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POLAR FACTORIZATION OF MAPS ON RIEMANNIAN
MANIFOLDS
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Abstract

Let (M, g) be a connected compact manifold, C3 smooth and without
boundary, equipped with a Riemannian distance d(z,y). If s: M — M
is merely Borel and never maps positive volume into zero volume, we
show s = £ o u factors uniquely a.e. into the composition of a map
t(z) = exp,[-V¥(z)] and a volume-preserving map v : M — M,
where ¢ : M — R satisfies the additional property that (¢¢)¢ = ¢
with ¥°(y) := inf{c(z,y) — ¢¥(z) | z € M} and c(z,y) = d*(z,y)/2.
Like the factorization it generalizes from Euclidean space, this non-
linear decomposition can be linearized around the identity to yield
the Hodge decomposition of vector fields.

The results are obtained by solving a Riemannian version of the
Monge-Kantorovich problem, which means minimizing the expected
value of the cost ¢(z,y) for transporting one distribution f > 0 of
mass in L'(M) onto another. Parallel results for other strictly convex
cost functions ¢(z, y) > 0 of the Riemannian distance on non-compact
manifolds are briefly discussed.

1 Introduction

The purpose of this note is twofold: to announce a solution of the Monge-
Kantorovich transportation problem in curved geometries, and to derive
from it a factorization of maps which extends Brenier’s polar decomposition
theorem from Euclidean space to Riemannian manifolds.
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Given two spatial distributions of mass, the problem of Monge [Mo]
and Kantorovich [K] is to transport the mass from one distribution to
the other as efficiently as possible. Here efficiency is measured against a
cost function c¢(z, y) specifying the transportation tariff per unit mass. The
problem has a long history including applications to physics, economics, and
statistics among other fields — partly chronicled by Evans [E] and Rachev
and Riischendorf [RR]. Moreover, the significance of the problem increases
when the cost ¢(z, y) is linked to an underlying geometry — such as geodesic
distance on a Riemannian manifold. While manifestations of this theme are
already apparent in the work of Monge on the Euclidean distance c(z,y) =
|z — y| in R™, it has reemerged with new vitality since the work of Brenier
on Euclidean distance squared c(z,y) = |z — y|? marked a turning point
in the flow of recent developments concerning partial differential equations,
inequalities, and applications, surveyed in Evans [E| and the forthcoming
lecture notes of Villani [V].

In its original form, Brenier’s theorem [Brl] factored each s : 2 — R™
in L'(Q2; R™) uniquely (on a bounded smooth domain  C R™) into the
composition s = t o u of a volume preserving map u : Q@ — Q with the
gradient t = V1% of a convex function ¢ : R* — R U {4+o0}. Here s is
assumed not to map positive volume into zero volume. His proof exploited
the Monge—Kantorovich problem to produce the factor ¢ = V1, which best
approximates the identity map (in the L? sense) among all maps pushing
the volume forward to the same measure as s : 2 — R™. The hypothe-
ses were subsequently relaxed, [Br2], [BuD], [M1], and the theorem in-
spired a whole line of subsequent work and some fascinating applications.
For example, the data s prescribes the Jacobian determinant of the the
map t = V1, so the theorem unexpectedly yields a variational solution to
the Monge—-Ampére equation [Brl] with regularity addressed by Caffarelli
[Ca2]. Linearizing the factorization around the identity map leads (for-
mally) to the Hodge-Helmholtz decomposition for vector fields, as Brenier
himself pointed out [Brl]. Finally, the mapping can be combined with vari-
ous change-of-variables formulas to localize geometric inequalities under an
integral, leading to elementary proofs and far-reaching generalizations by
the present author [M2], Barthe [B], and Alesker, Dar, and Milman [ADV],
of inequalties due to Brunn—Minkowski, Brascamp-Lieb, and Alexandrov
and Fenchel. These convexity inequalities [M2] have in turn been cou-
pled with the gradient flow ideas of Jordan, Kinderlehrer, and Otto [JKO]
to derive rates of convergence for nonlinear diffusion processes in work of
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Otto [O]. Many other developments are reviewed in [E] and [V]. However,
it has remained unclear how to formulate such a theorem in curved ge-
ometries, where convex functions (and their gradients) hardly make sense,
let alone their connection with mappings. In the meantime, the optimal
transportation problem of Monge [Mo] and Kantorovich [K], central to Bre-
nier’s proof, has been studied intensively; see Rachev and Riischendorf for
a review [RR]. An understanding of its geometry obtained with Gangbo
[GM2] for a large class of costs on Euclidean space sets the stage for ex-
ploring its Riemannian structure. (For the Euclidean case see also [GM1]
and Caffarelli [Cal]

For simplicity, let (M, g) be a Riemannian manifold without boundary,
connected, compact, and C® smooth — meaning the metric tensor compo-
nents g;;(z) are twice continuously differentiable functions of local coordi-
nates. The geodesic distance between z and y € M is denoted by d(z,y),
and the volume element by dvol(z) (= /det[g;;(z)]d"z in local coordi-
nates). We set c(z,y) = d?(z,y)/2 throughout, mentioning only briefly
in section §5 some parallel results which may be obtained when d2/2 is
replaced by another strictly convex increasing function (25)—(26) of dis-
tance. Given finite Borel measures pg,v > 0 on M with the same total
mass pu[M| = v[M], Monge’s problem [Mo] is to find the map¢: M — M
minimizing the transportation cost

C(s) = /Mc(:t:, s(z))du(z) (1)
among all Borel maps s € S(p,v) which push p forward to v, meaning

v[V] = pls™H (V)] (2)
holds for each measurable V' C M. Strictly speaking, the elements of
S(p,v) consist of equivalence classes of maps which agree up to sets on
which p vanishes. When g is absolutely continuous with respect to Rie-
mannian volume, denoted g < vol, a unique optimal map ¢ shall be shown
to exist in S(u,v) and be characterized geometrically:

Given a function ¢ : M — R U {+o0}, its infimal convolution ¢° with
¢ is defined by

Y(4) = inf (o)~ $(z). (3
This transformation acts as an involution ¥ := (¢°)¢ = ¢ if and only if ¢

is itself an infimal convolution of some function with ¢, in which case ¥ is
said to be c-concave [RR, §3.3]. The unique t € S(g, v) of the form

t(z) = exp, [~V (z)] (4)
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with ¢ : M — R c-concave yields the optimal map. Thus the existence of a
potential ¢ = ¥°® whose gradient specifies which direction — V¢(z) € TM,
— and how far — |V (z)|, — to move the mass geodesically along M from
[p-a.e.] z to its destination characterizes optimality. In the Euclidean case,
one recovers t(z) = z — Vi(z) from (4), while for c(z,y) = |z — y|?/2 the
condition ¢ = 9°° reduces to convexity of |z|2/2 — 1. Verily is ¢(z) the
gradient of a convex function.

