bundle V → M is
a spinor module S over C l(V ). A Spinc-structure on an even-dimensional Riemannian
manifold is a Spinc-structure on TM .

Remarks 7.4. (a) A Spinc-structure on a Euclidean vector bundle V of rank n can also
be defined as an orientation on V together with a lift of the structure group from
SO(n) to the group Spinc(n). The two definitions are equivalent [55].

(b) For Euclidean vector bundle of odd rank, one can define a Spinc-structure on V to
be a Spinc-structure on V ⊕ R.

(c) There are two topological obstructions to the existence of a Spinc-structure on V .
The first obstruction w1(V ) ∈ H1(M,Z2) is simply the obstruction to orientability
of V . The second obstruction W 3(V ) ∈ H3(M,Z) is the third integral Stiefel-
Whitney class, given as the image of w2(V ) → H2(M,Z2) under the Bockstein
homomorphism. Note that W 3(V ) is 2-torsion, which is consistent with the fact
that V ⊕ V = V ⊗ C carries a Spinc-structure.

(d) If S is spinor module, then so is the graded S⊗ L for any Z2-graded Hermitian line
bundle L. (A Z2-grading on a complex line bundle L → M is just the assignment
of an even or odd parity over each component of M .) Proposition 7.2 generalizes to
the fact that any two Spinc-structures S,S′ on V differ by a Z2-graded Hermitian
line bundle:

S′ = S⊗ L; L = HomC l(V )(S,S
′).

7.2. Dixmier-Douady theory. Given a separable Hilbert space H, we denote by K(H)
the ∗-algebra of compact operators on H, i.e. the norm closure of the algebra of operators
of finite rank. One may think of K(H) as an appropriate notion of infinite matrices. The
action of the unitary group U(H) by conjugation on K(H) descends to the projective unitary
group PU(H) = U(H)/U(1), and in fact it is known that

Aut(K(H)) = PU(H),

where PU(H) carries the strong topology.2

Definition 7.5. A (Z2-graded) Dixmier-Douady bundle over M is a (Z2-graded) bundle of
∗-algebras A →M , with typical fiber K(H) for some (Z2-graded) Hilbert space H. A Morita
trivialization of the Dixmier-Douady bundle A is a bundle of (Z2-graded) Hilbert spaces
E →M with an even isomorphism of ∗-algebra bundles A → K(E).

2In the following discussion, some subtleties are being ignored. See [52], and references given there, for
a more careful treatment.
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Example 7.6. For an even rank Euclidean vector bundle V →M , the Clifford bundle C l(V )
is a Z2-graded Dixmier-Douady bundle. A Z2-graded Morita trivialization of C l(V ) is the
same thing as a spinor module S over C l(V ), i.e. it is a Spinc-structure on V .

Generalizing this example, one finds that for any two Morita trivializations E , E ′ of a Z2-
graded DD-bundle A →M , the bundle HomA(E , E ′) is a Z2-graded Hermitian line bundle,
and conversely any two Morita trivializations differ by such a line bundle

E ′ = E ⊗ L; L = HomA(E , E ′).
Given a DD-bundle A →M , there is an obstruction DD(A) ∈ H3(M,Z) to the existence of
a Morita trivialization E , called the Dixmier-Douady class. In the Z2-graded setting, there
is an additional obstruction in H1(M,Z2) to introducing a compatible Z2-grading on E .

Remark 7.7. One viewpoint towards the DD-class is as follows. Consider the principal
PU(H)-bundle P → M associated to A. Choose a trivializing open cover Uα of M , so
that P is described by transition functions χαβ : Uα ∩ Uβ → PU(H). Over triple overlaps,
χαβχβγχαγ = 1. Lift to U(H)-valued functions χ̃αβ . Then ψαβγ = χ̃βγχ̃

−1
αγ χ̃αβ is a U(1)-

valued function on triple overlaps. On quadruple overlaps one has, by definition of ψ,

ψβγδψ
−1
αγδψαβδψ

−1
αβγ = 1,

which means that ψ is a Čech cocycle, defining a class in H2(M,U(1)) = H3(M,Z). For a
detailed discussion of Dixmier-Douady theory, see [56].

