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EXISTENCE AND UNIQUENESS OF MONOTONE
MEASURE-PRESERVING MAPS

ROBERT J. McCANN

Introduction. Given a pair of Borel probability measures # and v on Rd, it is
natural to ask whether v can be obtained from # by redistributing its mass in a
canonical way. In the case of the line d 1 the answer is clear: as long as both
measures are free from atoms--#[{x}] v[{x}] 0mthere is a map y(x) of the
line to itself for which

Uniquely determined /-almost everywhere, this map may be taken to be non-
decreasing by a suitable choice of y(x)e R w {___o} at the remaining points.
Interpreting # and v as the initial and final distribution of a one-dimensional
fluid, the transformation y(x) gives a rearrangement of fluid particles yielding
final state v from the initial state #; this rearrangement is characterized by the fact
that it preserves particle ordering, obviating any need for two particles to cross.
Although the generalization of this construction to higher dimensions is the focus
of this paper, the one-dimensional case will be pursued slightly further: when the
measures are absolutely continuous with respect to Lebesgue--d#(x)= f(x)dx
and dr(y) g(y)dymthen, formally at least (neglecting regularity issues), the fun-
damental theorem of calculus yields

y’(x)#(y(x)) f(x). (1)

When # and v measure Ra rather than R, the properties of y one might hope
to preserve are not clear. An answer to this question has been provided by a
theorem of Brenier [1], [2], which shows under restrictions on # and v, that
a measure-preserving transformation y: (Ra, #)(Ra, v) can be realized as the
gradient of a convex function. In particular, y will be irrotational and will not
involve crossings: (1 t)x + ty(x) (1 t)x’ + ty(x’) implies x x’ if [0, 1).
Moreover, this theorem turns out to have striking applications which will shortly
be indicated. Motivated by these applications, our present purpose is to extend
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the theorem to a larger class of measures # and v. The improvement is achieved
through a simple, geometrical proof relying on Rockafellar’s characterization [3]
of the gradient of a convex function.
A precise statement requires a bit of notation. Let (Rd) be the space of Borel

probability measures on Ra, so # (Ra) is a positive measure with/t[Ra] 1.

Definition 1. A measure # (Ra) together with a Borel transformation
y: Ra -, R" defined #-almost everywhere, induces a measure y## on R defined by
y##[M] := #[y-(M)] for Borel M R". A Borel probability measure itself, y##
is called the push-forward of # through y.

The map y is said to be measure-preserving between/ and y##, or to push It
forward to y##. For a Borel function f on Rn, the change of variables theorem
states that when either integral is defined,

f d(y##) fR f(y(x)) d(x).
d

A convex function on R refers to a function : R--. R w { +} for which
((1 t)x + tx’) < (1 t)$(x) + t$(x’) when the latter is finite and (0, 1).
Such a function will be continuous on the interior of the convex set dom :=
{,(x) < }, and differentiable except on a set of Hausdorff dimension d- 1 in
dom [4]. The monotone map of our title refers to the gradient V$ of such a
function.

MAIN THEOREM. Let #, V i(Rd) and suppose vanishes on (Borel) subsets of
Ra having Hausdorff dimension d- 1. Then there exists a convex function on Rd

whose gradient V$ pushes la forward to v. Although may not be unique, the map
V$ is uniquely determined #-almost everywhere.

In the special case dv(y) k-1(1 + lYl2)-ta+2)/2dy, this theorem is equivalent to
a classical result of Aleksandrov [5] asserting the existence of a unique convex
function with prescribed scalar curvature: if dl(x)= f(x)dx, the graph of $ will
have Gauss curvature kdf(x) at the point (x, $(x))Msee (3) below. The constant kd
which ensures that v[Ra] 1 is the volume of the unit ball in Ra, while the image
of graph(k) under the Gauss map covers half of the unit sphere Sa c Rd+l.
That this theorem might be true for more general v was foreshadowed in work

of Dowson and Landau I-6] and Knott and Smith 1-7] from the early 1980s. Both
studied the joint probability measure which is maximally correlated among those
y #(Ra x Ra) having # and v as their marginals: M Ra Borel implies #[M]
),[M x Ra] and y[Ra x M] viM]. Letting F(/, v) denote the set of such , and
(x, y) denote the Euclidean inner product on Ra, to be maximally correlated
means that ’ F(#, v) is the optimal solution to the (infinite-dimensional) linear
program

sup { (x, y) d?. (2)
F(/, v)