Now fix a finite non-negative Borel measure p < vol on M and a Borel
map s : M — M. To polar factorize s, define a second Borel measure
v := syp using (2), called the push-forward of p through s. Clearly v[M] =
p[M]. The optimal map t(z) = exp,[— V()] pushing u forward to v with
1) = 9 is the first factor decomposing s. To find the second factor, assume
v < vol, meaning s collapses no set with positive g measure onto a set of
zero volume; s is non-degenerate in the terminology of Brenier. It is easy
to guess that the optimal map t* € S(v, #) must be the inverse to ¢ in the
sense that £(t*(y)) = y [v-a.e.]. Setting u = ¢* o s ensures t o u = s holds
p-a.e., while uyp =t} (spp) = tyv = p so the measure p is preserved
under u. Volume is preserved if we started out with g = vol. Apart from
sets of measure zero, there is only one map in S(u, ) of the form (4) with
1 = 9°¢, implying ¢ and u are uniquely determined p-a.e.

The main part of our work will be devoted to proving existence and
uniqueness of a map ¢ € S(p,v) minimizing Monge’s transportation cost
(1), and establishing (4) with 1) = 9°°. Since the measures p and v are both
finite and non-negative with the same total mass, it costs no generality to
normalize them so that p[M] = v[M] = 1; i.e. to restrict our attention
to (Borel) probability measures. As in the Euclidean case, our departure
point is a dual problem [RR] of Kantorovich type:

(ﬁg@ﬂ%@zmﬁmﬁf@dMme (5)

where
10.8)= [ W@ du(e)+ [ o) dvty) (6)
M M
is a linear functional defined on a convex subset

Lip, := {¢, ¢: M — R continuous ‘ P(z)+ o(y) < c(z, y)} (7

of continuous functions. In fact, the supremum of J(%,¢) turns out to
be attained [RR, §2.3.12] — by a function ¢ = 9% (with ¢ = 9°) from

which we shall construct a map minimizing Monge’s cost. Compactness of
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the manifold facilitates a direct proof of the existence of (¢, ¢), and the
duality relation (5), following an approach of Gangbo [G] also developed
in Caffarelli [Ca3,1], and Gangbo and McCann [GM1]. We give this proof
after some preliminaries on infimal convolutions with c¢. A key ingredient
is the change of variables formula for pushed-forward measures sy pu = v:

| i) = [ his()) dute) (8)
M M

holds for all Borel s : M — M and h : M — RU{+o0}, as is readily verified
from definition (2) by approximating h using simple functions. Alternately,
the Riesz representation theorem allows one to take (8) as the definition
of syu. Before entering into further details, a few remarks are necessary
concerning the history of this manuscript.

This paper has been in gestation for quite a long time. It is the author’s
pleasure to recall that the question of how to polar factorize vector fields on
Riemannian manifolds was first put to him by Dennis Sullivan (at a time
when he was ill-prepared to solve it, especially since the Euclidean example
initially misled him into trying to factor vector fields rather than maps)
and again a year later by Tudor Ratiu (at a time when he found himself
better equipped). He is pleased to acknowledge both of them, along with
Stephen Semmes, for providing stimulating conversations during the course
of the work. He is also grateful to Michael Cullen and Robert Douglas, who
included a statement of the result in their announcement of its first applica-
tion [CuD]: finding simplifying variables for the semigeostrophic model of
atmospheric dynamics on a sphere; see also [CuDRS], [BeB]. Their setting
is actually a non-compact manifold — the Northern hemisphere — with a
conformally round metric proportional to the Coriolis force, which degen-
erates on the equator. As indicated in §5 below, such manifolds require
the additional hypothesis that (unbroken) minimal geodesics exist between
every z € spt u and y € spt v. Interestingly enough, near the equator where
this hypothesis fails, their model breaks down and weather patterns change
drastically because the atmosphere has no preferred direction to swirl!

An unrelated application was discovered by Cordero-Erausquin, who
used the map (4) to formally derive a Prekopa—Leindler inequality for spher-
ical and hyperbolic geometries [Col]. A rigorous proof of the analogous in-
equalities on more general manifolds is being developed in joint work with
Cordero-Erausquin and Schmuckenschlager [CoMS]. It must also be noted
that Cordero-Erausquin obtained an independent solution to the trans-
portation problem on the flat torus M = T™ before becoming aware of the
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present manuscript [Co2]. Finally, if the measures are given by L' (M, dvol)
densities dp(z) = m(z)dvol(z) and dv(y) = n(y)dvol(y), then for py-a.e. z
the Jacobian of the optimal map t4u = v can be shown [CoMS] to satisfy
the expected equation:

n(t(z))det[Di(z)] = m(z) .

The form (3)—(4) of the optimal map precisely ensures that this Monge—
Ampere like relation falls into the class of elliptic equations explored on
manifolds by Cabré [C].

We now proceed to state a series of standard lemmas and introduce
some non-smooth analysis as a prelude to our first substantial remarks:
Proposition 6 and Lemma 7. These are used to prove our main results:
Theorems 8, 9 and 11 of section §3. This is followed by section §4 high-
lighting how the formal relationship between the polar factorization of maps
and the Hodge decomposition of vector fields extends to the Riemannian
setting. A final section §5 indicates (without proof) some adaptations of
these results to other strictly convex costs (25)-(26) in place of ¢ = d?/2
and to non-compact manifolds (M, g).

