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Abstract

Symmetries and Hamiltonian structure are combined with Melnikov’s
method to show a set of exact solutions to the 2D semi-geostrophic equa-
tions in an elliptical tank respond chaotically to gentle periodic forcing
of the domain eccentricity (or of the potential vorticity, for that matter)
which are sinusoidal in time with nearly any period. A similar approach
confirms the chaotic response of the quasi-geostrophic equations to gentle
periodic forcing by an external shearing field. Our approach simplifies and
strengthens the proof by Bertozzi (upon which it is based) concerning the
chaotic response of Kirchoff elliptical vortex patches to gentle shearing in
the 2D Euler equations.

Introduction

The semi-geostrophic approximation from meteorology and oceanography is
sometimes used to study the large-scale, long-time dynamics of a stratified rotat-
ing fluid. Numerical studies suggest it predicts dynamics less turbulent [6], [7],
[8] than those of the primitive equations of hydrodynamics from which it is de-
rived, which Cullen [7] highlights as an attractive feature of the semi-geostrophic
model. It is therefore natural to wonder whether this approximation precludes
some of the chaotic behavior associated with other atmospheric models [12], [22]
and idealized problems in fluid mechanics [1], [3].

In this paper we provide some mathematical evidence to the contrary. The
semi-geostrophic equations are introduced as an approximation of the 2D in-
compressible Euler equations, and a set of exact solutions to these equations is
presented from [20] corresponding to the case that the fluid occupies an ellipti-
cal tank. This is done in section 2. The resulting dynamics end up resembling
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a more complicated variant of the dynamics of the Kirchoff ellipse, which was
first analyzed by Kirchoff [19], and subsequently by Kida [18], Neu [26], Bertozzi
[3], Meacham et al [25] and others, but with potential vorticity playing the role
vorticity plays in the 2D Euler equations. In fact, by using a slightly simpler
argument than in [3], it is shown that under small perturbations of the ellip-
tical tank’s eccentricity, that the equations from [20] evolve chaotically. This
is accomplished by using the Melnikov method [24], whose origins can already
be discerned in the celebrated work of Poincaré [27]. We direct the interested
reader to [17] for the historical development and a thorough treatment of the
Melnikov method. This method provides a computational way of determining
when a dynamical system is chaotic by exploiting the Smale-Birkhoff theorem,
which was anticipated by Birkhoff [4] and established rigorously by Smale [29].
It provides sufficient conditions for the neighborhood around a homoclinic orbit
of a dynamical system to possess a chaotic subsystem.

For the Kirchoff ellipse, Bertozzi [3] used the non-Hamiltonian form of the Mel-
nikov method [24] to prove the dynamics evolve chaotically under perturbations
by a shearing flow. We show that except for one parameter value, the dynam-
ics of the Kirchoff ellipse can also be modeled using the homoclinic orbit of a
Hamiltonian system, hence a somewhat simpler calculation yields essentially the
same result. We also extend the range of perturbation frequencies which result
in chaotic dynamics to all but a countable, topologically isolated set, which im-
proves Bertozzi’s result on the existence of an interval of such frequencies. Our
method of proof relies on exploiting symmetries in two degree of freedom Hamil-
tonian systems, along with the analyticity of the fourier transform of a rapidly
decaying function, in order simplify the Melnikov analysis. Our method is simi-
lar to the method employed by Dankowicz and Holmes and Holmes and Marsden
in the context of the Sitnikov [10] and asymmetric central forcing problems [16].
Similar results for the quasi-geostrophic equations are derived by Meacham et al
[25] by applying Melnikov analysis to ellipsoidal vorticies in a shearing field and
by Meacham et al [22] for the quasi-geostrophic ellipsoidal vortex patch, but by
using a computational approach to infer chaotic dynamics when a non-divergent
unidirectional vertical shearing is perturbed periodically. Cullen and Douglas
[9] show using rearrangement methods that solutions of the semi-geostrophic
equations are unstable for large values of inverse potential vorticity (defined in
section 2). Our result provides an independent way of verifying instability of the
semi-geostrophic equations within this regime. We also provide an analytical
method of evaluating the Melnikov integral under gentle periodic forcing of the
quasi-geostrophic model by a horizontal shearing field, similar to our approach
to the 2D Euler equation and semi-geostrophic model. Some motivation for the
problem is given in section 3 along with the proofs of the propositions.
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1 CHAOS AND NONLINEAR DYNAMICS