UNIQUE MEASURE-PRESERVING MAPS 311

Knott and Smith showed that when k satisfies the conclusions of the main theo-
rem, then ?’ is given by the push-forward of # through the map id x Vp taking x
to (x, V/(x)). Dowson and Landau gave heuristics indicating that if (id x y)## is
maximally correlated, then the transformation y of Ra must be irrotational. Both
assumed regularity. Finally, Brenier established our main theorem and related
assertions, under the following restrictions on # and v [2]: the first moment
[y[ dr(y) of v should be finite, while # should be absolutely continuous with
respect to Lebesgue--d#(x) f(x) dx--with f(x) vanishing outside some bounded,
smooth, connected domain ) Ra and bounded away from zero and infinity on
1). In this case $ is unique, and lies in the Sobolev space W’(, V). His proof
proceeded through an analysis of the variational problem (2) and its dual, both
of which attain finite extrema under the additional hypotheses. He went on to
remark that the theorem was expected to hold for unbounded ), as long as
Ixl d#(x) and lYl dv(y) are both finite for some H61der conjugates p- + q-t 1.

Simpler proofs, based on the dual problem alone, were later discovered by Caffarelli
and Varadhan [8-1 and Gangbo [9].
From our point of view, the content of this theorem is geometrical rather than

analytic, which suggests that W’t(f, #) is not its natural setting. The results
established here reflect this bias: they go beyond the earlier work in several re-
spects, to include cases in which (2) will not be finite. Proving uniqueness for
these cases presents the most serious obstacle, since the variational formulation
is not of use. This difficulty is circumvented through a geometrical approach
inspired by [5]. The existence assertion, on the other hand, may in principle be
extracted from Brenier’s result via a continuity argument. Instead, a new proof is
provided, which has the advantage of being largely self-contained. Moreover, the
idea which underlies it is transparent in a pairing problem involving the elements
from two finite subsets of Ra. The solution to this problem is a finite optimization,
after which a continuity argument yields Theorem 6: for #, v (Ra), there exists
? F(#, v) whose support in Rax Rd enjoys a geometrical property known as
cyclical monotonicity. Introduced by Rockafellar in [3], this property is charac-
teristic of the gradient of a convex function: a theorem of his allows the func-
tion ff to be recovered. As long as ff is differentiable #-almost everywhere, then
V## v. This will certainly be the case if none of the mass of # concentrates on
a set of dimension d 1. An example shows that existence and uniqueness both
may fail if this condition should be violated.

Finally, some applications of the theorem must be mentioned. When d#(x)=
f(x) dx and dv(y)= #(y)dy, Caffarelli [10], [8], [11-1 has shown that conditions
on f and # ensure the regularity of . In this case the higher-dimensional change
of variables formula analogous to (1) holds

det Ltgx,tgx(X) #(V$(x)) f(x). (3)

This method represents a state of the art technique for constructing convex solu-
tions k to the Monge-Amp6re equation (3).
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Brenier’s investigations were motivated from a different direction: he was inter-
ested in establishing a rearrangement theorem for Rd-valued functions y on a
measure space (Rd, #), and he succeeded in expressing y uniquely as the composi-
tion V o s of a monotone map with a measure-preserving transformation s#t #.
Here is chosen so that V#/ y##. This theorem generalizes, among other
things, the polar factorization of matrices and the Hodge decomposition of vector
fields; it is discussed along with further remarks and references in [2].
Our interest in these results was stimulated from yet a third direction: a study

of the equilibrium states for an attracting gas led us to discover a new set of
convexity relations. Formulated via an alternative convex structure on (Rd),
these inequalities include generalizations of the Brunn-Minkowski theorem from
sets to measures, and yield uniqueness results not only for attracting gases but
also for equilibrium crystals [12-1, [13]. They are based on a construction which
requires an irrotational measure-preserving mapping, free from crossings, between
any pair of probability measures on Ra; the monotone map Vff provides the
smoothest possible of such mappings.
Without further ado, the existence assertion of the main theorem will be estab-

lished; its proof, and a more general existence result, form the next part of the
present manuscript. The final section is comprised of the uniqueness arguments,
along with the example in which existence and uniqueness fail. An appendix
establishes a version of the implicit function theorem used in the uniqueness
proof; it applies to functions which, though not continuously differentiable, are
differences of two convex functions.
Some results discussed herein appear in a preliminary form as an appendix to

my Princeton thesis [12]. It is a pleasure to express my gratitude to my advisor,
Elliott Lieb, who drew my attention to the work of Brenier, as well as to Michael
Aizenman, Andrew Browder, Walter Craig, Michael Loss, Andrew Mayer, Millie
Niss, and Jan-Philip Solovej, who provided fruitful discussions concerning these
ideas.

