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Abstract

We investigate Prékopa-Leindler type inequalities on a Riemannian manifold M
equipped with a measure with density e−V where the potential V and the Ricci
curvature satisfy Hessx V + Ricx ≥ λ I for all x ∈ M , with some λ ∈ R. As in our
earlier work [14], the argument uses optimal mass transport on M , but here, with
a special emphasis on its connection with Jacobi fields. A key role will be played
by the differential equation satisfied by the determinant of a matrix of Jacobi fields.
We also present applications of the method to logarithmic Sobolev inequalities (the
Bakry-Emery criterion will be recovered) and to transport inequalities. A study of
the displacement convexity of the entropy functional completes the exposition.

Résumé

Nous étudions l’extension d’inégalités de type Prékopa-Leindler au cas d’une
variété riemannienne M équipée d’une mesure ayant une densité e−V où le potentiel
V et la courbure de Ricci vérifient Hessx V + Ricx ≥ λ I (∀x ∈ M), pour un certain
λ ∈ R. Nous ferons appel, comme dans notre travail précédent [14], au transport
optimal de mesure. Mais nous exploiterons plus encore son lien avec les champs de
Jacobi, ce qui permettra de ramener la discussion à l’étude du déterminant d’une
matrice de champs de Jacobi. Nous présentons également d’autres applications de la
méthode, en particulier aux inégalités de Sobolev logarithmiques (critère de Bakry-
Emery) et à l’étude de la convexité de déplacement de la fonctionnelle entropie.
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1 Introduction

The Brunn-Minkowski inequality plays a central role in geometric convex analysis. It can
be stated as follows: for A, B ⊂ Rn,

vol(A + B)1/n ≥ vol(A)1/n + vol(B)1/n,

where vol denotes the Lebesgue measure. By applying this inequality when B is an Euclid-
ean ball of radius ε and by letting ε → 0, one easily recovers the isoperimetric inequality
in Euclidean space. Using homogeneity, the Brunn-Minkowski inequality can be restated
in the following equivalent form: for A, B ⊂ Rn and s ∈ [0, 1],

vol((1− s)A + sB) ≥ vol(A)1−s vol(B)s. (1)

From the beginning of the nineteen-seventies there has been a significant and systematic
effort to obtain functional versions of geometric inequalities (see for instance [8, 9, 36] and
the surveys [16, 18] for different points of view. . . ). These functional versions are not only
more powerful (they can be applied in different settings) but they also shed new light on
the geometric inequalities themselves. An inequality which has proved to be extremely
useful is the so-called Prékopa-Leindler inequality [36, 24, 37].

Theorem 1 (Prékopa-Leindler inequality) Let s ∈ (0, 1) and u, v, w : Rn −→ R+ be
such that, for all x, y ∈ Rn,

w((1− s)x + sy) ≥ u1−s(x)vs(y). (2)

Then, ‖w‖L1 ≥ ‖u‖1−s
L1 ‖v‖s

L1.

An equivalent and shorter way of stating this result is to say that for every u, v : Rn −→ R+

one has ∫
Rn

sup
{(x,y)∈R2n|z=(1−s)x+sy}

{
u1−s(x)vs(y)

}
dz ≥

(∫
Rn

u

)1−s(∫
Rn

v

)s

. (3)

If we apply this inequality for u = 1A and v = 1B, the indicator functions of sets A, B ⊂ Rn,
then we recover the Brunn-Minkowski inequality (1). For more information on Brunn-
Minkowski and Prékopa-Leindler inequalities and their interplay with geometry and prob-
ability, we refer to [18, 28, 39, 23, 4].

We now want to take as reference measure a measure µ with density e−V . The function
V : Rn → R is called the potential and we are going to assume that

Hessx V ≥ λ Id ∀x ∈ Rn, (4)

for some λ ∈ R, where Id denotes the identity matrix. It is clear after the work of Bakry
and Emery, that this amounts to a “curvature” condition on the “space” (Rn, µ). A typical
case is the Gauss space obtained when µ is the standard Gaussian measure γn given by
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V (x) = |x|2/2+n log(2π)/2 and for which (4) holds with λ = 1. If λ ≥ 0, the density e−V is
log-concave and the we immediately have that the Prékopa-Leindler inequality (3) extends
to integration with respect to µ. However, if λ > 0, one can expect a stronger inequality
to hold. This is indeed the case, as suggested by the remarkable paper by Maurey [27].
For f, g, h : Rn → R+, we apply the Prékopa-Leindler inequality to

u(x) = f(x)e−V (x), v(y) = g(y)e−V (x), w(z) = h(z)e−V (z).

We want to find under which conditions on f, g and h the assumption (2) is satisfied. The
terms in V can be simplified. Indeed, we notice that using an integral Taylor expansion
(on [0, s] and on [s, 1]) we have for every smooth function α : [0, 1] :−→ R, k ∈ R, s ∈ [0, 1],
that (

∀t ∈ [0, 1], α′′(t) ≥ k
)

=⇒ (1− s)α(0) + sα(1)− α(s) ≥ k s(1− s)/2. (5)

Thus, by applying (5) for α(t) := V
(
(1− t)x + ty

)
we see that condition (4) implies that

(1− s)V (x)+ sV (y)−V ((1− s)x+ sy) ≥ λ s(1− s)|x− y|2/2 for every x, y ∈ Rn. We shall
use this simple and well known observation several times in this paper. As a consequence
we obtain the following reformulation the Prékopa-Leindler inequality.

Theorem 2 (Weighted Prékopa-Leindler inequality) Let µ be a measure of the form
dµ = e−V dx where V verifies (4). Let s ∈ [0, 1] and f, g, h : Rn −→ R+ be such that,
∀x, y ∈ Rn

h((1− s)x + sy) ≥ e−λ s(1−s) |x−y|2/2 f 1−s(x)gs(y). (6)

Then,

∫
Rn

h dµ ≥
(∫

Rn

f dµ

)1−s(∫
Rn

g dµ

)s

.

This result (one should rather say “observation”) is of course not new. The fact that the
Prékopa-Leindler inequality contains this relative form was used, after Maurey’s work [27],
by several authors; note that the Prékopa-Leindler inequality corresponds to the special
case V = 0 and λ = 0. One can derive from this form concentration and log-Sobolev
inequalities for the measure µ, as in [27, 38, 6].