1 Chaos and Nonlinear Dynamics

1.1 Dynamical systems. In this section we review some well-known results
from the theory of chaotic dynamics focusing our attention, for simplicity, on a
smooth planar autonomous Hamiltonian vector field H : Ω ⊂ R2 → R,

ẋ = J∇H(x) = f(x) (1)

where

J :=
(

0 −1
1 0

)
(2)

and a dot denotes d
dt . Recall that a fixed point of (1) is a point x0 ∈ Ω such

that f(x0) = 0. We say this fixed point is hyperbolic if Df(x0) has two linearly
independent eigenvectors e1, e2 corresponding to eigenvalues with non-zero real
part. In our case there will always be one positive and one negative eigenvalue
α+ and α− corresponding to e1 and e2 respectively with α± = ±α due to the
Hamiltonian structure of the vector field. A saddle connection between two
hyperbolic fixed points is a curve q0 : R → R2 with continuous extension to
R∪{±∞}, such that q0(∞) = p1 and q0(−∞) = p2, which satisfies (1) for all
t ∈ R. The saddle connection, and the fixed points p1, p2 are called homoclinic
when p1 = p2 and heteroclinic otherwise (see Figure 3 for an example of a
homoclinic saddle connection). For a continuous dynamical system of the form
(1), we can construct the Poincaré map by extending our phase space to include
time as a dimension, Ω×R, and consider the intersection of the orbit (q0(t), t)
with planes tn = t0 + nT for n ∈ N, projected back onto t = t0 (see Figure 1).
This yields an iterative map, P := Pt0 : Ω → Ω. We also say that q is a fixed
point of P if P(q) = q. We then say that this map has a hyperbolic fixed point
at q if DP(q) has two linearly independent eigenvectors e1, e2 corresponding
to eigenvalues λ1 > 1 and 1 > λ2 > 0. The map P is a diffeomorphism and
(Ω,P, d), where d denotes the standard euclidian distance, is a discrete time
dynamical system. For a fixed point q of P, we can then naturally define the
stable, and unstable manifolds,

W s(q) = {x ∈ Ω | Pn(x) → q as n →∞} (3)

Wu(q) = {x ∈ Ω | Pn(x) → q as n → −∞} (4)

We say the manifolds W s and Wu of the fixed point q intersect transversally
if dim{span(Ts, Tu)} = dim Tu + dim Ts = 2 where Ts, Tu denote the tangent
spaces of W s and Wu respectively at the point of intersection.

1.2 The bi-infinite shift on 2 symbols. Let

Σ2 = {s = (· · · , s−2, s−1, s0, s1, s2, · · · ) | si = 1, 0}. (5)

We can define a metric d(s, t) =
∑∞

i=−∞
1

2|i| |si − ti| that turns (Σ2, d) into
a topological space. The shift map, σ : Σ2 → Σ2 defined by (σ(s))i = si+1
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1 CHAOS AND NONLINEAR DYNAMICS

Figure 1: Forward iteration of Poincare map, Pt0 := P in figure. The point q
gets mapped to P (q) where it intersects the next plane.

turns (Σ2, d, σ) into a discrete dynamical system. This dynamical system has
an infinite number of periodic orbits with arbitrarily long periods and sensitive
dependence on initial conditions (see [11]). Since the shift dynamics (Σ2, d, σ)
satisfy any reasonable definition of chaos, one way to establish the presence of
chaos in our systems is to show that each of them contains a subsystem on
which the dynamics are topologically conjugate to those of (Σ2, d, σ). For our
purposes we will say a dynamical system (Ω, d,P) is chaotic if it is topologically
conjugate to (Σ2, d, σ). The following theorem anticipated by Birkhoff [4] and
established by Smale [29] provides sufficient conditions for a dynamical system
to contain a chaotic subsystem.

Theorem 1 (Smale, Birkhoff) Suppose P: Ω → Ω ⊂ R2 is a diffeomorphism
with a hyperbolic fixed point p whose stable and unstable manifolds intersect
transversally at q. Then some iterate Pn has an set I on which it is topologically
equivalent (conjugate) to the bi-infinite shift on two symbols.