More generally, if H1,H2 are two Hilbert spaces, we have the Banach space K(H1,H2) of
compact operators from H1 to H2, again defined as the norm closure of finite rank operators.
It is a bimodule:

K(H2) � K(H1,H2) 	 K(H1).
If Hi carry Z2-gradings, then this bimodule structure is compatible with Z2-gradings.

Definition 7.8. Suppose Ai → Mi, i = 1, 2 are two (Z2-graded) Dixmier-Douady bundles,
with typical fiber K(Hi). A (Z2-graded) Morita morphism (Φ, E) : A1 99K A2 is a map
Φ: M1 →M2 together with a (Z2-graded) Banach bundle E →M1 of bimodules

Φ∗A2 � E 	 A1

locally modeled on K(H2) � K(H1,H2) 	 K(H1).

The composition of two Morita morphisms (Φ, E) : A1 99K A2 and (Φ′, E ′) : A2 99K A3 has
underlying map the composition Φ′ ◦ Φ, and bimodule a completion of the tensor product
Φ∗E ′ ⊗Φ∗A2 E . A Morita morphism is invertible if Φ is; the inverse is defined using an
‘opposite’ bimodule.

A Morita trivialization of A → M is equivalent to a Morita morphism (p, E) : A 99K C,
where C → pt is the trivial DD bundle. Again, Morita morphisms may be twisted by line
bundles, and any two Morita morphisms A1 99K A2 differ by a Hermitian line bundle:

L = HomΦ∗A2−A1(E , E ′) ←→ E ′ = E ⊗ L.
The Dixmier-Douady theorem states that DD-bundles A →M are classified, up to Morita
isomorphisms inducing the identity map on the base, by H3(M,Z). The result extends to
G-equivariant DD-bundles, see [12].
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7.3. The Dixmier-Douady bundle ASpin
G . It is known that

H2(SO(n),Z) = 0, H3(SO(n),Z) = Z, H1(SO(n),Z2) = Z2

for n = 3 and all n ≥ 5. If V is a Euclidean vector space of dimension dimV ≥ 5, we
denote by ASO(V ) → SO(V ) the SO(V )-equivariant Z2-graded DD-bundle whose char-
acteristic classes in H3(SO(V ),Z) and H1(SO(V ),Z2) represent the generators. Since
H2(SO(V ),Z) = 0, the particular choice of this DD-bundle does not matter. If V ⊂ V ′ is a
subspace of a larger Euclidean vector space, then ASO(V ) is canonically Morita isomorphic
to the pull-back of ASO(V ′) under the inclusion SO(V ) ↪→ SO(V ′). Consequently, we may
extend the definition to dimV < 5 by taking ASO(V ) to be the pull-back of ASO(V ′), where
dimV ′ ≥ 5. (E.g., take V ′ = V ⊕R5). An explicit construction of this bundle may be found
in Atiyah-Segal [12], see also [4] for a discussion of their result.

Given a compact, connected Lie group G, with an invariant inner product on g, we let

ASpin
G → G

be the pull-back of ASO(g) under the adjoint representation G → SO(g). (The notation is
motivated by a relationship with the spin representation of the loop group.) A nice property
of ASpin

G is that it is multiplicative: there is a Morita morphism ASpin
G × ASpin

G 99K ASpin
G

covering group multiplication on G, and with an associativity property.

Remark 7.9. If G is compact, simple and simply connected, so that H3
G(G,Z) = H3(G,Z) =

Z, it is known that DD(ASpin
G ) represents the h∨-th multiple of the generator of H3(G,Z),

where h∨ is the dual Coxeter number.