The Prékopa-Leindler inequality was extended by the authors [14] to Riemannian mani-
folds. In this paper, M will denote a smooth, complete n-dimensional Riemannian manifold
with geodesic distance d. We will denote by dvol the Riemannian element of volume and
(TxM, · , | · |) will be the Euclidean structure on the tangent space TxM at x ∈ M . For
x, y ∈ M and t ∈ [0, 1], let Zt(x, y) be the barycenter between x and y given by

Zt(x, y) = {z ∈ M ; d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y)}.

Except maybe when x belongs to the cut locus cut(y) of y, the set Zt(x, y) reduces to
a single point. In fact, when x /∈ cut(y), the curve t −→ Zt(x, y) describes exactly the
minimal geodesic joining x to y. The Riemannian Prékopa-Leindler inequality obtained in
[14] takes the following form: for u, v : M −→ R+ and s ∈ [0, 1] one has∫

M

sup
z∈Zs(x,y)

{
Ds(x, y) u1−s(x)vs(y)

}
dvol(z) ≥

(∫
M

u

)1−s(∫
M

v

)s

,
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where Ds(x, y) ≥ 0 is a distortion factor due to curvature depending on x, y and s only. We
have Ds(x, y) ≤ 1 if the curvature is non-negative, while the opposite inequality holds in
spaces of non-positive curvature. Of course, Ds(x, y) ≡ 1 in Euclidean space (the Prékopa-
Leindler inequality (3) is then recovered). When the Ricci curvature is bounded from below,
Ricx ≥ k(n− 1) Id for all x ∈ M and some k ∈ R, then it is possible to bound from above
the distortion factor Ds(x, y) by a factor depending only on the distance d(x, y) between
x and y. The Ricci curvature Ricx at point x ∈ M will be seen either as a self-adjoint
operator or as a bilinear form on TxM . Introduce for k ∈ R,

Sk(d) :=
sin(

√
k d)√

k d
=


(sin d)/d for k = 1 (spherical case)

1 for k = 0 (Rn)
(sinh d)/d for k = −1 (hyperbolic case)

. (7)

If M satisfies Ric ≥ k(n − 1) then, as proved in [14], one has for the volume distortion
along any geodesic of length d := d(x, y):

Ds(x, y) ≤
(

Sk(d)

S1−s
k ((1− s)d) Ss

k(sd)

)n−1

, (8)

with equality if M is of constant sectional curvature equal to k. It is a computational
exercise to check that for s ∈ [0, 1], k ∈ R and d ≥ 0 (d < π/k1/2 when k > 0),(

Sk(d)

S1−s
k ((1− s)d) Ss

k(sd)

)
≤ e−s(1−s) k d2/2 (9)

(setting t =
√
|k|d reduces to the cases k = 1 and k = −1). After taking the (n − 1)

power in (9), we obtain an upper bound for Ds(x, y) which depends on λ := k(n − 1).
As a consequence, we obtain the following result which was therefore implicitly already
contained in [14].

Theorem 3 (Riemannian inequality) Assume that, for some λ ∈ R, the Ricci curva-
ture on M verifies:

Ricx ≥ λ Id ∀x ∈ M. (10)

If u, v, w : M → R+ and s ∈ [0, 1] are such that, for every x, y ∈ M and z ∈ Zs(x, y),

w(z) ≥ e−λ s(1−s) d2(x,y)/2 u1−s(x)vs(y), (11)

then,

∫
M

w ≥
(∫

M

u

)1−s(∫
M

v

)s

.

By comparing (4) and (6) with (10) and (11), we see once again the analogy between the
curvature of the potential V and the curvature of the manifold. However, we would like to
push forward our investigation and consider, on our Riemannian manifold M , a measure
dµ = e−V dvol with a potential V : M −→ R. What weighted form of the Prékopa-Leindler
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inequality can we expect? Of course, following the Euclidean method, we may combine (4)
with (10) to obtain an inequality, but that is not what we have in mind. We seek instead an
inequality which allows the curvature of the manifold to be compensated by the curvature
of the potential, and vice versa. Following the work of Bakry and Emery, we are willing to
assume

Hessx V + Ricx ≥ λ Id ∀x ∈ M (12)

for some λ ∈ R. It is not clear whether such an assumption can be handled with our
Riemannian versions [14] of the Prékopa-Leindler inequality. But in any case, one of the
aims of this paper is to present an alternative approach to such inequalities. We will of
course use, as before, optimal mass transport on M . But we will make a more direct use
of its connection with Jacobi fields along geodesics, and of the related ODE’s. The main
result is, as expected, a weighted version of the Prékopa-Leindler inequality on manifolds.

Theorem 4 (Weighted version) Let µ be a measure on M of the form dµ = e−V dvol
where V and the Ricci curvature verify (12) for some λ ∈ R. Let s ∈ [0, 1] and f, g, h :
M −→ R+ be such that, ∀x, y ∈ M and z ∈ Zs(x, y),

h(z) ≥ e−λ s(1−s) d2(x,y)/2 f 1−s(x) gs(y). (13)

Then,

∫
M

h dµ ≥
(∫

M

f dµ

)1−s(∫
M

g dµ

)s

.

Concentration of measure inequalities can be recovered following the ideas of Maurey’s
(τ)-property. Let us assume that µ is a probability measure on M of the form dµ = e−V dvol
verifying (12). Then, by applying the previous result for s = 1/2 and h ≡ 1, we obtain
that for every ϕ : M −→ R,∫

M

e−ϕ dµ

∫
M

eQλ(−ϕ) dµ ≤ 1, where Qλϕ(y) := inf
x∈M

(
λ d2(x, y)/4 − ϕ(x)

)
. (14)

Given a set A ⊂ M , we can apply this inequality with ϕ(y) = 0 on A and +∞ outside A.
Setting d(·, A) := infx∈A d(·, x), one gets∫

M

eλ d2(·,A)/4 dµ ≤ µ(A)−1,

and therefore µ
(
{x ∈ M ; d(x, A) ≥ ε}

)
≤ µ(A)−1 e−λ ε2/4. This type of concentration of

measure inequality was first proved on compact Riemannian manifolds with positive Ricci
curvature (V = 0 and dµ = dvol/vol(M)) by Gromov and Milman [19]. The reader can
consult Ledoux [23] for references and backgroud.