Existence of monotone measure-preserving maps. Although they will not be
required until Proposition 10, it is useful to review some facts of life concerning
convex functions p: R R w (+}; the case if(x) is excluded by conven-
tion. Rockafellar’s text [14, especially 23.2-4, 24.1, 24.4-5, 24.8-9, 25.1, and
7.4] provides the standard reference.
The gradient of a convex function may exist only almost everywhere, but when-

ever ff is finite in a neighbourhood of x, its graph admits a supporting hyperplane:
there is some y R such that

(z) > (y, z x) + q,(x) (4)

for all z e R. In this case y is called a subgradient of at x, motivating the
following definition.
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Definition 2. The subdifferential of a convex function on R refers to the
subset c35 c Ra x Ra of pairs (x, y) satisfying (4) for all z Ra.
The subgradients of k at x will form a closed and convex set Off(x):=

{yl(x, y) O,}. Since , is finite somewhere, O@(x) will be empty unless @(x) < o;
it will be bounded and nonempty precisely when x is from the interior int dom
of dom ,. Differentiability of , at x turns out to be equivalent to the existence of
a unique subgradient y O,(x), in which case y Vk(x). Moreover, y, converges
to V,(x) whenever the latter exists, and y. Off(x.) with x. --, x; this fact is often
used in lieu of continuity for V,. Modifying the values of (x) on the boundary
of dom p (if necessary) ensures ff lower semicontinuous, and can only enlarge its
subdifferential O,; the modification forces &k to be a closed subset of Ra Ra.
Summing inequality (4) with z x+l around a cycle in dom , shows that

the subdifferential O, of a convex function enjoys a property known as cyclical
monotonicity.

Definition 3. A subset S c Rn x Ra is said to be cyclically monotone if for any
finite number of points (x, y) S, 1... k,

(Yl, X2 X1) -{’- (Y2, X3 X2) -{- "- (Yk, Xl Xk) < O. (5)

Rockafellar’s theorem [3]uwhich is ingenious but not hard to provemasserts
a converse: any cyclically monotone set S = Rax Ra is contained in the sub-
differential of some convex function on Ra. Note that this is an integrability result:
if S graph(V) were known to hold for a differentiable function , then the
two-point (k 2) inequalities alone would guarantee convexity of .

Although Definition 3 is not transparent, for finite S cyclical monotonicity
means that the x and y occurring in (x, y) S have been paired so as to maximize
the correlation s (x, y), or equivalently, to minimize the sum of the squared
distances Ix yl 2. The next proposition exploits this observation. Together with
Rockafellar’s theorem, it constitutes the essence of our existence argument.

PROPOSITION 4 (Cyclical monotonicity of correlated pairs). Choose n points of
orioin x, Rd and n destinations y, Rd, where { 1,..., n} and neither the x, nor
the y, need be distinct. For some reorderin9 of the x,, the set S {(x,, y,)}, will be
cyclically monotone.

Proof. Order the x, so that C(a) := , (x,t,), y,) is maximized by the identity
permutation id among permutations a on n letters. Any k (distinct) points in S
may be specified via their labels (1), (k). Now let a (a(1)(2)... (k)) per-
mute the z(i) cyclically (while fixing the remaining n k letters). The condition (5)
for cyclical monotonicity of S is recovered from C(a) < C(id) and the observation

C(a)- C(id)= (x,,t,t0) x,t0,
i=1

El
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The next theorem follows immediately from this proposition when the measures
t, v (Rd) are sums of point masses.

Definition 5. The support spt # of a measure # (Rd) is the smallest closed
subset M c Rd having total mass #[M] 1.

THEOREM 6 (Existence of monotonically correlated measures). Let #, v (R).
There exists a Borel probability measure ), on R x R with cyclically monotone
support having # and v as its marginals.