2 Preliminaries

The results of this section, though well-known to part of our readership,
are included for ease of reference and completeness.
LEMMA 1 (Lipschitz cost). Let (M, d) be a metric space whose diameter
|M| := sup{d(z,z) | ¢,z € M} is finite. For each y € M, the function
¢(z) = d?(z,y)/2 is Lipschitz continuous:

|9 (2) — ¥(2)| < |M|d(z,2) . (9)
Proof. The triangle inequality shows that ¢(z) := d(z,y) has Lipschitz
constant one:

¢(z) — ¢(2) = d(z,y) — d(2,y) < d(z,2), (10)
for all ¢,z € M. Also, ¢(z) = d(z,y) < |M| < oo is bounded. The desired
estimate (9) then follows easily for ¢(z) = ¢?(z)/2:

2|¥(z) — ¥(2)| = |6(2)(d(2) — #(2)) + ¢(2) (d(2) — (2))|
< |M|d(z,2) + | Md(z,2) . :
LEMMA 2 (Infimal convolutions are Lipschitz). Fix a metric space (M, d)
having finite diameter. Any ¢ : M — R U {too} given by an infimal
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convolution v = ¢°° with c(z,y) = d?(z,y)/2 is either identically infinite
1 = t+oo or Lipschitz continuous throughout M. Indeed, it satisfies (9).

Proof. More generally, suppose ¥ = ¢° for some ¢ : M — R U {+o0},
meaning

P(z) = inf c(z,y) — 8(y) - (11)

yeEM

Observe 0 < ¢(z,y) < |[M|%/2 is bounded. Either ¢ is unbounded above,
in which case (11) yields ¥ = —oco and the lemma holds trivially, or else
is bounded below. Fix z € M, and note ¥(2z) = +oo in (11) occurs only if
¢ := —oo everywhere, in which case ¥ = 400 again holds trivially. Thus
we may assume that 9 is finite everywhere. Given any € > 0, there exists
y € M such that ¥(z)+€ > c(z,y) — ¢(y), while ¢(z) < ¢(z,y) — ¢(y) holds

because of (11). Subtracting these two inequalities yields

$(z) —9(2) < c(z,y) - cz,9) +e
< |Mld(z,z)+ €

by Lemma 1. Since the last inequality holds for all € > 0, the Lipschitz
estimate (9) has been proved. o

ProrosiTiION 3 (Dual potentials). Fix Borel probability measures u
and v on a separable metric space (M, d) having finite diameter |M|. Set
c(z,y) = d?(z,y)/2. The supremum (5) is attained by some ¢ : M — R
satisfying 1 = ¢°° and its infimal convolution ¢ = ¢ with c.

Proof. Claim #1: If (u,v) € Lip. then (v, v) € Lip. and J(u,v) < J(v°,v).
Moreover, (v¢, v°°) € Lip. and J(u,v) < J(v°, v%).

Proof of claim: Fixing (u,v) € Lip,., note that

c(z,y) —u(z) > v(y) > —oo.

Thus the infimal convolution (3) in  which defines u° must be finite-valued:
u®(y) > v(y), hence Lipschitz continuous by Lemma 2. Now (u, u®) € Lip,
follows immediately from (3) and (7). The inequality u® > v also implies
J(u,v) < J(u,u®). Symmetry under u > v shows the first half of the claim
is established. Applying what we just proved to (v°, v) yields (v¢, v®) €
Lip. and J(v¢,v) < J(v%,v*), from which the remaining claim follows
immediately.

To complete the proposition, choose a sequence (¢n,¢n) € Lip. for
which J(¢n, ¢n) tends to its maximum value on Lip.. According to
Claim #1, the sequence (¢5, ¢5°) also maximizes J on Lip.. Fix z € M
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and define a new sequence (un,vn) := (95 — An, ¢ + A,) in Lip., again
maximizing J since p[M] = v[M]; the normalization constants A, := ¢¢(2)
are selected to make u,(z) = 0. Now Lemma 2 provides a uniform bound
| M| for the Lipschitz constants of u,, and v,,. Moreover, this equicontinuous
family of functions is uniformly bounded throughout M:

|un(2)| = |un(2) — un(2)| < |M|d(z,2) < [M]?, (12)
while |v,(y)| < 3|M|?/2 follows from (3) since v, = uf. The Ascoli-

n
Arzela argument extracts a pointwise convergent subsequence, also denoted
(tn,vn), with Lipschitz continuous limit (u,v) € Lip.. Since g and »
are finite measures, the dominated convergence theorem yields J(u,v) =
lim, J(un,v,). The supremum (5) is attained at (u,v) and hence (by
Claim #1) at (¢, ¢) := (v°, v°®). Finally, v°° = v° [RR, §3.3.5],s0 ¥ =9

to complete the proof. m

LEMMA 4 (Rademacher’s theorem). Any function ¥ : M — R locally
Lipschitz with respect to the geodesic distance d(z,y) on a connected, C*
smooth Riemannian manifold must be differentiable outside a set Z C M
of zero volume. Its gradient gives a Borel map from dom Vv := M \ Z into
the tangent bundle TM.

Proof. Fix z € M and normal coordinates £ : U — R™ centered at z =
£71(0) so that the metric is diagonalized there: g;;(z) = &;. Since the
coefficients g;;(z) of the quadratic form g(-,-), depend continuously on
these coordinates, there is a smaller neighbourhood of z, also denoted by
U C M, on which its largest eigenvalue does not vary by more than a finite
factor:
9(v, Ve < K2 (01)? (13)
i=1
forallz € U and v € TM,. Choose € > 0 small enough so that B"(0,¢) C
£(U) and replace U by the preimage £~1(B™(0,€)) of this ball. We shall
show © to be differentiable vol-a.e. on U. Since a connected Riemannian
manifold is locally compact and second countable from Kobayashi and No-
mizu [KoN, Appendix 2], it is o-compact, hence covered by countably many
such neighbourhoods U C M. The differentiability of ¢ will therefore follow
vol-a.e. on M.
The geodesic distance between z,y € U is bounded by the length of the
path o(7) := €71((1 — 7)é(z) + 7€(y)) through U from z to y. Computing
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its arclength in local coordinates yields

d(z,9) < [ V(5 3)udr < klE() - €(2) (14)

after combining (1) = ¢i(y) — &(z) with (13). Since 3 was assumed
Lipschitz with respect to the Riemannian distance, it follows from (14)
that f := 1 o €' is Lipschitz with respect to the Euclidean metric on
B"(0, €). Rademacher’s theorem then asserts differentiability of f Lebesgue
a.e. on B®(0,¢). But Riemannian volume can be expressed locally by a
bounded multiple ,/det g;;(z) of Lebesgue measure, so differentiability of
1) has been established vol-a.e. on U to complete the first claim.