Theorem 4 is the main new result of the paper. It clearly extends the weighted Prékopa-
Leindler inequality from Euclidean space stated in Theorem 2. Our other results consist
mainly of proofs which give new insights into known results — as in the case of the Bakry-
Emery criterion (Theorem 7) — or else lend rigour to heuristic arguments — as in the case
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of Otto and Villani’s [35] displacement semiconvexity of Riemannian entropy (Theorem
10).

The organization of the paper is as follows. The next section §2 recalls some relevant
facts about mass transport and about its link to Jacobi fields. Then, in section §3 we recall a
useful Lemma on the determinant of a matrix of Jacobi fields and use it to prove Theorem 4.
Section §4 is devoted to logarithmic Sobolev and transport inequalities for a measure µ
with density e−V under the assumption (12). We shall give a mass transportation proof
of a criterion of Bakry and Emery. A unified point of view on log-Sobolev and transport
inequalities is given in section §5 with study of the displacement convexity of the entropy
functional

E(u) :=

∫
M

u log u +

∫
M

uV (15)

2 Mass transport and Jacobi fields

We will recall several results taken from our earlier works [32] and [14] concerning optimal
transport on Riemannian manifolds. All the results needed for the proof of Theorem 4 are
collected in Proposition 5. The reader is free to take this proposition for granted and to
jump to the next section. However, without the explanations we collect below, it appears
as a rather mysterious black box.

Let us start from the classical Euclidean theory of mass transport. The interplay be-
tween mass transport and geometric functional analysis (and Brunn-Minkowski theory)
has a long history and we would like to mention a few steps relevant for the present work.
In 1957, Knothe [20] gave a proof of the Brunn-Minkowski inequality using mass trans-
port. The map constructed by Knothe, sometimes referred to as the Knothe map, was
later used by Gromov [33] to give a direct proof of the Euclidean isoperimetric inequality
in its functional form. In the mid nineteen-eighties, a completely different mathematical
landscape led Brenier to discover a new mass transportation map by solving a variational
problem [10]. Connections between the resulting optimal map and the isoperimetric [41],
Brunn-Minkowski [31], and Prékopa-Leindler [29] inequalities were discovered indepen-
dently by Trudinger [41] and McCann [29, 31] (whose displacement convexity inequalities
are based on this map). Shortly afterward, Barthe [5] used the same map to prove deep
convolution inequalities. Since then, the Brenier map has found many interesting geomet-
ric applications. For instance, it has been used to derive Aleksandrov-Fenchel inequalities
by Alesker, Dar, and Milman [1], and to derive sharp Sobolev and related inequalities on
Rn [15] and on bounded domains [26] by Cordero-Nazaret-Villani [15] and Maggi-Villani
[26]. One can consult Villani’s book [43] for more details and background on optimal mass
transportation theory.

The result of Brenier [10], as improved by McCann [30], is as follows. Let µ and ν be
two probability measures on Rn and assume that µ is absolutely continuous with respect
to Lebesgue measure. Then, there exists a convex function ϕ such that ν is the image
measure of µ under the map T = ∇ϕ (we say that ∇ϕ pushes-forward or transports µ onto
ν). Let us recall that given two (Borel) measures µ and ν on some measurable (topological)
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space, one says that ν is the image measure (or push-forward) of µ under the (Borel) map
T if, ∫

b ◦ T dµ =

∫
b dν, (16)

for every nonnegative Borel function b. Equivalently, ν(B) = µ(T−1(B)) for every Borel
set B. In this case we may write either ν = T (µ) or ν = T#µ.

The map T = ∇ϕ between µ and ν is uniquely determined and is sometimes called the
Brenier map or Brenier-McCann map. It is known to solve Monge’s optimization problem:
among all maps transporting µ onto ν, find T as close to the identity map as possible in
the least-square sense, i.e. in L2((Rn, µ); Rn). An important feature of this map is that its
Jacobian matrix Hess ϕ ≥ 0 is symmetric and non-negative definite, which makes various
matrix inequalities available.

It is a priori not obvious how the map T = ∇ϕ should generalize to Riemannian
manifolds. In order to focus on the displacement, it is convenient to introduce θ(x) :=
ϕ(x) − |x|2/2 so that T takes the form T (x) := x + ∇θ(x). Of course, the inequality
Hess θ ≥ −I satisfied by θ (distributionally) is less familiar to interpret than convexity
of ϕ: the directional derivatives ∂2

nnθ(x) can take either sign, depending on whether T (x)
expands or contracts locally, but they are bounded below since the contraction is not so
severe as to become orientation reversing.

Brenier’s result was extended to Riemannian manifolds by McCann [32]. Let µ and ν
be two probability measures on M and suppose µ is absolutely continuous with respect to
dvol. For technical reasons, it is simplest to assume that the probability measures µ and ν
are compactly supported. Then, there exists a function θ : M −→ R such that −θ is d2/2-
concave and such that ν is the image measure of µ under the map F (x) = expx(∇θ(x)).
This map is uniquely defined and will be called the optimal map pushing µ forward to
ν, because it again minimizes the mean-square Riemannian distance to the identity map,
the mean being computed with respect to µ. Of course, it remains to clarify what d2/2-
concavity of ϕ means. One precise definition is that ϕ = Q2

2(ϕ) with Q2 from (14); see
also [32, 14]. We only summarize the properties which are needed for our work. Again,
the explanations below are given solely as a motivation for Proposition 5.

First, θ is locally Lipschitz and therefore the map F is well defined almost everywhere.
In fact, it was proved in [14] that θ has almost everywhere a second order derivative (in a
suitable sense) and that almost everywhere F (x) /∈ cut(x). To be more specific, θ is locally
semi-convex in the sense that for every x0, there exists C ≥ 0 such that the function
x −→ θ(x) + Cd2(x, x0) is locally geodesically convex around x0. As a consequence, its
distributional second derivative is a measure given by the sum of an absolutely continuous
part and a nonnegative singular part. In [14] we used the notion of Hessian in the sense
of Aleksandrov, which means we say Hessx θ exists at x ∈ M if ∇θ(x) exists and if there
exists a symmetric matrix Hx such that, for every direction u ∈ TxM ,

θ(expx(tu)) = θ(x) + t∇θ(x) · u +
t2

2
Hx(u) · u + o(t2).

We then write Hessx θ := Hx. For a locally semi-convex function, the Hessian in the
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sense of Aleksandrov exists almost everywhere and coincides almost everywhere with the
absolutely continuous part of the distributional second derivative.