The proof will be postponed to state two elementary lemmas. They provide
enough analysis to prove the theorem in full generality.
By the Riesz-Markov theorem, (R) lies in the Banach space dual Co(Rd)* of

the continuous functions vanishing at infinity under the sup norm. In fact, (R)
is the intersection of the unit sphere with the cone of positive measures. The first
lemma indicates that (Rd) should be topologized by the weak-, topology it
inherits from C(R)(R)*--that is, by convergence against Coo(Rd) test functions.
Dirac’s symbol di denotes the measure assigning unit mass to M whenever
xeM Ra.
LMM, 7 (Weak-, density of point mass sums). The following measures form a

weak-, dense subset of (Ra) Co(Ra)*:

n N, x,..., Xn RdI (6)

Proof. Consider the set of positive measures from the unit ball in Coo(Rd)*.
This set is obviously convex, and is weak-, compact by the Banach-Alaoglu theo-
rem. Its extreme points are the zero measure and the Dirac point masses fix. The
Krein-Milman theorem then ensures that convex combinations m t6x with t > 0
and m t < 1 are dense in this set (and in (Rn) a fortiori). When approximating
measures in (Rd), it costs no generality to assume ’ t 1, nor to restrict the t
to be rational. In this case each convex combination is a measure from (6): n
represents a common denominator for the t. 121

The second lemma shows that weak-, limits preserve the desired properties
--specified marginals and cyclical monotonicity of support--of measures in
(R’ x R’).

Definition 8. A measure 6 (Ra x Rd) is said to have #, v 6 (Ra) as its (left
and right) marginals if M c Ra Borel implies #[M] ,[M Ra] and [Ra x M]

v[M]. The set of such , is denoted by F(#, v).

LEMMA 9 (Weak-, limits preserve monotone correlations). Let a sequence
n (Rd x R) converge weak-, to Coo(R x Rd)*. Then

(i) will have cyclically monotone support if does for each n;
(ii) /f the left and right marginals of F(#n, Vn) converge weak-, in Coo(Rd)* to

limits 1, v (Rd), then F(#, v).
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Proof. (i) If spt , fails to be cyclically monotone, then it contains k points
(x, y) which violate (5). Choosing a sufficiently small neighbourhood U c Ra x
Ra for each of these k points, the inequality continues to be violated whenever
one or more (x, y) is replaced by a point (u, v)e U. Since (x, y) lies in spt %
?[U] > 0. Therefore y.[U] > 0 holds for large n and all i. But spt ,. fails to be
cyclically monotone if it intersects all of the U.

(ii) Any f e Coo(Ra) may be viewed as a function on Ra x Ra which is indepen-
dent of its second argument. The assertion would be immediate if f Coo(R x Ra),
but this will not be the case unless f 0. What is true is that f extends naturally
to a continuous function on ,a x , where ,a denotes the one-point compacti-
ficatio of R. The desired result follows by showing that , coincides with a
weak-, limit of the ? in C(,a x ,a)*. Such a limit point ?’ may be extracted
from the via the Banach-Alaoglu theorem; since C(,a x ,a) includes the con-
stant functions, ’[d x a] 1. Moreover, the actions of and ’ coincide on
Coo(R x R), so that ?’-? can only be supported "at c". If f C(, x ,) is
independent of its second argument and f(c, y) 0, then using ?n F(#, v,),

Taking a supremum over Ilflloo 1 implies ’[Ra x a] >/[Ra] 1, so # is in
fact the left marginal of ,’. A similar argument shows that v is the right marginal
of y’. Finally, y’[Ra x Ra] 1 forces y’- y 0. 12

Proof of Theorem 6. Use Lemma 7 to choose a sequence #k (Ra) converging
weak-, to # in which each #k is a (normalized) sum of point masses. Approximate
v similarly by v. Fixing k, there are x, y Ra such that:

It is no loss of generality to assume n m: both may be replaced by nm provided
the multiplicity of each x (resp. y) occurring in the sum is increased by a factor
of m (resp. n). Reorder the x by Proposition 4, so that {(x, y)} is cyclically
monotone. The joint measure - t(xi, Yi)

i=1

on Ra x Ra then has cyclically monotone support, with #k and Vk as its marginals.
Now the Vk lie in the unit ball of C(R)(Ra x Ra)*, so a weak-, limit point ? may
be extracted by the Banach-Alaoglu theorem, y is a positive measure, which by
Lemma 9 must have cyclically monotone support and # and v as its marginals. In
particular, has unit mass. D
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A final proposition recovers the connection between measures of cyclically
monotone support and convex functions. The map x (x, Vd/(x)) will be denoted
by id Vff.