To establish the remaining claim, it is necessary to recall the proof of
Rademacher’s theorem from Evans and Gariepy [EG, §3.1.2]. After ex-
tending f = 1 0 £~! continuously to all of R™, they observe that its upper

derivative
Evf(x) = lim sup f(X + tV) - f(X)
k=00 |t/e(0,1/k)NQ ¢

in direction v € R"™ is expressed as a limit of suprema of continuous func-
tions of x, hence Borel. The lower derivative D, f defined by the analogous
limit infimum is also Borel, so the directional derivative Dy f is a Borel
function on the set of full measure where Dy f = D, f. In particular, the n
partial derivatives 0,; f are Borel, as is

F, = {x €B"(0,¢) | Dy = D, f = qujaﬂf}.

As Evans and Gariepy show, f is differentiable on any countable intersec-
tion [ Fy, of these sets over a dense set of directions {v;} € dB™(0,1).
Outside Fy, differentiability fails, so V f must be Borel. Clearly g*d,; f
is also Borel on (] Fy; — and gives the coordinates of Vi) on U \ Z. We
conclude that both V¢ and Z C M are Borel. o

The preceding proof used only that the metric tensor g;;(z) was bounded
(13) and Borel - but not necessarily continuous. Indeed, with the definitions
of De Cecco and Palmieri [DP], the lemma can be extended immediately
to Lipschitz Riemannian manifolds.

3 Method and Results

The chief technical complications arising in the Riemannian setting stem
from non-uniqueness of minimal geodesics, and hence a lack of smoothness
in the cost and the distance function. However, all singularities come in
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the form of upward pointing creases (and conical points) along the cut
locus. Remarkably, this one-sidedness turns out to permit the problem to
be finessed by introducing appropriate notions from non-smooth analysis.
Indeed, on smooth manifolds, one may expect the cost c(z,y) = d*(z, y)/2
to have a semi-concavity property [GM2], though for present purposes it
suffices to show it is superdifferentiable in the following sense:

Fix z € M. A function ¢ : M — R is said to be superdifferentiable at
z with supergradient p € TM, if

¢(exp, v) < ¢(2) + 9(p, V)a + o(|v[:) (15)

holds for small v € T M, where o(A)/A tends to zero with A. Such (super-
gradient, point) pairs (p, 2) form a subset 8¢ C T M of the tangent bundle;
we also express their relationship (15) by writing p € 0¢,. If the opposite
inequality ¢(exp, v) > ¢(z) +9(q, v)z + o(|v|z) holds, ¢ is said to be sub-
differentiable with subgradient q € 0¢, C TM,. When both inequalities
hold, then ¢ is differentiable at # and its super- and sub-gradients coincide:
p = q = V¢(z). This observation, which proves crucial later, motivates
a chain rule for supergradients used to establish the connection between
minimal geodesics and superdifferentiability of the cost.

LEMMA 5 (Chain rule). Let ¢ : M — R and h : R — R have supergradi-
ents p € O¢, and T € 5hd,(m) at some # € M. If h is non-decreasing then

Tp € 8(ho ¢)..
Proof. Applied to h, definition (15) yields

h(4(z) +€) < h(¢(z)) + e+ o(e)
Since h is non-decreasing, setting € = g(p, V) + o(|v|) and invoking (15)
yields

h(#(exp, v)) < h(d(z) + 9(P, V)= + o(|V|2))
(6(2)) + 79(p, V)= + o(|v|z)

to complete the proof. o

<h
<h

ProrosITION 6 (Superdifferentiability of geodesic distance squared). Let
(M, g) be a C3-smooth Riemannian manifold, possibly with boundary. Sup-
pose o : [0,1] = M has minimal length among piecewise C' curves joining
y = 0(0) to z = o(1) ¢ OM, parameterized with constant speed. Then
¥(-) = d?(-,y)/2 has supergradient ¢(1) € 0%, at .

Proof. Since z lies in the interior of M, there is some € > 0 and neighbour-
hood X C M of z such that: at each z € X, the exponential map exp, maps
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the ball B(0,¢) C TM, diffeomorphically onto some open set U, DO X,
as in Milnor [Mi, §10.3]. The proposition will first be established when
y = 0(0) € X, in which case ¢ is actually differentiable at exp, 6(0) = =.
We compute its derivative by linearizing exp, v € X around the origin and
exp,, around & (0):

P(exp, v) = d*(y, exp, (exp, ' exp, v)) /2
1 2

= ‘expy (exp, v)‘y/2

=1(0) + D(exp, ) D(exp,)ov + o(|V]a)| /2

— [6(0)12/2 + 9(5(0), (D expy)z W)y + o(I¥)

= d*(z,9)/2+ 9(6(1), v)a + o(|¥]2)
so that V¢(z) = ¢(1). Here the last equation follows from ¢(1) =
D(expy)s(0)0(0) and Gauss’ lemma, see do Carmo [Car, §3.3.5] or Mil-
nor [Mi, §10.5]. (Note that C® smoothness of (M, g) ensures that the
coefficients I‘f]- in the geodesic equation are continuously differentiable; the
Picard theorem for ODEs set forth in Graves [Gr, §1X.3.13 and §V.2.16]

then guarantees differentiability of the exponential map and the equal-
ity of mixed partials [Mi, §8.7] needed to establish Gauss’ lemma.) Since
d(z,y) = \/21¢(z) the chain rule yields V, d(z,y) = 6(1)/|6(1)|, as long as
T #£y.