The d2/2-concavity of −θ implies[
Hessx d2

F (x0)/2 + Hessx θ
]
x=x0

≥ 0 (17)

for almost every x0 in the support of µ, where dy(·) := d(·, y) for y ∈ M . Note that
the function d2

F (x0) is smooth around x when x /∈ cut(F (x0)). In the Euclidean case,

F (x) = expx∇θ(x) with (17) reduces to T (x) = x + ∇θ(x) with Hess θ ≥ −I, and we
therefore see that the map F encodes part of the geodesic structure of M .

Let us assume that µ and ν have densities u0 and u1, respectively. It is natural to
expect from (16) that u0(x) = u1(F (x))| det dFx|. This is true in some weak sense. Let us
define dF almost everywhere by dFx0 := Y (H + Hessx0 θ), where the matrices Y and H
are defined, when F (x0) /∈ cut(x0), by

Y := d[expx0
]∇θ(x0) and H = [Hessx d2

F (x0)/2]x=x0 .

Then u0(x) = u1(F (x)) det dFx holds dµ-almost everywhere. We now interpolate between
the identity and the optimal map: Given F and t ∈ [0, 1], we introduce

Ft(x) := expx(t∇θ(x)).

Observe that if F (x) /∈ cut(x), then t −→ Ft(x) = Zt(x, F (x)) is the minimal geodesic
joining x = F0(x) to F (x) = F1(x). Note also that for every y (close to x) the curve
t −→ Ft(y) is a again a geodesic. Therefore, it is natural to expect that t −→ d(Ft)x

defines a matrix of Jacobi fields (in an orthonormal moving frame) along the geodesic
t −→ Ft(x).

A Jacobi field is obtained by considering any perturbation of a geodesic by geodesics
(see for instance [17] for a more detailed presentation). Let γ : [0, 1] → M be a geodesic.
Consider a perturbation γs of γ by a geodesic [0, 1] 3 t −→ γs(t) for each s ∈ (−ε, ε), with
γ0 = γ. Introduce, for a fixed t ∈ [0, 1],

J(t) :=
d

ds

∣∣∣
s=0

γs(t).

Since γ0 = γ, we have J(t) ∈ Tγ(t)M . The vector field t −→ J(t) along γ is called a Jacobi
field. It satisfies the following linear differential equation

∇2
γ̇(t)J(t) + Rγ(t)(γ̇(t), J(t))γ̇(t) = 0.

where γ̇(t) :=
dγ

dt
(t), ∇2

γ̇(t) denotes the second covariant derivative along γ, and Rx :

TxM × TxM × TxM −→ TxM is the Riemann curvature tensor at x ∈ M . Since Jacobi’s
equation is second order, a Jacobi field is uniquely determined by J(0) and ∇γ̇(t)J(0). It is
very convenient to introduce a moving frame and to work with the coordinates of Jacobi
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fields. Let e1(0), . . . , en(0) be an orthonormal basis of Tγ(0)M and consider the parallel
transport of this basis along γ. We obtain an orthonormal basis of Tγ(t)M denoted by
e1(t), . . . , en(t). As usual, we will impose that e1(t) = γ̇(t)/|γ̇(t)| for all t ∈ [0, 1]. Let
Y (t) ∈ Rn be the coordinates of a Jacobi field J(t) in the basis e1(t), . . . , en(t). Then
t −→ Y (t) satisfies a second order linear ODE:

Y ′′(t) + R(t)Y (t) = 0 (18)

for some symmetric matrix R(t). The matrix R(t) is the matrix of the operator

Tγ(t)M −→ Tγ(t)M

v −→ R(γ̇(t), v)γ̇(t) (19)

When M = Rn, we have R ≡ 0. More generally, R is of the form

R = R∗ =

(
0 0

0 D

)
,

and the trace of R(t) gives the Ricci curvature in the direction γ̇(t):

tr R(t) = Ricγ(t)

(
γ̇(t), γ̇(t)

)
.

For example, D = In−1 and tr R = n− 1 in the case of the sphere M = Sn.
Let us come back to our optimal transport map Ft(x) = expx(t∇θ(x)). As before, it is

possible to compute in some weak sense the differential of Ft:

d(Ft)x0 := Y (t)(H(t) + t Hessx0 θ)

where the matrices Y (t) and H(t) are defined, when F (x0) /∈ cut(x0) (and therefore
Ft(x0) /∈ cut(x0)), by

Y (t) := d[expx0
]t∇θ(x0) and H(t) = [Hessx d2

Ft(x0)/2]x=x0 .

It is easy to see that A(t) := d(Ft)x defines a matrix of Jacobi fields along the geodesic
t −→ Ft(x) with the properties A(0) = I and A′(t) = Hessx θ. One can prove that the
image of u0(x) dx under the map Ft defines a probability measure which has a density. If
we denote by ut this density, then we have again, u0(x) dx-almost everywhere,

u0(x) = ut(Ft(x)) det d(Ft)x. (20)

One can also check that for every Borel set K ⊂ M ,

∫
Fs(K)

us =

∫
K

u0. We can now sum-

marize all these properties in the following proposition. In fact, for the proof of Theorem 4,
we shall not need any other property of the optimal map F besides those stated below:
the reader can as well take this as a “definition” of the map F . . . .
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Proposition 5 ([14]) Let u0 and u1 be two compactly supported probability densities on
the manifold M and let F (x) := expx(∇θ(x)) be the optimal map pushing u0(x)dvol(x)
forward to u1(y)dvol(y). Let us fix s ∈ [0, 1] and set Ft(x) := expx(t∇θ(x)) for every
t ∈ (0, 1). Then there exists a σ-compact set K ⊂ M and a probability density us such that∫

Ft(K)

ut dvol = 1 for t ∈ {0, s, 1},

and F (x) /∈ cut(x) and Hessx θ exist for every x ∈ K.
Furthermore, if we introduce, for a fixed x ∈ K, the minimal geodesic γx(t) := Ft(x),

(joining x = γ(0) to F (x) = γ(1)) we have

u0(x) = ut(γx(t)) det Ax(t) > 0 for t ∈ {0, s, 1}, (21)

where t −→ Ax(t) is the unique matrix of Jacobi fields along the geodesic γx verifying
Ax(0) = I and A′

x(0) = Hessx θ.