1.3 Melnikov’s Method. The problem now is to determine sufficient con-
ditions for such transversal intersections of the stable and unstable manifolds
to occur. Melnikov [24] stated the following sufficient condition for an unper-
turbed vector field with a homoclinic saddle connection (see figure 3) to possess
time periodic perturbations for which the stable and unstable manifolds of the
perturbed Poincaré map intersect transversally, to leading order in the pertur-
bation. As in Wiggins [31] we consider a time periodic perturbation of (1) of
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1 CHAOS AND NONLINEAR DYNAMICS

the form,
ẋ = f(x) + εg(x, t, ε), (6)

where g(x, t + T, ε) = g(x, t, ε)

for some T > 0. We define the Melnikov integral for planar Hamiltonian vector
fields,

M(t0) =
∫ ∞

−∞
f(q0(t)) ∧ g(q0(t), t + t0, 0)dt (7)

where q0(t) denotes the parameterized homoclinic saddle connection between of
a hyperbolic fixed point of the unperturbed system and ∧ is the wedge product,
defined as a ∧ b = a1b2 − a2b1. We state Melnikov’s Theorem.

Theorem 2 (Melnikov): Given that f ∈ Cr(Ω;R), g ∈ Cr(Ω ×R2;R) where
Ω ⊂ R2 for r ≥ 2, g has a C2 dependence on ε, and for ε = 0, (6) possesses
a homoclinic saddle connection with hyperbolic fixed point p. If there exists a
t0 ∈ R such that M(t0) = 0 and M ′(t0) 6= 0 (called a simple zero in [24]), then
W s(pε) and Wu(pε) intersect transversally for ε > 0 sufficiently small, where
pε is a fixed point of the time T-Poincaré map P ε

T .

The proof of the above theorem and derivation of the Melnikov integral is
well known and can be found in [11], [17], [31].

We now introduce some exact solutions to the 2D Semi-Geostrophic equa-
tions developed by McCann and Oberman [20]. The following section is devoted
to these. In section 3, the results of this section are used to demonstrate chaotic
dynamics are present under perturbations of the vector field appropriate for the
use of Melnikov’s theorem.
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2 SOME EXACT SOLUTIONS TO THE SEMI-GEOSTROPHIC (SG)
AND QUASI-GEOSTROPHIC (QG) EQUATIONS

2 Some exact solutions to the semi-geostrophic
(SG) and quasi-geostrophic (QG) equations

2.1 Derivation of SG from 2D Euler equations. The 2D incompressible
Euler equations on a bounded domain Y ⊂ R2 with rotating frame of reference
and unit density are

(∂t + v · ∇)v + 2ΩJv = −∇P (8)

∇ · v = 0, (9)

v · n̂ = 0, (10)

where n̂ is the normal to the boundary Y , and v is a function of space and time,
so v : Y × [0,∞) → R2. The symplectic matrix J is defined as in (2), and we
choose units of time so that 2Ω = 1.

These equations can be re-written in terms of a stream function since the
incompressibility condition yields

v(x, t) = J∇ψ(x, t). (11)

The Euler equations then become:

∇∂ψ

∂t
+ (D2ψ + I)J∇ψ − J∇P = 0. (12)

In large scale atmospheric flow, the acceleration terms in the Euler equations
can be neglected entirely which gives ψ = P . This is called the geostrophic
approximation. We therefore call the quantity J∇P the geostrophic velocity (as
opposed to the full velocity J∇ψ). The semi-geostrophic approximation to the
Euler equations involves approximating the small terms only in (12) by ψ v P
so that we get

∇∂P

∂t
+ (D2P + I)J∇ψ − J∇P = 0. (13)

The semi-geostrophic equations satisfy conservation of potential vorticity, 1/λ(y, t)
defined by,

1
λ2

:= det[I + D2P (t,y)] (14)

in much the same way vorticity, trace(I + D2ψ) is conserved along lagrangian
particle trajectories in the 2D Incompressible Euler equations. The quasi-
geostrophic approximation to the Euler equations involves replacing the coeffi-
cient J∇ψ of D2P with J∇P in equation (13), and takes the form,

∇∂P

∂t
+ D2PJ∇P + J∇ψ − J∇P = 0. (15)
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2 SOME EXACT SOLUTIONS TO THE SEMI-GEOSTROPHIC (SG)
AND QUASI-GEOSTROPHIC (QG) EQUATIONS

2.2 Exact solutions when Y is an ellipse McCann and Oberman [20]
considered the fluid restricted to an elliptical tank, so that the domain Y in
the above equations is a fixed ellipse, with the evolution considered under the
SG approximation given by (13). Following Cullen and Purser [5], they define
V (t,y) := P (t,y) + 1