PROPOSITION 10 (Monotone maps from monotone correlations). Suppose a
measure (R R) is supported on the sub#radient c spt y of a convex
function d/ on Ra. Let # and v denote the marginals of e F(#, v). If # vanishes on
(Borel) sets of Hausdorff dimension d- 1, then the gradient V pushes # forward
to v; in fact, (id x V)##.

Proof. Modifying ff on the boundary of the convex set dom ff := {ff < }
ensures t3ff as large as possible and closed; the set dom V of differentiability for
ff lies in the interior of dom , so V is unaffected, while spt c t3ff continues to
hold. Since d c dom x Ra, the left marginal # of is supported on the closure
of dom . To begin, one needs to know the transformation V, and therefore
id V, is defined #-almost everywhere and Borel measurable. Differentiability
of ff fails only on a Borel set of dimension d- 1 in dom ff [4]. Since dom ff
forms a convex (afortiori locally Lipschitz) domain, its boundary is also d- 1
dimensional, and #l-dom Vff] 1 follows by hypothesis on/. Measurability of
Vff is manifest since it coincides with the pointwise limit of a sequence of continu-
ous approximants

(V(x), z) lim n(q(x + z/n)- (x)).

If (id x Vff)## 7 is now verified, V## v will be immediate from Definitions
1 and 8.
To complete the proof, it suffices to show that the measure (id x Vff)##

coincides with ), on products M x N of Borel sets M, N Ra; the semialgebra
of such products generates the Borel sets in Rdx Ra. Define S := {(x, V(x))l
x e dom Vff}. Since is closed and contains spt ),, S (dom V x Ra)0
is Borel and contains a set (dom Vff x Ra) c spt , of full measure for 7. Thus
y [Z c S] y[Z] for Z c Ra x Rd. Applied to

(M x N) c S ((M c (Vk)-N) x Ra) S,

this yields

7[M x N] 7[(M (V#x)-IN) x R]

#[M (Vg0-XN]

(id x Vg0##[M x N].

7 F(#, v) implies the second equation; Definition 1 implies the third. 13
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Proof of existence in Main Theorem. Theorem 6 guarantees a joint measure
7 e F(#, v) having cyclically monotone support. Rockafellar’s theorem provides
a convex function whose subgradient contains spt . By Proposition 10, VO
pushes forward/ to v. El

Remark 11 (A generalized existence result). Before proceeding to the unique-
ness question, it seems worthwhile to point out the generality of the arguments
which lead to Theorem 6. Let X and Y be locally compact, a-compact Hausdorff
spaces, so that the Riesz-Markov theorem holds, and the Borel probability mea-
sures #(X) on X are regular. If c(x, y) R is a jointly continuous cost function on
X x Y, then the same proof, mutatis mutandis, yields the following theorem.

THEOREM 12. If # (X) and v #(Y), then there is a measure 7 (X x Y)
with # and v as its marginals, whose support satisfies the following condition: for
anyfinite number of points (xi, yi) spt 7,

c(x,, y,) < c(x,+l, y,). (7)
i=1 i=1

The second sum is cyclical, Xk+l X I"

Although it will not be proven here, we believe that x r c(x, y)d(7’-7)> 0
whenever 7’ shares the marginals of 7. In other words, condition (7) on its support
should be necessary and sufficient to ensure that 7 be an optimal solution of the
associated Monge-Kantorovich mass transport problem (see, e.g., [15]).

Note added in revision. Since the submission of this work, I have learned of
recent investigations which provide substantial links between (7) and the Monge-
Kantorovich problem. Smith and Knott [16J--who refer to the condition (7)
as c-cyclical monotonicity--noted that its sufficiency for optimal mass transport
follows from a theorem of Riischendorf [17]. Abdellaoui and Heinich [18] ob-
tained necessity results. For the cost function c(x, y) Ix- yl 2 on X Y Ra,
or equivalently, c(x, y) -2(x, y), such results are of course present in Brenier’s
work [1-1, !-2], but also in a paper by Riischendorf and Rachev [19] and a pre-
print of Cuesta-Albertos, Matrfin, and Tuero-Diaz [20]. Some developments in
these last two papers parallel those of the present manuscript, although they are
restricted to cases where the measures # and v have finite second moments. Under
this assumption, an analog to Theorem 6 is proved in [19], and to our main
theorem in [20]. Both papers consider the possibility that X and Y are infinite-
dimensional topological dual spaces. I thank J. A. Cuesta-Albertos, M. Gelbrich,
S. T. Rachev, and L. Riischendorf for bringing this literature to my attention.