The need to specify s ∈ [0, 1] in the previous Proposition is technical, not essential. We
were not able to ensure the existence of a common K suitable for all t ∈ [0, 1]. Of course,
one can find a set of full µ-measure K suitable for any countable family of t’s.

3 Proof of Theorem 4

It is clear from the preceding discussion that for geometrical applications of optimal trans-
portation, it is essential to understand the behavior of the determinant of an invertible
(det Ax(t) > 0) matrix of Jacobi fields. We emphasize the next Lemma which is a well
known comparison result in Riemannian geometry (see e.g. Chavel[12]). A (standard)
proof is included for completeness.

Lemma 6 Let γ : [0, 1] −→ M be a geodesic and t −→ A(t) an invertible matrix of Jacobi
fields along γ such that A(0) = I and A′(0) is symmetric. If ϕ(t) := − log det A(t) and
r(t) = Ricγ(t)

(
γ̇(t), γ̇(t)

)
, then for each t ∈ [0, 1],

ϕ′′(t)− 1

n
ϕ′(t)2 − r(t) ≥ 0.

Proof. Once the problem is expressed by using a moving frame along γ, it becomes rather
elementary linear algebra. Recall that r(t) is exactly the trace of R(t) the matrix of the
operator defined in (19). By definition of Jacobi fields (18), we have, for every t ∈ [0, 1],

A′′(t) + R(t)A(t) = 0.

Besides the symmetry of R(t) and the invertibility of A(t), we shall use that A(0) = I
and that A′(0) is symmetric. Introduce B(t) := A′(t)A(t)−1. We have ϕ′(t) = − tr B and
ϕ′′(t) = − tr B′. The important point is to check that B is symmetric. Note that

B∗ −B = A∗−1(A′∗A− A∗A′)A−1.

10



The term A′∗A−A∗A′ is constant since, using R = R∗, we see that its derivative vanishes.
Using that A′∗A − A∗A′ is 0 at t = 0 and therefore at every t, we conclude that B = B∗.
Since A′A−1 + A(A−1)′ = 0, we find B′ = A′′A−1 − B2 = −R − B2 and so, after taking
traces,

ϕ′′ = − tr B′ = tr(B2) + tr R.

To conclude, use Hölder’s inequality tr(B2) = tr(BB∗) ≥ 1
n
(tr B)2. Since tr B = −ϕ′, we

indeed find that ϕ′′ ≥ 1
n
ϕ′2 + tr R. �

We can now prove the weighted version of the Riemannian inequality, Theorem 4.
Let f, g, h be as in the Theorem. Without loss of generality we can assume that these
functions are compactly supported and that

∫
M

f dµ =
∫

M
g dµ = 1. Our goal is to prove

that
∫

M
h dµ ≥ 1.

The idea of the proof is to introduce the optimal map F (x) = expx(∇θ(x)) pushing
f dµ forward to g dµ and to compute the integral

∫
h(z) dµ(z) using the change of variables

z = Fs(x) := expx(s∇θ(x)). Then, the relation between the three functions f, g, h and the
properties of ϕ(t) := − log det d(Ft)x combine nicely to give the result. However, the
lack of regularity of F prevents us from doing this directly. As a substitute we will use
Proposition 5 and the density us of Fs#(f dµ) which satisfies the “change of variable”
formula (21). We will then prove that h e−V ≥ us which implies

∫
M

h dµ ≥ 1. Although
we will no longer speak of optimal transport or of changing variables, for intuition it is
important to bear in mind where the following computations came from.

For u0(x) := f(x)e−V (x) and u1(y) := g(y)e−V (y), let us and K be as in the Proposition 5.
Using the notation of that proposition, we see that it is enough to prove for every x ∈ K
that

h(γx(s))e
−V (γx(s)) ≥ us(γx(s)). (22)

Indeed, since

∫
{γx(s) ; x∈K}

us(z) dz = 1, the previous inequality will give
∫

h dµ ≥ 1.

Fix x ∈ K and denote by γ := γx : [0, 1] −→ M the geodesic joining γ(0) = x
to γ(1) = F (x). Let A(t) := Ax(t) be the invertible matrix of Jacobi fields given by
Proposition 5. The geodesic γ has constant speed equal to

d := d(γ(0), γ(1)) = |γ̇(t)| ∀t ∈ [0, 1].

If we set ϕ(t) := − log det A(t) for every t ∈ [0, 1], we have in particular:

f(γ(0)) e−V (γ(0)) = g(γ(1)) e−V (γ(1))−ϕ(1) and f(γ(0)) e−V (γ(0)) = us(γ(s)) e−ϕ(s).

We have, using the assumption (13) of Theorem 4 with x = γ(0) and y = γ(1), and the
previous equations:

h(γ(s))e−V (γ(s))

us(γ(s))
≥ f 1−s(γ(0)) gs(γ(1)) e−V (γ(s))−λ s(1−s) d2/2

us(γ(s))

= exp
{
(1− s)V (γ(0)) + sV (γ(1))− V (γ(s)) + sϕ(1)− ϕ(s)

−λ s(1− s) d2/2
}
.

11



Thus, in order to get (22), it is enough to prove that

(1− s)V (γ(0)) + sV (γ(1))− V (γ(s)) + sϕ(1)− ϕ(s) ≥ λ s(1− s) d2/2. (23)

Noticing that ϕ(0) = 0, we see that (23) is equivalent to

(1− s)α(0) + sα(1)− α(s) ≥ λ s(1− s) d2/2. (24)

where,
α(t) := V (γ(t)) + ϕ(t) , ∀t ∈ [0, 1].