2 (yT · y) and introduce the Legendre transform of V (t,y),

U(t,x) = sup
y∈Y

yT · x− V (t,y),

with
ρ(t,x) := det D2U(t,x),

∇U(t,R2) ⊂ Ȳ ,

and ρ(t,x) defined as the inverse potential vorticity which is conserved along
lagrangian particle trajectories. This conservation law tells us that ∇V maps Y
to a dynamical inverse potential vortex patch X(t) of constant intensity (similar
to the elliptical vortex patch studied in [3]), which is shown to also be an el-
lipse at all times by verifying consistency of the ansatz that P (t,y) and Q(t,y)
remain quadratic functions of space at each instant in time. They then show
the evolution can be reduced to an ordinary differential equation in these dual
coordinates, a(t) and θ̃(t) representing the aspect ratio and inclination of the el-
lipse X(t) with respect to the x-axis. Cast into canonically conjugate variables,
r = (a + 1/a)/2 and expressing s = cosh(ϕ) ≥ 1, they obtain a Hamiltonian
system, which we will express in coordinates (r, θ := 2θ̃) which for our purposes,
are more convenient than those of [20]. These coordinates reveal the homoclinic
orbits in our phase space more readily and allow for comparison to the vor-
tex patch solutions of the 2D Euler and QG equations. The equations for the
evolution of the dual ellipse in these coordinates are,

d

dt

(
r
θ

)
= J∇Hλ,s

SG(r, θ), (16)

Hλ,s
SG

2
(r, θ) = λ2s + r − λ

(
2 + 2rs + 2 cos θ

√
(r2 − 1)(s2 − 1)

)1/2

, (17)

ϕ < ϕcr(λ), λ > 2

here λ is a constant defined by (14), eϕ represents the aspect ratio of the physical
domain Y and ϕcr(λ) is defined by (18) (discussed further below). We note that
the above Hamiltonian is still well defined for all positive values of ϕ and λ, and
the Cullen and Purser stability criterion continues to be satisfied for all of the
McCann and Oberman solutions which satisfy it initially. However there is
no homoclinic orbit when ϕ ≥ ϕcr(λ) and hence one cannot employ Melnikov
analysis to establish the existence of chaotic dynamics.
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2 SOME EXACT SOLUTIONS TO THE SEMI-GEOSTROPHIC (SG)
AND QUASI-GEOSTROPHIC (QG) EQUATIONS

Figure 2: The homoclinic orbit q0(t) for the cases (a) ϕbi(λ) < ϕ < ϕcr(λ) and
(b) ϕ < ϕbi(λ) on axes (x, y) = (r cos θ, r sin θ) with a singularity at r = 0.

The evolution of the elliptical dual domain X(t) resembles the elliptical
vortex patch studied by Bertozzi [3]. Theorem 1.4 in [20] shows that when
λ > 2 and ϕ < ϕcr(λ), there exist hyperbolic fixed points located symmetrically
across from each other on the y-axis and connected by a heteroclinic saddle
connection. In the coordinates θ = 2θ̃ we have chosen to work in, this orbit
becomes homoclinic and resembles the orbit shown in Figures 2 and 3. Moreover,
there is a bifurcation curve ϕbi(λ) < ϕcr(λ) separating two distinct phase space
structures. For ϕ > ϕbi(λ) we have the phase space of Figure 2(a) and for
ϕ < ϕbi(λ) the phase space resembles 2(b). In much the same way as in [3], the
parameter s will be perturbed periodically and the Melnikov integral (7) will
be evaluated along this orbit. Melnikov’s theorem from section 1 will then be
used to establish the chaotic response of the Hamiltonian vector field given by
(16)–(17) to gentle periodic forcing in the flow regimes ϕ < ϕcr(λ) given by,

sinh
ϕcr(λ)

2
=

1
λ
√

2

(
−1 +

√
λ2 − 1

3

)3/2

, (18)

which contain this homoclinic orbit. We remark that when ϕ = ϕbi(λ) the in-
ner homoclinic orbit contains a singularity and this situation is dealt with by
evaluating the Melnikov integral around the outer saddle connection connecting
(r0, 0) to itself in Figure 2. The existence of the homoclinic saddle connection
follows from the rigorous analysis of [20].