Uniqueness of monotone measure-preserving maps. It remains to establish
uniqueness of the monotone map V$ which pushes / forward to v. The proof
employs a refinement of Aleksandrov’s argument for the uniqueness of convex
surfaces with prescribed integral curvature. The idea is that two monotone maps
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V and Vb differing at p spt #, push # forward to measures which disagree on
some Y Ra (9). Adding a constant to the convex function b, so that b(p) q(p),
the set Y may be chosen to consist of the subgradients for b on M := (b > q}; it
is denoted db(M):= xMdb(x). Any hyperplane which supports b on M must
cut off a part of graph(q). A parallel hyperplane supporting q must therefore do
so over M. Thus Vd/-l() c M. This idea forms the essence the following lemma,
asserted in [5] and used here to prove (9). As before, Vqt is defined where is
differentiable: on dom

LEMMA 13 (Aleksandrov). Let q and b be convex on Ra, differentiable at p with
(p) (p) O, and Vb(p):V(p)=0. Define M := {b > } c dom and
X := Vff-I((M)). Then X M, while p lies a positive distance from X.

Proof. To obtain the inclusion, let x X and y := Vk(x). Then there exists
m M such that y b(m). For any z Ra

b(z) > (y, z m) + b(m) and

O(m) > (y, m x) + 0(x).

Noting that b(m) > O(m), these inequalities combine to yield

b(z) > (y, z- x) + if(x). (8)

Taking z x shows x M.
Next, suppose a sequence x. X converges to p. Again, there exist m. M such

that V(x,) t3ck(m,). Now V(p) 0 implies > 0 and V(x,) 0 by convexity
of O and continuity of; on the other hand, V(p) v 0 implies q(z) < 0 for some
z near p. Making use of (8) once more yields

o > (z) > (vq,(x.), z x.5 + ,/,(x.)

> -Iv,(x.)l Iz x.I.

Since x, p and Vd/(x,) 0, a contradiction is obtained. The conclusion is that p
cannot lie in the closure of X. E!

Proof of uniqueness in Main Theorem. Let and b be convex on Ra with

Vb## Vff## v, and suppose that Vb V fails to hold t-almost every-
where. Then there is a point p spt # at which q and b are differentiable, but
their gradients differ Vk(p) Vb(p). Both k and b may be chosen lower semi-
continuous, so that Ob is closed, and constants may be subtracted from each to
ensure q(p) b(p) 0; neither modification affects the gradients.

Because p spt #, each of its neighbourhoods must have positive measure
under/. Since the gradient maps differ at p, Corollary 19 of our implicit function
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theorem provides a neighbourhood of p in which occurs only on a set of
Hausdorff dimension d 1. This set has measure zero for #. Exchanging $ with
if necessary, all neighbourhoods of p must intersect M := {x e int dom xl$(x) <
(x)} in a set of positive measure for #. As a final normalization for and , the
same linear function may be subtracted from each to yield V$(p) 0; this corre-
sponds to a translation of v.
Now M is open, while c3 is closed by the lower semicontinuity of . Thus

Y := t3(M) is Borel, in fact a-compact: it’s the projection of a a-compact set
(M x Rd) c c3 onto Rd. A contradiction will be derived by showing that the two
push-forwards of/ cannot agree on Y:

#[V$-(Y)] < #[M] < #[V-(Y)]. (9)

The second inequality is obvious from the fact that #[dom V] v[Ra] 1, and
the inclusion

M c3 dom V
_
V-I(Y).

The first inequality follows from Lemma 13, which shows that V$-I(Y)c M
and excludes some neighbourhood U of p; since #[U c M] > 0, the inequality is
strict and the proof is complete. E!

COROLLARY 14 (Uniqueness of monotone correlations). Suppose #, v (Ra),
and that one of these measures vanishes on all sets of Hausdorff dimension d- 1.
Then the joint measure y F(/, v) with cyclically monotone support is unique.