7.4. Twisted Spinc-structure.

Theorem 7.10 (Alekseev-M [4]). Let G be a compact Lie group, with a positive definite
invariant metric · on its Lie algebra. For any q-Hamiltonian G-space (M,ω,Φ), there is a
distinguished G-equivariant Z2-graded Morita morphism

(Φ, ESpin) : C l(TM) 99K ASpin
G .

Keeping in mind that a Morita trivialization C l(TM) 99K C is a Spinc-structure, we
think of this morphism as a twisted Spinc-structure (following the terminology from [64]).

Remark 7.11. The restriction of ASpin
G to the group unit e is G-equivariantly Morita triv-

ial, and the Morita trivialization is essentially unique (since there are no non-trivial G-
equivariant line bundles over pt.) By composing the twisted Spinc-structure with this
Morita trivialization, it follows that the restriction TM |Φ−1(e) inherits an ordinary Spinc-
structure. It turns out [4] that this is equal to the Spinc-structure defined by the non-
degenerate 2-form given by the restriction of ω to TM |Φ−1(e), hence it induces the correct
Spinc-structure on M//G.

In the Hamiltonian setting, the next step is to twist the Spinc-structure coming from the
almost complex structure by the pre-quantum line bundle L. Similarly, for q-Hamiltonian
spaces we can twist by the pre-quantization. To simplify the discussion, we will return
to the assumption that G is simple and simply connected. Let A(k)

G → G be any G-DD
bundle over G whose Dixmier-Douady class is k times the generator of H3

G(G,Z) = Z. For
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example, ASpin
G may be used as A(h∨)

G . A level k pre-quantization of (M,ω,Φ) determines a
Morita morphism,

(Φ, EPreq) : M × C 99K A(k)
G .

(Classes in H3(Φ,Z) may be realized in terms of DD bundles over the target, together with
Morita trivializations of the pull-back under Φ.) Tensoring the two Morita morphisms, we
obtain a G-equivariant Morita morphism,

(3) (Φ, ESpin ⊗ EPreq) : C l(TM) 99K A(k+h∨)
G .

In the following section we will use this Morita morphism to obtain a push-forward in
twisted K-homology.

8. Quantization of q-Hamiltonian G-spaces

8.1. Twisted K-homology. Recall that a C∗-algebra is a Banach algebra with a conjugate
linear involution ∗, isomorphic to a norm closed subalgebra of the algebra B(H) of bounded
operators on a Hilbert space, with ∗ induced by the adjoint. For instance, K(H) is a
C∗-algebra. If A → X is a G-equivariant Dixmier-Douady bundle, the space

A = Γ0(X,A)

of sections vanishing at infinity (i.e. the closure of the space of sections of compact support)
is a G-equivariant C∗-algebra.

Definition 8.1 (Donovan-Karoubi [21], Rosenberg [57]). The twisted G-equivariant K-homology
of X with coefficients in A is defined as

KG
• (X,A) := K•

G(Γ0(X,A)),

the equivariant K-homology of the G-C∗-algebra Γ0(X,A).

Remark 8.2. Here we working with Kasparov’s definition of the K-homology of G-C∗-
algebras [42, 43]. Let us very briefly sketch Kasparov’s approach; an excellent reference for
this material is the book [32] by Higson and Roe. Let A be a Z2-graded C∗ algebra. A
Fredholm module over A is a Z2-graded Hilbert space H with a ∗-representation π : A →
B(H), together with an odd element F ∈ B(H), s.t. ∀a ∈ A

(a) [π(a), F ] ∈ K(H),
(b) (F 2 + I)π(a) ∈ K(H).