2.3 Three dimensional quasi-geostrophic ellipsoidal vortex patch.

Meacham et al [22] studied the 3D quasi-geostrophic equations in the case of
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2 SOME EXACT SOLUTIONS TO THE SEMI-GEOSTROPHIC (SG)
AND QUASI-GEOSTROPHIC (QG) EQUATIONS

initial data corresponding to an ellipsoidal region X(0) ⊂ R3 with unit vorticity
in the interior and zero vorticity outside, in the presence of a background stream
function. The 3D quasi-geostrophic equations are obtained in exactly the same
way as the semi-geostrophic equations are, with further approximation (15) of
the advection operator in the inertial terms as was done for SG in equation (13).
This additional approximation corresponds to replacing the coefficient J∇ψ of
D2P with J∇P in equation (13) in 2 dimensions, yielding (15), and is similar
in R3. We are mainly concerned here with the vorticity formulation and will
direct the reader interested in understanding the QG model to [28]. Meacham
et al [22] studied,

(
∂

∂t
+ (−∂ψT

∂y
,
∂ψT

∂x
) · ∇)∆ψT = 0 (19)

where the total stream function ψT is decomposed into endogenous and exoge-
nously controlled stream functions ψ and ψ̄ respectively:

ψT := ψ + ψ̄. (20)

The endogenous stream function ψ : R3 → R satisfies,

∆ψ = 1X(t), (21)

X(0) = {(x, y, z) ∈ R3 :
x2

a2
+

y2

b2
+

z2

c2
≤ 1}. (22)

The exogenously controlled stream function ψ̄ : R3 → R corresponds to an
externally controlled, vorticity free shearing field, defined as:

ψ̄(x, y, z) =
λ

4
(x2 + y2) +

s

4
(x2 − y2)− τyz, (23)

with control parameters (λ, s, τ) = (λ(t), s(t), τ(t)) representing an overall back-
ground rotation, the strength of a straining field, and the strength of a verti-
cal shear respectively. A set of exact solutions to (19)–(23) were obtained by
Meacham et al in [23] and were further studied by Meacham et al in [22]. There
it was shown that the above equations are constrained to a lie on a finite di-
mensional submanifold, where the ellipsoid X(t) remains an ellipsoid of fixed
volume and unit vorticity for all times. When τ = 0, it was shown the equations
had a canonical Hamiltonian structure in canonically conjugate variables (r, θ)
where r = cosh σ, with eσ = a/b and θ, which is 1/2 the rotation of the ellipsoid
in the plane corresponding to semi-minor and semi-major axes a, b. The explicit
solution was found to be,

d

dt

(
r
θ

)
= J∇Hλ,s

QG(r, θ), (24)

Hλ,s
QG(r, θ) = 2s

√
r2 − 1 cos θ − λr +

∫ r

0

Ω(t)dt, (25)
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3 CHAOTIC DYNAMICS IN EULER, SG, AND QG.

γ :=
∣∣∣ s

λ

∣∣∣ < 1 and 0 < γ < γQG
cr

where Ω(t) is a rotation frequency dependent on the aspect ratio a(t)/b(t) and
for γ ≥ γQG

cr , similar to the SG case, the above Hamiltonian is still well defined
but does not contain a homoclinic orbit. The phase space corresponding to
(25) was studied in [22] and is very similar to that of (17). It again possess a
homoclinic fixed point on the x-axis connected by a homoclinic saddle connec-
tion as shown in Figure 3. Note also that both (25) and (17) are symmetric
with respect to reflections across the x axis as a result of the cos θ term in the
Hamiltonian being the only angular dependence. This will be important in the
analysis of the next section.

In the next section we exploit the symmetries present in the exact Hamilto-
nian solutions for both SG, QG and 2D Euler to simplify the Melnikov analysis
in a similar way as was done in [3],[10],[16].

3 Chaotic Dynamics in Euler, SG, and QG.

3.1 Hamiltonian form of Bertozzi’s equations. We now apply the Mel-
nikov method to McCann and Oberman’s [20] solutions of the semi-geostrophic
equations, (16)–(17) as described in the previous section by introducing a time
periodic perturbation of the domain eccentricity s = cosh ϕ. Our calculation
proceeds in much the same way as Bertozzi’s [3] for the Kirchoff ellipse, who
instead perturbed vortex patch eccentricity, but we use the Hamiltonian form of
Melnikov’s method which is simpler. In fact, by making the change of variables
a = e

σ
2 , b = e

−σ
2 and r = cosh σ, the evolution equations for the elliptical vortex

patch given by Bertozzi [3] become

ȧ− s cos(2θ̃)a = 0, (26)

ḃ + s cos(2θ̃)b = 0, (27)