We note that, for every t ∈ [0, 1], we have, using Lemma 6 and the assumption (12)

α′′(t) = Hessγ(t) V (γ̇(t), γ̇(t)) + ϕ′′(t)

≥ Hessγ(t) V (γ̇(t), γ̇(t)) +
1

n
ϕ′(t)2 + Ricγ(t)(γ̇(t), γ̇(t))

≥
(
Hessγ(t) V + Ricγ(t)

)
(γ̇(t), γ̇(t))

≥ λ |γ̇(t)|2

Thus we have α′′ ≥ λ d2 on [0, 1]. In view of (5), we get (24) and therefore (22). This ends
the proof of Theorem 4. �

4 On logarithmic Sobolev and transport inequalities

For background and applications of logarithmic Sobolev inequalities we refer to the excel-
lent surveys and book by Ledoux [21, 22, 23].

Given a probability measure µ on M , the entropy w.r.t. µ of a nonnegative function
f : M −→ R+ is defined by

Entµ(f) :=

∫
M

f log f dµ−
(∫

M

f dµ

)
log

∫
M

f dµ

=

∫
M

f log f dµ if

∫
M

f dµ = 1. (25)

The logarithmic Sobolev inequality we want to reproduce was proved by Bakry and
Emery using semigroup tools.

Theorem 7 (Bakry and Emery [3]) Let µ be a probability measure on M of the form
dµ = e−V dvol, where V and the Ricci curvature verify Hessx V +Ricx ≥ λ Id for all x ∈ M
and some positive λ > 0. Then for every smooth function f : M → R+ we have:

Entµ(f) ≤ 1

2λ

∫
M

|∇f |2

f
dµ.

12



Following the argument of Bobkov and Ledoux [6] inspired by [27], it is possible to
derive by elementary but clever computations the previous inequality from Theorem 4. It
is however instructive to give a direct proof using mass transport. A source of inspiration for
us was the work of Otto and Villani [35] (after Otto’s pioneering work [34]) on the relation
between optimal transportation and log-Sobolev inequalities. In their paper, Otto and
Villani gave a formal proof of Theorem 7 using optimal transport. However the arguments
of their paper are quite different from those displayed in the present paper since they rely
on the displacement interpolation and more precisely on the coupled Hamilton-Jacobi /
transport system satisfied by the interpolated densities. The technicalities involved in this
approach prevented them from giving a rigorous proof in the Riemannian case. We would
like on the contrary to give a simple and direct proof along the lines of [13] and using the
same techniques as above. In fact, as in [13], we will prove the following result from which
log-Sobolev and transport inequalities can be recovered. As explained in the section to
follow, (26) can be viewed as what Villani [43] has called the above-tangent formulation of
displacement convexity for the entropy.

Theorem 8 Let µ be a probability measure on M of the form dµ = e−V dvol where V and
the Ricci curvature verify Hessx V +Ricx ≥ λ Id for all x ∈ M and some λ ∈ R. Let f and g

be two smooth compactly supported nonnegative functions such that

∫
M

f dµ =

∫
M

g dµ = 1

and let F (x) := expx(∇θ(x)) be the optimal map pushing f dµ forward to g dµ. Then one
has

Entµ(g)− Entµ(f) ≥
∫
∇f · ∇θ dµ +

λ

2

∫
|∇θ|2f dµ. (26)

Let us explain how the logarithmic Sobolev inequality of Theorem 7 follows from The-
orem 8. Without loss of generality we can assume that f is compactly supported and that∫

f dµ = 1. We now apply Theorem 8 with an arbitrary g. We use a2/2 + b2/2 ≥ −ab
in (26) in order to get

Entµ(g)− Entµ(f) ≥ − 1

2λ

∫
M

|∇f |2

f
dµ.

Letting g −→ 1 (or equivalently, taking the infimum over all g’s) we find the desired
inequality

1

2λ

∫
M

|∇f |2

f
dµ ≥ Entµ(f).

Proof of Theorem 8. We will use the result and the notation of Proposition 5 relating
the probability densities u0(x) := f(x)e−V (x) and u1(y) := g(y)e−V (y) with the optimal
map F (x) = expx(∇θ(x)) pushing forward u0(x) dx to u1(y) dy. By definition of the image
measure we have

Entµ(g)− Entµ(f) =

∫
(log g ◦ F − log f) f dµ.

13



We fix x ∈ K, γ = γx and A = Ax as in Proposition 5 (we shall not use the information
about s ∈ [0, 1]). We have, using F (x) = γ(1) and f(x)e−V (x) = g(γ(1))e−V (γ(1)) det A(1),

(log g ◦ F − log f) (x) = log g(γ(1))− log f(γ(0))

= V (γ(1))− V (γ(0))− log
(
det A(1)

)
= α(1)− α(0)

where α(t) := V (γ(t))− log det A(t) for every t ∈ [0, 1]. Setting ϕ(t) = − log det A(t) and
combining (as in the proof of Theorem 4) Lemma 6 with the assumption on the curvature,
we see that

α′′(t) = Hessγ(t) V (γ̇(t), γ̇(t)) + ϕ′′(t)

≥ Hessγ(t) V (γ̇(t), γ̇(t)) +
1

n
ϕ′(t)2 + Ricγ(t)(γ̇(t), γ̇(t))

≥
(
Hessγ(t) V + Ricγ(t)

)
(γ̇(t), γ̇(t))

≥ λ |γ̇(t)|2

= λ d2(x, F (x)).

Using (5), this implies that α(1) − α(0) ≥ α′(0) + λd2(x, F (x))/2. Back to the original
notations and remembering that γ(t) = Ft(x) := expx(t∇θ(x)) we have

(log g ◦ F − log f) (x) ≥ ∇V (x) · ∇θ −∆θ + λ|∇θ(x)|2/2. (27)

Here we used that the derivative of the determinant at the identity is the trace in order
to write ϕ′(0) = −∆θ. Because Hess θ was defined in a weak form, the function ∆θ is
only the absolutely continuous part of the distributional Laplacian. But since θ is locally
semi-convex, it is easy to see that one has ∆θ ≤ ∆D′θ in the sense of distributions, where
∆D′θ is the distributional Laplacian. Thus we can integrate by parts, using that θ is locally
Lipschitz and the definition of ∆D′ to get∫

M

(∇V (x) · ∇θ −∆θ) f(x) e−V (x) dx ≥
∫

M

∇f · ∇θ e−V .