Now we return to the possibility that y ¢ X. In this case, take z € X
to be any point lying on the geodesic o near the endpoint = o(1). Ap-
plying the foregoing argument to z # z instead of y yields V,d(z,z) =
6(1)/|6(1)|z. The triangle inequality then gives

d(y, exp, v) < d(y, 2) + d(z,z) + g( (1), v)o/|6(1)|z + o(|v|z)
= d(y,2) + 9{5(1)/16(Vlarv), + 0(1¥]a),
so d(y, -) = 1/2¢(-) is superdifferentiable at . Applying the one-sided
chain rule, Lemma 5, with h(d) = % and ¢ = /29 yields % =
(1) € 8¢, to complete the proof. o

The next lemma establishes a Young-like inequality [RR, §3.3.3] to-
gether with conditions for equality. These conditions determine the form of
the optimal map, and play a critical role in a uniqueness argument based
on the original idea of Brenier [Brl,2].

LEMMA 7 (Tangency). Let (M,g) be a connected, compact Riemannian
manifold, C3-smooth and without boundary. Suppose ¥ = %, meaning
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¥ : M — R is an infimal convolution (3) with c(z,y) = d*(z,y)/2. Then

c(z,y) —¥(z) —¥(y) 2 0 (16)
for all ¢,y € M. If a point ¢ € M is selected where 1) happens to be
differentiable, then equality holds in (16) if and only if y = exp,[— V¥ (z)].

Proof. The inequality (16) follows immediately from the definition (3) of ¥¢;
it appears also in Rachev and Riischendorf [RR, §3.3.3]. Now select a point
z € M where ¢ happens to be differentiable. To establish the only if
statement, assume some y € M can be found for which (16) becomes an
equality. Then for all z € M one has

c(z,y) — ¥(2) —¥°(y) > 0
= c(z,y) — ¥(z) — ¥°(y) -
Defining ¢(z) := c(z,y) and z := exp, v yields

¢(exp, v) = c(z,y) > c(z,y) — ¢(z) + ¢(2)
= ¢(2) — ¢(2) + ¥(z) + 9(Vi(z), v), + o(|v]z) ,

so ¢(z) has subgradient Vi (z) € 3¢, at z. On the other hand, the Hopf-
Rinow theorem [Mi, §10.19] [KoN, §IV.4.1-4] assures us of the existence
of a minimal geodesic ¢ : [0,1] - M from y to z given by o(1 — 7) =
exp,[—76(1)]. Like the manifold, this geodesic will be C3-smooth, whence
Proposition 6 yields ¢(1) € d¢,. Thus ¢ is both super- and subdifferen-
tiable at z, so it is differentiable and its super- and subgradients coincide:
o(1) = Vi(z), implying y = 0(0) = exp,[—V¢(z)] as desired.

For our fixed # € M, we have now established that at most one point
y € M produces equality in (16). We have not yet shown that the equality
must be achieved by some y € M, nor used the condition ¥ = 9*° (except
to know ¢°(y) is finite). We now do both. Indeed, since ¥ = ¥°° is real-
valued, Lemma 2 yields Lipschitz continuity of ¢¢ : M — R. Also, the
manifold is compact, so the infimum defining

Yv(e) = yig{l c(z,y) — ¥°(y)

is attained at some y € M. The same point produces equality in (16). But
then our previous argument shows y = exp,[—V(z)], so the if statement
of the lemma is satisfied. o

Theorem 8 (Unique optimal maps). Fix a connected, compact Rieman-
nian manifold, C3-smooth and without boundary, and a Borel probability
measure g < vol on (M,g). If¢ : M — R is an infimal convolution
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¥ = ¥ with c(z,y) = d*(z,y)/2, then t(z) = exp,[—V(z)] minimizes
(1) on S(p,tpu). Any other map s € S(p,t4pu) minimizing C(s) must
coincide with t(z) p-almost everywhere.

Proof. Taking 1 = 9 and t as above, Lemmas 2 and 4 show that the
potential v is Lipschitz and differentiable p-a.e., while its gradient (and
hence t) are Borel. Now t € S(u,txp) and (0,0) € Lip, so both domains
are non-empty. For any (u,v) € Lip. and s € S(u,t4u) one has

I = [ u@du(e)+ [ v(s(e)du(e) (17)

< [ ele.s(e))duta) (18)
=C(s) (19)

from (6)—(8) and a change of variables applied to s4pu. Since both sides are
finite, this shows

sup J(u,v) <7< inf / c(m, s(:c))d,u(:n) (20)
(u,v)€Lip. s€S(ptpv) J M

for some 7 € R. However Lemma 7 shows (¢,¢°) € Lip. satisfies
P(z) + ¢°(t(z)) = c(z,t(z)) [p-a.e.]. Choosing (u,v) = (¢,¢°) and s =t
therefore leads to equality in (18), and hence (20). Moreover J (¢, %°) =
T = C(t) proves optimality of the map ¢.

Conversely, any map s € S(g,txpu) which achieves optimality must
also satisfy C(s) = 7 = J(¢,v¥°), so equality continues to hold in (18).
From (16) we see ¢ (z) + ¢°(s(z)) = c(z, s(z)) must hold pointwise pu-
a.e. On the set of full measure where ¢ is differentiable, we conclude
s(z) = exp,[—V¢(z)] = t(z) from Lemma 7. o

Note that the Kantorovich duality (5) was established for v = t4p in the
preceding proof. It must therefore continue to hold under the hypotheses
of Theorem 9.