˙̃
θ =

λab

(a + b)2
− s

a2 + b2

a2 − b2
sin 2θ̃, (28)

where a, b are the semi major and semi minor axes of the ellipse, θ̃ is the
inclination with respect to the x axis, s is the principle rate of strain in the
directions x = ±y and λ is the background rotation strength. We can cast these
equations into a Hamiltonian system in the variables (r(t), θ(t) := π

2 − 2θ̃),

d

dt

(
r
θ

)
= J∇Hλ,s

EL(r, θ), (29)

0 <
s

λ
< γEL

cr

Hλ,s
EL(r, θ) = −2s

√
r2 − 1 cos θ + λ log (r + 1), (30)
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3 CHAOTIC DYNAMICS IN EULER, SG, AND QG.

where once again the Hamiltonian only possesses a homoclinic orbit for 0 < s
λ <

γEL
cr but is well-defined outside of this regime. Here γEL

cr can be numerically
calculated to be approximately 0.15 by solving for the real roots of the following
equation

r4 − 2r3 + r2 − 1 = 0 (31)

where γEL
cr =

1
2r

√
r − 1
r + 1

. (32)

Consequently, Bertozzi’s result could have been obtained by exactly the same
symmetry argument we use below with the Hamiltonian form of Melnikov’s in-
tegral. Note that (30) shares the same symmetries as (17) for SG and (25) for
QG, and once again has a homoclinic saddle connection with hyperbolic fixed
point on the x-axis as shown in Figure 3.

3.2 Setting up the Melnikov integral. In this section we will denote the
Hamiltonian as Hλ,s when the equations apply to all three models, Hλ,s

SG,Hλ,s
QG

and Hλ,s
EL. We note that we work exclusively in the parameter ranges given below

each Hamiltonian to ensure the existence of the homoclinic orbit. Equations
(17), (25), (30) under a periodic perturbation of the parameter s can then be
written as,

Hλ,s0+ε cos(kt+kt0)(r, θ) := Hλ,s0(r, θ) + ε cos(kt + kt0)
∂Hλ,s

∂s

∣∣∣∣
s0

(r, θ) + O(ε2). (33)

From this we can see that the gradient of the perturbed Hamiltonian, Hλ,s0+ε cos(kt+kt0),
can be written as,

∇Hλ,s0+ε cos(kt+kt0) = ∇Hλ,s0 + ε cos k(t + t0)∇∂Hλ,s

∂s

∣∣∣∣
s0

+ O(ε2). (34)

Now the perturbed Hamiltonian vector field can be written as,

d

dt

(
r
θ

)
= f(r, θ) + εg(r, θ, t, ε), (35)

where f = J∇Hλ,s0 , g = J∇∂Hλ,s

∂s

∣∣∣∣
s0

cos(kt+kt0)+O(ε). We note that in order

to ensure g satisfies the conditions of Melnikov’s theorem (Theorem 1) we need
only ensure that ∂2Hλ,s

∂s2 is smooth and bounded in our region of interest (which
is indeed the case for all three Hamiltonians). We can now compute f ∧g in the
Melnikov integral (7), noting that the (35) is of the form (7), with perturbed
vector field:

f(r, θ) ∧ g(r, θ, t + t0, 0) = cos(kt + kt0)J∇Hλ,s0(r, θ) ∧ J∇∂Hλ,s(r, θ)
∂s

∣∣∣∣
s0

.

(36)

11



3 CHAOTIC DYNAMICS IN EULER, SG, AND QG.

Recall from section 2 that for ϕ < ϕcr(λ) where ϕcr(λ) satisfies (18), Hλ,s
SG

possesses a homoclinic saddle connection as shown in Figure 2. When 0 <
|s/λ| < γEL

cr ' 0.15 where γEL
cr solves (31)–(32), Hλ,s

EL has a homoclinic fixed
point lying on the x-axis outside of the unit disk as shown in Figure 3. Finally
[22] show when 0 < γ := |s/λ| < γQG

cr for some γQG
cr > 0 that Hλ,s

QG also has a
homoclinic orbit as shown in Figure 3.