Proof. From its definition, cyclical monotonicity of S c Ra x Ra is equivalent
to that of S* := {(y, x)l(x, y) S}. Thus the measure which vanishes on sets of
dimension d- 1 may be taken to be # without loss. Now suppose that both y,
y’ F(#, v) have cyclically monotone support. Rockafellar’s theorem and Proposi-
tion 10 guarantee convex functions @ and on Ra for which y (id x V@)## and
y’ (id x V)##. Since both V@ and Vff push/ forward to v, the uniqueness part
of the Main Theorem shows that they must agree #-almost everywhere, whence

’. D

Remark 15 (Nonuniqueness of monotone correlations). In dimension d > 2,
the joint distribution y e F(#, v) with cyclically monotone support need not be
unique when neither/ nor v vanishes on sets of codimension 1. For example, let
d 2 and suppose that spt/ [-1, 1-1 {0} while spt v {0} x [-1, 1]. Since
it has the correct marginals, any F(#, v) will be supported on the subgradient
of the convex function @(Xl, x2) Ix21,

Remark 16 (The Legendre-Fenchel transform). A parting remark exposes the
role of the Legendre-Fenchel transform of a convex function @ on Ra. Applied to
the closure of the cyclically monotone set t3@* := {(y, x)l(x, y) c3}, Rockafellar’s
theorem provides a convex function @* on Ra which is dual to @. When #,
v (Ra) and V@ pushes # forward to v, then (V@ x id)#/ is supported on the
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subgradient of *. If v vanishes on sets of codimension 1, then Proposition 10
shows that V* pushes v forward to #. Known as the Leoendre-Fenchel transform
of , the function * is more commonly defined by q*(y) := sups, (y, x) q(x).

APPENDIX

A aoasmooth implicit fuaction theorem. To prove the uniqueness result of the
previous section, it is necessary to know that when two convex functions
coincide at a point p R where both are differntiable but V(p) : V(p), then,
locally at least, occurs only on a set of Hausdorff dimension d- 1. One
would like to conclude this from the implicit function theorem, but since
need not be continuously differentiable in any neighbourhood of p, the usual
hypotheses of that theorem are not satisfied. This appendix is devoted to estab-
lishing a version of the theorem which applies to . A counterexample shows
that th theorem is false when and I are both Lipschitz, but fail to be convex.

THEOREM 17 (An implicit function theorem). Let b and b be convex functions
on R, differentiable at p with d/(p) (p) but V(p) V(p). Take V(p)- V(p)
to be directed alon the x-axis (without, losin tenerality). Then there is a func-
tion f: R- - R which is Lipschitz with constant 1, and a neighbourhood U of p
on which b(x) q(x) if and only if x f(x2, xd).

As might be expected, the proof exploits the continuity of subdifferentials in
lieu of continuous differentiability: for x near p, taking y t?(x) and
forces (y- v, x) > 0; here denotes a unit vector in the x-dirction. As a
result, will be increasing along lines parallel to the x-axis in U, implying
the existenc of f. Failure of the Lipschitz estimate between two points in R-,
together with a mean-value theorem for - q, forces subgradients y and v for
which y- v is directed far away from ; again, this cannot happen when x is
close to p.

Remark 18. An application of the theorem to [ ](2x, x2, x) instead
of - shows that in a small enough neighbourhood of p, the Lipschitz
constant of f will be arbitrarily small. As a consequence, f is differentiable at
(P2, Pa) and its gradient vanishes there.

Before proving this implicit function theorem, the desired rsult is extracted as
a corollary.

COROLLARY 19. Let and be convex functions on R, differentiable at p with
(p) (p), but V(p) V(p). On a small neighbourhood U of p, the d- 1
dimensional Hausdorffmeasure of {x UlO(x) (x)} is finite.

Proof. An application of the theorem yields the neighbourhood U, which may
be taken to be bounded, and a Lipschitz function f. A standard estimate of geo-
metric measure theory bounds the d 1 dimensional Hausdorff measure 3g- of
the image g(M) of a set under a Lipschitz mapping g by

ta- [/(M)] < k-a- [M],



UNIQUE MEASURE-PRESERVING MAPS 321

where g" R" R satisfies Ig(w) g(z)l < klw zl and M c R". Taking g(w):=
(f(w), w) on Ra-1 and the bounded set M := {wig(w) U}, this estimate yields the
desired result: 3fa-1 [g(M)] < o. ra

The proof of Theorem 17 requires a pair of standard lemmas, suitably adapted
to the nonsmooth case. The left and right derivatives of a function f defined in a
neighbourhood of R will be denoted by

f:(t) := lim
f(t + h) f(t)

hO+ h

(when they exist). When @ is convex on Ra and finite near p, the right derivative
of f(t):= @(p + tx) is defined at 0 for x Ra and given [14, {}23.4] by

f(0) sup (y, x); (10)
y (p)

the left derivative is given by an infimum instead of the supremum.