Theorem 9 (Existence and characterization of optimal maps). Let (M, g)
be a connected, compact Riemannian manifold, C3-smooth and without
boundary. Fix c(z,y) = d*(z,y)/2 and two Borel probability measures
i & vol and v arbitrary on M. Then for some potential ¢y : M — R
satisfying ¢ = ¢° the map t(z) = exp,[—V(z)] pushes p forward to v.
Modulo discrepancies on sets of u-measure zero, only one t € S(u,v) can
arise in this way.
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Proof. To begin choose (¢,¢) = (¥°°,9°) which maximize (6) on Lip..
These exist by Proposition 3. Both functions are Lipschitz according to
Lemma 2, so V¢ : M — TM and hence t : M — M are Borel maps
defined p-a.e. in view of Lemma 4. One way to prove that the map
t(z) = exp,[—V(z)] pushes p forward to v is to integrate each contin-
uous function h € C'(M) against the measures v and ¢4 p and show the two
integrals coincide. We do this following Gangbo [G], Gangbo and McCann
[GM1] and Caffarelli [Cal]. For z,y € M and |¢| < 1 define perturbations

¢e(y) = ¢c(y) + 6h(y) and 9 := (¢6)c by
We(2) := inf c(z,y) - ¢(y) — eh(y). (21)

Fix a point = where 1) is differentiable. Continuity and compactness of M
ensure the infimum (21) is attained. For ¢ = 0 it is attained uniquely at
y = t(z) in view of Lemma 7, so for small ¢, it must be attained at some
nearby point y. = t(z) + o(1). Thus

oz, 1(2)) — (t(2)) — ch(ye) < %e(z) < ez ) — H(y) — ch(y)
for all y € M. Choosing y = t(z) yields ¢¢(z) = o(z) — €h(t(z)) + o(e),
where the error term satisfies a bound e !o(€) < 2||A||oo uniform in z in
addition to vanishing as € — 0. Because J(t, @) attains its maximum at
€ = 0, we deduce

lim (Ve 8) = J(o, do) _ / Mdﬂ(m)-}- / h(y) dv(y)
M € M

e—0 € e—0

:/ —h(t(m))d,u(:n)—l—/ h(y) dv(y)
M M

_ _/Mhd(t#u)—|-/Mhdy

=0,
where the dominated convergence theorem was used in the second equality
and the change of variables formula (8) in the third. But now the existence
claim is established: t4p = v by the Riesz—Markov theorem since h € C'(M)
was arbitrary.

To prove that we have characterized ¢ uniquely in S(g, v), let u = (u®)®
denote any other potential on M for which the map s(z) := exp,[—Vu(z)]
pushes p forward to v. According to Theorem 8, both s and ¢ minimize (1)
on S(u,v), hence they coincide p-almost everywhere. =

CoroLrLARY 10 (Invertibility). Take M, g, u, v, ¢ = d?/2, ¢ = ¢
and t from Theorem 9. If v < vol also, then the inverse map t*(y) =
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exp,[—V¢°(y)] belongs to S(v,p) and satisfies t*(t(z)) = z [p-a.e.] and
Lt (y)) =y [v-ael.
Proof. We shall exploit the symmetry g <> v and (¢, ¢°) <> (¢, ¢°), where
¢ := ¢ is the infimal convolution of ¢ with ¢(z, y), so that ¢¢ = ¢ = ¢
and ¢°° = ¢¥° = ¢.

Denote the set where ¢ is differentiable by dom VéC M. Now v[dom V¢]
=1 by Lemmas 2 and 4, so txp = v implies U := dom V¢ Nt~ (dom V¢)
is a Borel set of full measure p[U] = 1. For each z € U Lemma 7 yields

0= c(z,t(z)) — ¥°(¢(2)) - ¥(=)

= c(t(z), z) - 6(t(z)) - ¢°(=) .
Since ¢(z) € dom V¢, we conclude & = expy(,)[—V(t(z))] from the same
lemma applied to ¢. Thus z = t*(¢(z)) on U and hence p-a.e., which we’ll

use to prove t* € S(v, p).
Given any continuous function h € C(M) we have

[ rdtw) = [ W) dvle) = [ e 6E) dute) = [ o) duto)

from the change of variables formula (8) applied to t*#v and v = tupu, and
the fact t*(¢(z)) = = [p-a.e.] established above. Since h € C(M) was
arbitrary this shows &, = p as desired.

Now it follows by symmetry that V := dom V¢ N (¢*)~1(dom V) is a
Borel set with »[V] = 1, while t*(¢(y)) = y holds for each y € V to conclude
the corollary. o

Theorem 11 (Polar factorization of maps). Let (M, g) be a connected,
compact Riemannian manifold, C®-smooth and without boundary. Fix
c(z,y) = d*(z,y)/2,a Borelmaps : M — M and a Radon measure p < vol
on M. If sy < vol, meaning s maps no set with positive p measure to a set
of zero volume, then s =t ou [p-a.e.] for some map t(z) = exp,[—V¢(z)]
with 1 = 1¢°° and a measure preserving map uyp = p. The two factoring
maps u,t : M — M are unique p-a.e. and Borel.

Proof. Use (2) to define v := supu as the push-forward of the measure p
through the map s : M — M. Compactness of M combines with the
local finiteness of Radon measures to provide a normalization constant
771 = u[M] = v[M] < oo which makes Tu and Tv probability mea-
sures, both absolutely continuous with respect to the volume by hypothesis.
Theorem 9 provides a potential ¢y = 9¥° on M for which the Borel map
t(z) = exp,[—V¢(z)] pushes Tu forward to Tv, or equivalently t € S(u, v).
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Its corollary provides a Borel inverse t* € S(v, p) such that ¢(t*(y)) = y
holds on a Borel set V' C M of full v-measure: 7v[V] = 1. Setting u := t*os,
one immediately verifies s(z) = t(u(z)) holds on s7!(V), hence p-a.e. The
existence proof is completed by noting that t* o s € S(u, u) follows from
s € S(u,v) and t* € S(v, p): three changes of variables (8) yield

[ ) = [ b (a@) dute) = [ we @) dvl) = [ nay

M
for each h € C(M), proving u measure-preserving, ugp = p.