In all three cases, we denote the time parametrization of this orbit as q0(t) =
(r(t), θ(t)) with q0(0) lying on the x-axis as shown in Figures 2 and 3. Since
Hλ,s(r,−θ) = Hλ,s(r, θ) (for Hλ,s

SG,Hλ,s
QG and Hλ,s

EL), it follows that f∧g(q0(t), t, 0) =
−f ∧ g(q0(−t), t, 0) from (36). For t0 ∈ R, we then seek to evaluate,

M(t0) =
∫ ∞

−∞
f(q0(t)) ∧ g(q0(t), t + t0, 0)dt. (37)

3.3 Main results. We show below that the Melnikov integral defined by
equations (34), (35) has simple zeros for all but countably many perturbation
frequencies k ∈ R, for Hλ,s

SG,Hλ,s
QG and Hλ,s

EL. Melnikov’s theorem combined with
the Smale-Birkhoff theorem then allow us to conclude the presence of chaotic
dynamics in a neighborhood of the hyperbolic saddle connection shown in Fig-
ures 2,3.

Our method of proof involves exploiting the fact that the fourier transform
of an exponentially decaying function is analytic. The Melnikov integral defined
by equations (34), (35) will be shown to be the fourier transform of a function
involving gradients of Hλ,s and ∂Hλ,s

∂s , parameterized along the orbit in Figure
3. Since the Melnikov integral measures the leading order separation of W s and
Wu, this will guarantee transversal intersections as long as the integral (34)
doesn’t vanish identically, which is checked for each of the three fluid models
in section 4 (appendix). We first establish the following lemma which will
prove useful for our main result; it shows that ∇Hλ,s(q0(t)) does indeed decay
exponentially as t → ±∞. We work in a general setting however since the result
is a general consequence of the asymptotic stability of the stable manifolds to
hyperbolic fixed points. This result is well known [11], [31] but we include the
proof for the two dimensional case for completeness.

Lemma 3 Let ẋ = f(x) be an ODE on a smooth 2-manifold M with f : M→
TM smooth. If x0 is a homoclinic fixed point then f(x(t)) decays exponentially
as t → ±∞ where x(t) paramaterizes the homoclinic saddle orbit to x0.

Proof : We first recall the definitions for stable and unstable manifolds for a
fixed point x0 of a continuous time flow x(t) induced by ẋ = f(x):

W s := {y ∈M : x(t) → x0 as t →∞, x(0) = y},

12
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Wu := {y ∈M : x(t) → x0 as t → −∞, x(0) = y}.
We set x0 = 0 without loss of generality and note that homoclinic orbits on a
2-manifold are always hyperbolic. The stable manifold theorem [11] then tells
us that the stable and unstable manifolds of the linearized system ẋ = Df(0)x,
denoted Es and Eu, form the tangent space to W s and Wu respectively at 0,
both of which are smooth manifolds. Hence we can restrict the ODE to a local
neighborhood of 0 in W s with tangent space Es and guarantee the solutions
remain in this set for all forward times by the stability of the manifold. All
subsequent calculations assume this restriction. Now work in a local coordinate
chart in this subset of the manifold. Since f is smooth we can do a Taylor
expansion about the point x0 = 0,

ẋ = Df(0)(x) + R(x),

where R(x) is a remainder term containing terms of order |x|2 and higher and
| · | represents the Euclidian metric on the coordinates. Now let x(t) be any
curve lying on W s that solves the ODE. Differentiating |x(t)|2 with respect to
time we obtain,

d|x(t)|2
dt

= 2〈ẋ(t),x(t)〉 (38)

= 2〈f(x(t)),x(t)〉 (39)
= 2〈Df(0)x(t) + R(x(t)),x(t)〉 (40)

≤ −2c|x(t)|2 + 2|R(x(t))| · |x(t)|. (41)

Where c > 0 is smaller in absolute values then all of the eigenvalues of Df(0),
which are negative since we are on a stable manifold. Since R has O(|x|2)
control we can choose a T > 0 so that

|R(x(t))| ≤ c

2
|x(t)|.

Then we conclude that
d|x(t)|2

dt
≤ −c|x(t)|2.

Hence all coordinates of x(t) decay exponentially and so by Taylor expanding
f(x) about x0 = 0, we can conclude that f(x(t)) → 0 exponentially as t → ∞.
The argument is the same under time reversal due to the fixed point being ho-
moclinic. 2

We now recall a second Lemma which allows us to use exponential decay of
a function as a sufficient condition for analyticity in an open subset of the com-
plex plane given e.g by Dym and McKean [21]. We include the proof for the sake
of completeness. Since we will show that the Melnikov integral can be written as
(47), the existence of simple zeroes will be guaranteed since the integral in (47)
will vanish for no more than countably many perturbation frequencies k ∈ R.
Below f̂(k) denotes the fourier transform (42) of f : R → R.