Kasparov defines the K-homology group K0(A) as the set of all Fredholm modules over
A, modulo a suitable notion of ‘homotopy’. (For A = C(X) the continuous functions on
a compact Hausdorff space, a definition along similar lines had been proposed by Atiyah
[8].) One puts K1(A) = K0(A⊗C l(R)). It is a contravariant functor in C∗-algebras, hence
K•(X) = K•(C(X)) is a covariant functor in spacesX. The definition has a straightforward
extension to G-C∗-algebras, defining groups K•

G(A).

The twisted K-homology groups are functorial with respect to Morita morphisms of
Dixmier-Douady-bundles.

Example 8.3. There is a canonical ring isomorphism KG
0 (pt) = R(G), where the ring struc-

ture on the left hand side is given by push-forward under the map pt×pt→ pt.
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Example 8.4. Suppose D is an equivariant skew-adjoint odd elliptic differential operator
acting on a Z2-graded Hermitian vector bundle V = V + ⊕ V − → M over a compact
manifold M . It has an equivariant index indexG(D) := χker D|V +

− χker D|V − . The pair

H = ΓL2(M,V ), F = D√
1+D∗D

with the natural action of C(M) defines a K-homology class [D] ∈ KG
0 (M). The index is

a push-forward under the map p : M → pt to a point:

p∗[D] = indexG(D).

Example 8.5. Let M be a compact Riemannian G-manifold of even dimension. Then there
is a fundamental class

[M ] ∈ KG
0 (M,C l(TM)),

represented by the de Rham Dirac operator on Γ(M,∧T ∗M). A Spinc-structure on M
defines a Morita trivialization of C l(TM) and a Spinc-Dirac operator /∂M . The class [/∂M ]
is the image of [M ] under the resulting isomorphism KG

0 (M,C l(TM)) → KG
0 (M). Thus

C l(TM) plays the role of an ‘orientation bundle’ in K-theory. Compare with singular
homology: Any compact manifold, regardless of orientation, has a fundamental class in the
homology group Hdim M (M,oM ) with coefficients in the orientation bundle oM = det(TM).
An orientation on M trivializes the bundle oM , and identifies the fundamental class as
an element of Hdim M (M). Recall also that there is an isomorphism Hdim M (M,oM ) ∼=
H0(M,Z), taking [M ] to 1. Similarly, for an even-dimensional Riemannian manifold there
is an isomorphism

(4) KG
0 (M,C l(TM)) ∼= K0

G(M)

with equivariant K-theory, taking [M ] to the element 1 ∈ K0
G(M).

Example 8.6. Let G be compact, simply connected, and simple. Denote by A(l)
G → G a G-

Dixmier-Douady bundle at level l ∈ Z ∼= H3(G,Z). KG
0 (G,A(l)

G ) has a ring structure defined
by (MultG)∗. (Note that Mult∗GA(l) is Morita isomorphic to pr∗1A

(l)
G ⊗pr∗2A

(l)
G since the two

bundles have the same Dixmier-Douady class; the specific choice of Morita isomorphism is
unimportant since H2

G(G×G,Z) = 0.) The theorem of Freed-Hopkins-Teleman [26] shows
that for all non-negative integers k ≥ 0, there is a canonical isomorphism of rings

(5) KG
0 (G,A(k+h∨)

G ) ∼= Rk(G)

where Rk(G) is the level k fusion ring (Verlinde ring).

8.2. Quantization as a push-forward. Suppose G is a compact, simple, simply con-
nected Lie group, and (M,ω,Φ) is a level k pre-quantized q-Hamiltonian G-space. The
Morita morphism (3) defines a push-forward in twisted K-homology,

Φ∗ : KG
0 (M,C l(TM))→ KG

0 (G,A(k+h∨)
G ).

Using the isomorphism (4) and the Freed-Hopkins-Teleman result (5), we have constructed
an R(G)-module homomorphism

Φ∗ : KG
0 (M)→ Rk(G).



30 E. MEINRENKEN

Definition 8.7. [52] The quantization of a level k pre-quantized q-Hamiltonian G-space
(M,ω,Φ) is the element

Q(M) = Φ∗(1) ∈ Rk(G).