Integration of (27) with respect to f dµ therefore gives∫
M

(log g ◦ F − log f) f dµ ≥
∫

M

∇f · ∇θ dµ +
λ

2

∫
M

|∇θ|2 f dµ.

�

Let us also comment here and in the next section on transport inequalities. As was
already mentioned (but not explicitly used), the map F (x) := expx(∇θ(x)) exhibited by
McCann [32] is optimal in some sense. Let Pac(M) be the space of probability densities,
compactly supported for convenience:

Pac(M) :=

{
u ∈ L1(M) ; u ≥ 0 compactly supported with

∫
M

u = 1

}
. (28)
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We shall identify without further comment a density u ∈ Pac(M) and the probability
measure u with that density. One can define on Pac(M) the so-called Wasserstein distance
d2(u0, u1) between two elements of Pac(M) as follows:

d2
2(u0, u1) := inf

π∈Γ(u0,u1)

∫
M×M

d2(x, y) dπ(x, y) . (29)

Here the unsubscripted d(x, y) denotes the Riemannian geodesic distance, while Γ(u0, u1)
denotes the set of Borel probability measures on M × M with marginals u0 and u1, re-
spectively. In particular, if a Borel map G : M −→ M pushes u0 forward to u1, we see by
taking π := (I ×G)(u0) that

d2
2(u0, u1) ≤

∫
M

d2(x, G(x)) u0(x) dx.

The map F (x) = expx(∇θ(x)) given in [32] with a d2/2-concave −θ is precisely character-
ized among all Borel maps pushing u0 forward to u1 by the property that

d2
2(u0, u1) =

∫
M

d2(x, F (x)) u0(x) dx =

∫
M

|∇θ|2 u0. (30)

Now, let us fix as before a reference measure µ of the form dµ = e−V dvol. For simplicity
we will assume that µ is compactly supported, meaning V = +∞ a.e. outside a compact
set. Let g ≥ 0 be such that

∫
M

g dµ = 1 (in other words, g e−V ∈ Pac(M)). We apply
Theorem 8 with f ≡ 1. Then (26) becomes

Entµ(g) ≥ λ

2

∫
|∇θ|2 dµ,

where F (x) = expx(∇θ(x)) pushes µ forward to g dµ. Thus we have proved the following
result.

Theorem 9 (Riemannian transportation inequality) Let µ be a (compactly supported)
probability measure on M of the form dµ = e−V dvol where V and the Ricci curvature verify
Hessx V + Ricx ≥ λ Id for all x ∈ M and some positive λ > 0. Then, for every g ≥ 0 with∫

M

g dµ = 1 one has:

d2
2(g dµ, µ) ≤ 2

λ
Entµ(g).

This result easily extends to non-compactly supported probabilities µ. This kind of in-
equality is called a transportation inequality. We refer to [22, 23] for background and
references. We mention however that Bobkov, Gentil and Ledoux [7] showed that there
exist many connections between transportation inequalities, Prékopa-Leindler inequalities
and hypercontractivity of Hamilton-Jacobi equations. Also, it is easy to deduce Otto and
Villani’s “HWI”-type inequalities [35] from Theorem 8 as in [13].
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Finally, we would like to comment on the sharpness of the results. In general, the result
of Theorem 7 is optimal (think of the Gaussian measure on Rn). However, when one works
on a compact n-dimensional manifold with µ := σ = 1/vol(M), the (normalized) uniform
Riemannian probability measure on M (which means that V is constant), the result can be
significantly improved (see [3, 21]). Indeed, if Ricx ≥ λ Id for all x ∈ M and some λ > 0,
then for every smooth f : M −→ R+ one has

Entσ(f) ≤ n− 1

2 n λ

∫
M

|∇f |2

f
dσ.

On the sphere Sn of constant Ricci curvature equal to (n − 1)I, the inequality takes the
form

Entσ(f) ≤ 1

2n

∫
Sn

|∇f |2

f
dσ.

This is a sharp inequality since after a Taylor expansion around the constant function,
we recover that the spherical Laplacian has a spectral gap of size n. A direct application
of Theorem 7 would instead give gap n − 1. We do not presently see how to reach such
sharp constants using a mass transportation approach. Perhaps a more clever variant or
application of Lemma 6 is needed.

5 The displacement convexity point of view

This section illuminates some of the connections between the inequalities we have discussed
and the notion of displacement convexity [31]. For some recent developments concerning
displacement convexity, see [11] and the references there.

The space Pac(M) of compactly supported probability measures on M forms a metric
space when endowed with the Wasserstein distance (29) of the preceding section. Moreover,
to each pair of measures u0, u1 ∈ Pac(M) corresponds a unique path s ∈ [0, 1] −→ us ∈
Pac(M) which interpolates between them and forms a geodesic in the sense that

d2(u0, us) = sd2(u0, u1) and d2(us, u1) = (1− s)d2(u0, u1) when s ∈ [0, 1]. (31)

In fact, us = Fs(u0) is nothing but the image measure of u0 under the map Fs of Propo-
sition 5 [14]. Thus the path is constructed by gradually displacing the mass of u0 at x
along the geodesic on M which leads to F (x), where it eventually forms u1 = F (u0). The
metric space Pac(M) forms a length space, and the path us is called either the Wasserstein
geodesic or displacement interpolation between u0 and u1.

A functional E : Pac(M) −→ R ∪ {+∞} is said to be displacement convex if E(us)
is a convex function of s ∈ [0, 1] along each Wasserstein geodesic; in other words, if (31)
implies E(us) ≤ (1 − s)E(u0) + sE(u1). The functional E(u) is said to be displacement
semiconvex with constant λ ∈ R if for every u0, u1 and s ∈ [0, 1], (31) implies

(1− s)E(u0) + sE(u1)− E(us) ≥ λ s(1− s)d2
2(u0, u1)/2, (32)
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or equivalently, if d2E(us)/ds2 ≥ λd2
2(u0, u1) in the distributional sense. Note that with

this terminology, displacement semiconvexity implies displacement convexity when λ ≥ 0;
moreover, this convexity is uniform when λ > 0.