LEMMA 20 (Extremal conditions). Let f be a function defined in a nei#hbour-
hood of R and assumin9 a local minimum at t. Iff has directional derivatives at
t, then if(t) < 0 < f(t).

Proof. For small h, f(t + h) f(x) > 0 so f:(t) takes the sign of h. 121

LEMUA 21 (A mean value theorem). Let and b be convex functions on Ra,
finite in a neiohbourhood of p, q Rd with k(p)- b(p)= @(q)- b(q). For some
x (1- t)p + tq with 0 < t < 1, there exists y Off(x) and v coq(x) such that
(y--v,q-p) =0.

Proof. By convexity, and b are finite in a neighbourhood of the segment
joining p to q, thus the function f(t)"= [ b]((1 t)p + tq) is continuous on
[0, 1]. Since f(0) f(1), for some (0, 1) a maximum or a minimum must be
assumed; fix this and set x (1 t)p + tq. Now ff is finite near x so O(x) is
compact [14, 23.2-4]. The maximum of (y, q p) on O(x) is therefore attained
at some y+ c3(x), and the minimum at y_ e t3(x). Similarly, (y, q p) attains
its extrema on Oqi(x) at y v_+. Thus f_(t) (y+ v_+, q p) by (10). Lemma
20 shows that (y_ v_, q p) < 0 < (y+ v+, q p) if f is minimized at t;
the inequalities will be reversed if f is maximized. Choose 2 [0, 1] so that
((1 2)(y+ v+) + 2(y_ v_), q p) 0, and set y := (1 2)y+ + 2y_ and
v := (1 2)v/ + 2v_. Noting convexity of the sets de(x) and Ob(x), the lemma is
proved. E!

Proof of Theorem 17. Take p 0 without loss. The convexity of implies
y. V,(p) when (Xn, Yn) ’ and Xn P; the same is true for b. Since V,(p)
Vb(p) 21 for 2 > 0, there is a neighbourhood U of p such that

Yx v > Iz(y)- n(v)l (11)
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whenever y e OO(x), v e Oq(x) and x e U; here r(y):= (Yz,..., Ye), and U may
be taken convex with and b continuous on U. In particular, Yl- v > 0, so
Lemma 21 shows that h := b must be strictly monotone along lines parallel
to the x-axis in U. Taking p+/- e U to lie on this axis on opposite sides of p 0,
continuity of h ensures that h(x)> h(p)= 0 whenever Ix- P+I < r for r suffi-
ciently small; the opposite inequality holds when x lies in the ball B,(p_). Taking r
smaller if necessary forces both B,(p+/-) c U, after which U may be replaced by its
intersection with the cylinder [r(x)l < r around the x-axis. Fix w e B,(0) : Re-.
Then h takes both positive and negative values on the line n(x)= w inside U;
since h is also continuous and strictly monotone, it vanishes uniquely at some x
on this line. Define f(w) := xx.

It remains to show that f(w) satisfies the Lipschitz bound in B,(0); no assertion
is made concerning f outside this ball (except that it be Lipschitz), and f can
certainly be extended to Rd-1 (e.g., by inversion) without changing its Lipschitz
constant. Therefore, take w, z B,(0)c Rd-. Since h vanishes at both (f(w), w)
and (f(z), z), Lemma 21 guarantees some x e Re on the line segment joining them,
along with y e d0(x) and v e O0(x), such that

lYx vxllf(w) f(z)l--I (re(y)- rc(v), z

< Ir(y)- rc(v)l Iz- wl.

Since U was convex, x U and (11) implies the Lipschitz bound. rn

Remark 22 (A Lipschitz counterexample). Both the theorem and its corollary
fail if and are not convex, but merely Lipschitz. A counterexample may be
constructed by taking 0 and obtaining as the Lipschitz extension of

where xx > x22
where Ixxl< x/2

from a neighbourhood of the origin to the plane. In this case, VO(0) (1, 0), but
{ 0} intersects each neighbourhood of the origin in a set of positive area.
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