As shown in [52], the quantization of q-Hamiltonian spaces has properties parallel to
those for Hamiltonian spaces:

(a) Q(M1 ∪M2) = Q(M1) +Q(M2),
(b) Q(M1 ×M2) = Q(M1)Q(M2),
(c) Q(M∗) = Q(M)∗,
(d) Let C be the conjugacy class of exp( 1

kµ), µ ∈ Pk. Then

Q(C) = τµ.

Recall the trace Rk(G)→ Z, τ 7→ τG where τG
µ = δµ,0.

Theorem 8.8 (Quantization commutes with reduction). Let (M,ω,Φ) be a level k pre-
quantized q-Hamiltonian G-space. Then

Q(M)G = Q(M//G).

Similar to Example 4.6 we have:

Example 8.9. Let Ci be the conjugacy classes of exp( 1
kµi), µi ∈ Pk. Then

Q(C1 × C2 × C3//G) = (τµ1τµ2τµ3)
G = N (k)

µ1µ2µ3
.

Example 8.10. The double D(G) = G×G, Φ(a, b) = aba−1b−1 has level k quantization

Q(D(G)) =
∑
µ∈Pk

τµτ
∗
µ.

Remark 8.11. The Hamiltonian analogue of the double is the non-compact Hamiltonian G-
space T ∗G, with the cotangent lift of the conjugation action. Any reasonable quantization
scheme for non-compact spaces gives

Q(T ∗G) =
∑

µ∈P+

χµχ
∗
µ,

the character for conjugation action on L2(G), defined as an element of a completion of
R(G).

Since Q(M1 ×M2) = Q(M1)Q(M2), we also get the quantization of iterated fusions of
copies of D(G) and of level k prequantized conjugacy classes Cj . To work out the product,
it is convenient to re-write these results in terms of the basis τ̃µ of Rk(G) ⊗ C, where
τ̃µ(tλ) = δλ,µ:

Q
(
G. exp( 1

kµ)
)

= τµ =
∑
ν∈Pk

S∗µ,ν

S0,ν
τ̃ν .

Q(D(G)) =
∑
ν∈Pk

1
S2

0,ν

τ̃ν

Using Q(M1 ×M2) = Q(M1)Q(M2) this gives
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Proposition 8.12. Let µ1, . . . , µr ∈ Pk, and Cj = G. exp( 1
kµj). Then the level k quantiza-

tion of D(G)g × C1 × · · · × Cr is given by the formula,

Q
(
D(G)g × C1 × · · · × Cr

)
=

∑
ν∈Pk

S∗µ1,ν · · ·S∗µr,ν

S2g+r
0,ν

τ̃ν

Hence, using the q-Hamiltonian ‘quantization commutes with reduction’ theorem, we
obtain,

Theorem 8.13 (Symplectic Verlinde formulas). Let µ1, . . . , µr ∈ Pk, and Cj = G. exp( 1
kµj).

The level k quantization of the moduli space

M(Σr
g, C1, . . . , Cr) = (D(G)g × C1 × · · · × Cr)//G

is given by the formula

Q
(
M(Σr

g, C1, . . . , Cr)
)

=
∑
ν∈Pk

Sµ1,ν · · ·Sµr,ν S
−(2g+r−2)
0,ν

C1 C2 C3

Remark 8.14. The choice of a complex structure on Σ, compatible with the orientation,
defines a Kähler structure on the moduli space, and its pre-quantization is given by a
holomorphic line bundle (using an appropriate interpretation in case the moduli space is
singular). The more common setting for the Verlinde formulas is as the dimension of the
space of holomorphic sections of the pre-quantum line bundle (i.e. the Kähler quantization).
Provided the higher cohomology groups vanish, this dimension equals the index computed
above.