To establish the uniqueness of this decomposition, suppose s = t' o u’
holds on a subset U’ C M of full y-measure, where t'(z) = exp,[—V¢(z)]
with ¢ = ¢° and v’ € S(p, ). Clearly t' € S(p, szp), so t’ = ¢ holds on a
set U C M of full y-measure by Theorem 9. For z € s~ (V)nu/~1(U)NT’,
which is to say p-a.e., one has s(z) = t/(u'(z)) = t(u'(z)) hence u(z) :=
t*(s(z)) = ¥/(z), to complete the uniqueness proof. o

4 Polar Factorization as Nonlinear Hodge Theorem

It is interesting to expose in the Riemannian setting the formal link between
the polar factorization of maps and the Hodge/Helmholtz decomposition
of vector fields uncovered in the Euclidean context by Brenier [Brl]. On a
compact manifold, this decomposition asserts that any smooth vector field
v : M — TM decomposes as v = w-+ V({ where w is divergence free and ( :
M — R. Just as a vector field generates (and linearly approximates) a one-
parameter family of diffeomorphisms, the Hodge/Helmholtz decomposition
arises from the linear approximation of the polar factors in Theorem 11.
Indeed, let s(z,7) € M be the flow along the vector field v obtained by
integrating

§(z,7) = v(s(z, 7)) (22)
from the initial condition s(z,0) = z; the dot denotes differentiation with
respect to 7. At each instant 7, Theorem 11 factorizes the diffeomor-
phism s(z,7) = t(u(z,7),7) as the composition of a volume-preserving
map u( -, 7) with ¢(-,7) := exp[- V(- , )], where ¥ (z, T) is a d2/2-concave
function of z for each 7. As we shortly derive, the Hodge theorem follows
formally from the relation

5(z,0) = ;—T [t(u(m,T),T)](Z,O) (23)
and the identifications w = du/07 and { = —0v%/0T evaluated at 7 = 0.
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Since the derivation is formal, we simply assume the map u(z,7) and
potential 4(z, 7) provided by Theorem 11 are C? smooth in both space and
time; it follows that u is a diffeomorphism. Now the unique polar factors of
s(z,0) = z are u(z,0) = z = t(z,0). As long as 7 is small, our smoothness
assumption ensures all three maps stay close to the identity, so we may work
in a small neighbourhood of any (0, z) € TM in the tangent bundle, where
we have normal coordinates (p',...,p", z%,...,2") vanishing at (0, z).
Letting vy(p,z) := exp,p so that s(z,7) = v(-Ve¢(u(z, 1), 7),u(z, 7)),
we compute

% (20) 5% GRS = (o, )% [_g’k(U(w;T))%(“(”’T)’T)](z,o)
= |6 - 35| Zham - g™ (2) (teri™ + afj;i’“)]( )

|t ik [eX"

— [u - 9""(2) W] 0) (24)
with summation on like indices. Here the expressions v!(0,z) = 2 and
7i(p, z) = p* in normal coordinates were used to obtain the second equal-
ity, while ¥(z,0) = const throughout M (since #(z,0) = ) has been
invoked to eliminate purely spatial derivatives of ¥(z,0) from the third
equality. Identifying w(z) = 1(z,0) and ¢(z) = —4(z,0), we recover the
Hodge/Helmholtz decomposition v = w + V( globally from (22)—(24); here
w is divergence free since the C? diffeomorphism u(z,7) of M preserves

volumes at each T.

5 Other Cost Functions on Riemannian Manifolds

As in the Euclidean case [Cal], [GM1,2], the techniques developed above
can be adapted to other strictly convex functions c(z,y) = A(d(z,y)) of
the geodesic distance on non-compact Riemannian manifolds. Without
describing the technicalities, we give a flavor for the sort of result which
may be obtained, by stating (without proof) a theorem which can be proved
under the simplifying hypothesis

d(z,y)
c(z,y) :/ A(r)dr, (25)
0
with
A :(0,00) = R continuously increasing from 0 = lim, ,o A(7).  (26)

Here continuity of A(7) implies the cost ¢(z, y) remains superdifferentiable.
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Compactness of the manifold may also be relaxed, provided minimal
geodesics join each pair of points in the supports of the mass distributions
u and v. Here support spt v refers to the smallest closed set in M carrying

the full mass of v. Recall [GM2]:

DEFINITION 12 (c-transform of a function on Y). Fixc: M x M —
RU{+o0}. GivenY C M, define a special subset I3, of the infimal convo-
lutions (3) by

Yy = {qbc ‘ ¢: M —RU{—o0} and ¢(y) = —oco unless y € Y}. (27)

In particular, taking Y = M yields the class I, of all c-concave func-
tions on M, also known as infimal convolutions with ¢. The opposite
extreme — Y consisting of finitely many (say k) points — makes 73 a k-
dimensional manifold with boundary.

Theorem 13 (Strictly convex costs on non-compact manifolds). Let (M, g)
be a C3®-smooth Riemannian manifold. Choose c(z,y) = A(d(z,y)) satisfy-
ing (25)-(26), and compactly supported Borel probability measures p < vol
and v on M. Fix a compact Y D sptv, and assume each pair of points
z € sptu and y € Y are connected by an unbroken minimal geodesic. Then
there exists 1 € Iy such that the map

AT Vels)
(z) = {expz [ ~ TVl Vi[}(m)] where Vi # 0 (28)

z otherwise

pushes p forward to v. This map is uniquely characterized in S(u,v) by
the formula (28) with 1 € I5,. Moreover, s = t minimizes (1) uniquely on

S(p,v).

Since Y C Z implies Iy C Z% in definition (27), the strongest existence
result is obtained by taking Y = sptv in the theorem. The strongest
uniqueness result is obtained by taking Y C M as large as possible.

Compactness of Y makes it easy to see 9 € I3 must be locally Lips-
chitz throughout M, with Lipschitz constant strictly smaller than A(oo) :=
lim; 4o A(T) locally. Together with (26), this ensures the map ¢(z) is
well-defined almost everywhere by (28). As in Lemma 7, differentiating
c(z,y) — ¥(z) — ¥°(y) > 0 with respect to  at a minimizing pair (2o, yo)
yields both the distance A~ (|V4|,,) and direction V(o) of optimal trans-
port, thus dictating the form yo = ¢(zo) of the optimal map (28).