We now rigorously prove the displacement semiconvexity of the Boltzmann type en-
tropy in a Riemannian setting — another result derived formally by Otto and Villani [35].
The case V = 0 has been treated by Sturm and von Renesse [42] also, exploiting [14].
We recently learned that the next result was independently proved by Sturm [40] and by
Lott and Villani [25] along their investigation of curvature in abstract length spaces. In-
terestingly enough, they also proved a converse statement, namely that a lower bound on
the displacement convexity constant of the entropy in turn gives a lower bound for the
curvature tensor.

Theorem 10 (Entropy is displacement semiconvex in a Riemannian setting)
Assume there exists λ ∈ R such that V : M −→ R satisfies Hessx V + Ricx ≥ λI for all
x ∈ M . Then the functional E(u) defined on Pac(M) by (15) is displacement semiconvex
with constant λ.

Proof. The proof is similar to that of Theorem 8. Fix u0, u1 ∈ Pac(M) and s ∈ [0, 1].
Let F (x) = expx(∇θ(x)) be the optimal map pushing u0 forward to u1 and set Fs(x) :=
expx(s∇θ(x)). We will use the notation and results of Proposition 5. We have, using the de-
finition of the image measure and taking the log of the equations u0(x) = ut(Ft(x)) det Ax(t)
for t ∈ {0, s, 1},

(1− s)E(u0) + sE(u1)− E(us) =

∫
M

[
(1− s) log u0(x) + s log u1(F (x))− log us(Fs(x))

+ (1− s)V (x) + sV (F (x))− V (Fs(x))
]
u0(x) dx

=

∫
K

[
(1− s)αx(0) + sαx(1)− αx(s)

]
u0(x) dx

where αx(t) := − log det(Ax(t)) + V (γx(t)) for x ∈ K and t ∈ [0, 1]. As in the previous
proofs, we can use Lemma 6 to see that α′′

x ≥ λd2(x, F (x)) on [0, 1]. Indeed, for a fixed
x ∈ K, we have, suppressing the dependence on x and setting ϕ(t) := − log det A(t),

α′′(t) = Hessγ(t) V (γ̇(t), γ̇(t)) + ϕ′′(t)

≥ Hessγ(t) V (γ̇(t), γ̇(t)) +
1

n
ϕ′(t)2 + Ricγ(t)(γ̇(t), γ̇(t))

≥
(
Hessγ(t) V + Ricγ(t)

)
(γ̇(t), γ̇(t))

≥ λ |γ̇(t)|2

= λ d2(x, F (x)).

This gives, by integral Taylor expansion,

(1− s)αx(0) + sαx(1)− αx(s) ≥ λ s(1− s) d2(x, F (x))/2.

17



Integrating this inequality with respect to u0 on K gives the desired result (32). �

To elucidate the connection of displacement semiconvexity with logarithmic Sobolev
and transportation inequalities, let us rewrite the absolute entropy (15) in the form

E(u) =

∫
M

u[log u− log µ] dx

=

∫
M

u

µ

[
log

u

µ

]
µ(x) dx

where µ := e−V (x). If µ is a probability measure, then E(u) = Entµ(f) is nothing but the
relative entropy (25), with f = u/µ the Radon-Nikodym derivative of u with respect to
the reference measure µ. If µ is not a probability measure but has finite total mass, it
can always be normalized by adding a constant to V (x) without affecting the displacement
(semi-)convexity of E(u).

By Taylor’s theorem, any semiconvex function h : R −→ R with constant λ ∈ R satisfies
for all t ∈ R

h(t1) ≥ h(t0) + h′(t0)(t1 − t0) + λ(t1 − t0)
2/2.

The second order correction bounds how low h(t1) can be relative to the tangent estimate
of h(t) from t0. The same inequality extends to semiconvex functions which are not C2-
smooth by an approximation argument, with h′(t0) intrepreted as a directional derivative
from the left or the right. Applied to the semiconvex function s 7→ E(us) of Theorem 10,
this yields

E(u1) ≥ E(u0) +
dE(us)

ds

∣∣∣∣
s=0+

+ λd2
2(u0, u1)/2

for every Wasserstein geodesic {us}s∈[0,1] in Pac(M). Since the endpoints of fs = us/µ can
be arbitrary probability densities, the identities E(us) = Entµ(fs) and (30) yield

Entµ(f1)− Entµ(f0) ≥
dEntµ(fs)

ds

∣∣∣∣
s=0+

+
λ

2

∫
M

|∇θ|2f0dµ.

The form of this inequality already suggests the fundamental result (26) of [13] and the
preceding section. To complete the identification, it remains only to find the directional
derivative of E(us), or at least show

dE(us)

ds

∣∣∣∣
s=0+

≥
∫
∇f0 · ∇θ dµ. (33)

This can be accomplished using the transport equation

∂us

∂s

∣∣∣∣
s=0

+∇ · [u0∇θ] = 0 (34)
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which arises as the linearization of (20), and is satisfied distributionally. Indeed,

dE(us)

ds

∣∣∣∣
s=0+

=

∫
∂us

∂s

∣∣∣∣
s=0+

δE

δu

=

∫
u0∇θ · ∇(log u0 + V + 1)

=

∫
f0µ∇θ · ∇(log(f0µ)− log µ)

=

∫
µ∇θ · ∇f0

formally. However, a rigorous justification of these identities to obtain (33) requires ap-
propriate hypotheses and care [34, 2, 11].
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XIX, Lecture Notes in Math., 1123, Springer (1985), 177–206.

[4] K.M. Ball, An elementary introduction to modern convex geometry, in Flavors of
geometry, Math. Sci. Res. Inst. Publ. 31, Cambridge Univ. Press (1997), 1–58.

[5] F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134,
2 (1998), 335–361.

[6] S. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to
logarithmic Sobolev inequalities, Geom. Funct. Anal. 10 (2000), 1028–1052.

[7] S. Bobkov, I. Gentil and M. Ledoux, Hypercontractivity of Hamilton-Jacobi
equations, J. Math. Pures Appl. (9) 80 (2001), no. 7, 669–696.

19



[8] C. Borell, Convex set functions in d-space, Period. Math. Hungar. 6 (1975), 111–
136.

[9] H.J. Brascamp and E.H. Lieb, On extensions of the Brunn-Minkowski and
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