8.3. Localization. As in the case of Hamiltonian spaces, the main technique for actually
calculating the quantization of q-Hamiltonian spaces is by localization. Let (M,ω,Φ) be
a level k pre-quantized q-Hamiltonian G-space. Since the pull-back of the Cartan 3-form
η ∈ Ω3(G) to the maximal torus T ⊂ G vanishes, the map in cohomology H3(G,R) →
H3(T,R) is the zero map. Due to the absence of torsion, this is also true with integer
coefficients, proving that A(k+h∨)|T is Morita trivial. In fact, by considering the pull-
back of the generator of H3

G(G,Z) = Z to a class in H3
T (T,Z) (see [52, Section 5.1]), one

finds that it is Tk+h∨-equivariantly Morita trivial, where Tk+h∨ ⊂ T is the finite subgroup
generated by the elements tλ, λ ∈ Pk. (Note that while the conjugation action of Tk+h∨

on T is trivial, there is still a non-trivial action on A(k+h∨)|T .) Let us choose any such
Morita trivialization, with the additional property that the resulting Morita trivialization
of A(k+h∨)|e is G-equivariant. Even with this additional normalization the choice is not
quite canonical: One may still twist by a line bunde over T with a trivial T -action.

Suppose now that t ∈ T is a regular element (i.e. Gt = T ), and let (M,ω,Φ) be a q-
Hamiltonian G-space. If F ⊂M t is a component of the fixed point set, then Φ(F ) ⊆ T , by
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T -equivariance of the moment map. By composition, we obtain a Tk+h∨-equivariant Morita
morphism

C l(TM |F ) 99K A(k+h∨)|T 99K C,
or equivalently a Tk+h∨-equivariant Spinc-structure on TM |F . Thus, even though M itself
does not carry a global Spinc-structure, one does have Spinc-structures along the fixed
point manifolds. Consequently, the fixed point contributions from the equivariant index
theorem for Spinc-Dirac operators are well-defined, even though there is no globally defined
operator.

We specialize to the case t = tλ, λ ∈ Pk. Recall again (Section 5) that the evaluation of
elements τ ∈ Rk(G) at the points tλ is well-defined, and τ can be recovered from the values
τ(tλ).

Theorem 8.15. Let (M,ω,Φ) be a level k pre-quantized q-Hamiltonian G-space. For λ ∈
Pk,

Q(M)(tλ) =
∑

F⊂Mtλ

∫
F

Â(F ) Ch(LF , tλ)1/2

DR(νF , tλ)

where LF is the Spinc-line bundle for TM |F .

As a typical application, consider the case M = D(G)h = G2h. Since the G-action on
M is just conjugation, and tλ is regular, the fixed point set is simple F = T 2h ⊂ G2h, with
Φ(T 2h) = {e} and with a trivial normal bundle νF = (g/t)2h. Since the geometry is so
simple, the evaluation of the fixed points contributions poses no problems. See [6] or [52]
for the calculation.

Remark 8.16. In Alekseev-M-Woodward [6], the quantization of a q-Hamiltonian space was
essentially defined in terms of the localization formula. (The result was phrased in terms
of loop group actions). However, it was unclear in [6] what the ‘equivariant object’ might
be of which the right hand side of this formula are the localization contributions.

The ‘quantization commutes with reduction’ theorem for q-Hamiltonian spaces, Theorem
8.8, was proved in [6] using the definition in terms of fixed point data. The proof is somewhat
complicated, and it would be of great interest to obtain a cleaner proof.
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Études Sci. Publ. Math. (1970), no. 38, 5–25.
[22] C. L. Douglas, On the structure of the fusion ideal, Comm. Math. Phys. 290 (2009), no. 1, 335–355.

MR 2520517 (2010g:22034)
[23] J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of

the reduced phase space, Invent. Math. 69 (1982), 259–268.
[24] A. Eshmatov, A new example of a group-valued moment map, Journal of Lie Theory 19 (2009), 395–407.
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