Vol. 11, 2001 POLAR FACTORIZATION OF MAPS ON MANIFOLDS 19

References

[ADV] S. ALESKER, S. DAR, V. MILMAN, A remarkable measure preserving

B]

[BeB]

[Brl]

[Br2]

[BuD]

[C]

[Cal]

[Ca2]
[Ca3]
[Car]
[Col]

[Co2]

diffeomorphism between two convex bodies in R™, Geom. Dedicata 74
(1999), 201-212.

F. BARTHE, On a reverse form of the Brascamp-Lieb inequality, Invent.
Math. 134 (1998), 335-361.

J.-D. BENAMOU, Y. BRENIER, Weak existence for the semi-geostrophic
equations formulated as a coupled Monge-Ampére/transport problem,
SIAM J. Appl. Math. 58 (1998), 1450-1461.

Y. BRENIER, Décomposition polaire et réarrangement monotone des
champs de vecteurs, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 805-
808.

Y. BRENIER, Polar factorization and monotone rearrangement of vector-
valued functions, Comm. Pure Appl. Math. 44 (1991), 375-417.

G.R. BurtoN, R.J. DouGLAs, Rearrangements and polar factorisation
of countably degenerate functions, Proc. Roy. Soc. Edinburgh Sect. A, 128
(1998), 671-681.

X. CABRE, Nondivergent elliptic equations on manifolds with nonnegative
curvature, Comm. Pure Appl. Math. 50 (1997), 623-655.

L. CAFFARELLI, Allocation maps with general cost functions, in “Partial
Differential Equations and Applications,” (P. Marcellini, et al., eds.), Lec-
ture Notes in Pure and Appl. Math. 177 Dekker, New York (1996), 29-35.
L.A. CAFFARELLI, The regularity of mappings with a convex potential, J.
Amer. Math. Soc. 5 (1992), 99-104.

L.A. CAFFARELLI, Boundary regularity of maps with convex potentials,
Comm. Pure Appl. Math. 45 (1992), 1141-1151.

M.P. po CAarRMO, Riemannian Geometry, Mathematics: Theory and Ap-
plications, Birkhauser, Boston, 1992.

D. CorDERO-ERAUSQUIN, Inégalité de Prékopa—Leindler sur la sphere,
C.R. Acad. Sci. Paris Sér. I Math. 329 (1999), 789-792.

D. CorDERO-ERAUSQUIN, Sur le transport de mesures périodiques, C.R.
Acad. Sci. Paris Sér. I Math. 329 (1999), 199-202.

[CoMS] D. CorpERO-ERAUSQUIN, R.J. McCANN, M. SCHMUCKENSCHLAGER,

[CuD]

A Riemannian interpolation inequality a la Borell, Brascamp and Lieb,
Invent. Math. (2001), to appear.

M.J.P. CurLLEN, R.J. DoucLAs, Applications of the Monge-Ampeére
equation and Monge transport problem to meteorology and oceanography,
in “Monge Ampere Equation: Applications to Geometry and Optimiza-
tion” (L.A. Caffarelli, M. Milman, eds.), Contemp. Math. 226, American
Mathematical Society, Providence (1998), 33-53.

[CuDRS] M.J.P. CuLLEN, R.J. DoucGLAs, I. ROULSTONE, M.J. SEWELL, Gen-

eralised semigeostrophic theory on a sphere, preprint.



20

[DP]

R.J. MCCANN GAFA

G. DE Cecco, G. PALMIERI, Length of curves on Lip manifolds, Atti
Accad. Naz. Lincei Cl. Sci. Fis. Math. Natur. Rend. (9) Mat. Appl. 1
(1990), 215-221.

L.C. Evans, Partial differential equations and Monge-Kantorovich mass
transfer, in “Current Developments in Mathematics” (R. Bott, et al., eds.),
International Press, Cambridge (1997), 26-78.

L.C. Evans, R.F. GARIEPY, Measure Theory and Fine Properties of
Functions, Stud. Adv. Math. CRC Press, Boca Raton, 1992.

W. GANGBO, An elementary proof of the polar factorization of vector-
valued functions, Arch. Rational Mech. Anal. 128 (1994), 381-399.

W. GangBo, R.J. McCANN, Optimal maps in Monge’s mass transport
problem, C.R. Acad. Sci. Paris Sér. I Math. 321 (1995), 1653—-1658.

W. GanGBo, R.J. McCANN, The geometry of optimal transportation,
Acta Math. 177 (1996), 113-161.

L.M. GrAvVEs, The Theory of Functions of Real Variables, International
Series in Pure and Applied Mathematics, McGraw Hill, New York, 2nd
edition, 1956.

R. JorDAN, D. KINDERLEHRER, F. OTTO, The variational formulation
of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998), 1-17.

L. KANTOROVICH, On the translocation of masses, C.R. (Doklady) Acad.
Sci. URSS (N.S.) 37 (1942), 199-201.

S. KoBayvasHi, K. NoMmizu, Foundations of Differential Geometry, Wiley
Classics Lib. John Wiley & Sons, New York, 1996.

R.J. McCAaNN, Existence and uniqueness of monotone measure-preserving
maps, Duke Math. J. 80 (1995), 309-323.

R.J. McCANN, A convexity principle for interacting gases, Adv. Math.
128 (1997), 153-179.

J. MILNOR, Morse Theory, Ann. of Math. Stud. 15, Princeton University
Press, Princeton, 1969.

G. MONGE, Mémoire sur la théorie des déblais et de remblais, His-
toire de 1’Académie Royale des Sciences de Paris, avec les Mémoires de
Mathématique et de Physique pour la méme année, (1781), 666—704.

F. OtTo, The geometry of dissipative evolution equations: The porous
medium equation, Comm. Partial Differential Equations, to appear.

S.T. RAcHEV, L. RUSCHENDORF, Mass Transportation Problems,
Probab. Appl. Springer-Verlag, New York, 1998.

C. ViILLANI, Topics in mass transportation, in preparation.

RoOBERT J. McCANN, Department of Mathematics, University of Toronto,
Toronto, Ontario, Canada M5S 3G3, mccann@math.toronto.edu

Submitted: January 2000
Revised version: July 2000