13
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Lemma 4 Given f : R → R, if there exists T,B > 0 such that |f(t)| ≤
constant ×e−B|t| for all |t| > T and f(t) ≤ M < ∞ for all t ∈ R, then f̂(k) is
analytic in the open strip U := {γ = a + ib : |2πb| < B}.
Proof: Any differentiable complex-valued function that satisfies the Cauchy-
Riemann equations is well known to be analytic. Hence our first goal is to verify
the fourier transform of the function f : R → R is differentiable. This involves
differentiating under the integral and hence requires the Lebesgue dominated
convergence theorem. Secondly we must verify the function satisfies that the
Cauchy Riemann equations.
First recall the fourier transform of a function f : R → R is defined as

f̂(k) :=
∫ ∞

−∞
f(t)e−2πiktdt. (42)

Write k = a + bi where a, b ∈ R. Then

f̂(a + bi) =
∫ ∞

−∞
f(t)e−2π(a+bi)itdt (43)

=
∫ ∞

−∞
f(t) cos(2πat)e2πbt − i

∫ ∞

−∞
f(t) sin(2πat)e2πbtdt (44)

=: u(a + bi) + iv(a + bi) (45)

using Euler’s identity.

Now we verify differentiability of f̂(k). Differentiating with respect to a, we
get the following estimate for the integrand:

∣∣∣∣
∂

∂a
f(t) cos(2πat)e2πbt

∣∣∣∣ ≤ Ce−B|t||2πt|e2πbt ∈ L1(R; dt)

where |t| > T , provided |2πb| < B. We can now apply the dominated con-
vergence theorem to differentiate (43) under the integral sign with respect to a
using the above bound. A similar argument shows we can differentiate (43) with
respect to b. It follows that f̂(k) ∈ C1(R2;R2). Lastly, it is easily checked that
∂u
∂a = ∂v

∂b and ∂u
∂b = −∂v

∂a and hence the Cauchy-Riemann equations are satisfied
for u, v in U := {γ = a + ib : |2πb| < B}. Consequently, f̂(k) is analytic in U .
2

We now prove our main result, which shows that the Melnikov integral,
defined by (36), (37) has simple zeros for all but countably many periods. Mel-
nikov’s theorem combined with the Smale-Birkhoff theorem for homoclinic orbits
then allows us to conclude the presence of chaotic dynamics for initial conditions
in a neighborhood of the fixed point (r0, 0) shown in Figure 3.

Theorem 5 The Melnikov function M(t0) defined by (36),(37) has simple zeros
M(0) = 0 6= M ′(0) for all perturbation frequencies k ∈ R outside a set K ⊂
R which has no accumulation points. In particular, the set K of exceptional
frequencies is countable.

14



3 CHAOTIC DYNAMICS IN EULER, SG, AND QG.

Figure 3: Homoclinic orbit q0(t) possessed by Hλ,s
EL,Hλ,s

QG

with fixed point (r0, 0)

Proof: Combining equations (35) and (36) gives us the following equation for
the Melnikov function,

M(t0) =
∫ ∞

−∞
J∇Hs,λ(q0(t)) ∧ J∇∂Hs,λ(q0(t))

∂s

∣∣∣∣
s0

cos(kt + kt0)dt.

Defining

f ∧ g(q0(t)) = J∇Hs,λ(q0(t)) ∧ J∇∂Hs,λ(q0(t))
∂s

∣∣∣∣
s0

cos(kt + kt0)

=: f(t) cos(kt + kt0) (46)

we see from the reflection symmetry of HSG in (17), HQG in (25), and HEL in
(30) across the x-axis (see Figure 3), that the cross product term, f(t), satisfies
f(−t) = −f(t). Rewriting cos(t+ t0)k as cos(kt) cos(kt0)−sin(kt) sin(kt0), note
that the even part of the Melnikov integral vanishes as one integrates over R.
Consequently,

M(t0) = sin(kt0)
∫ ∞

−∞
sin(kt)f(t)dt. (47)

Note that f(t) is written entirely in terms of gradients of H. Lemma 1 immedi-
ately yields that f(t) decays exponentially as t → ±∞, and is clearly bounded
since all of our Hamiltonians are smooth within our region of interest except
for the case where r = 1 on the orbit in (30) which Bertozzi [3] deals with by
working in cartesian coordinates. The homoclinic orbit shown in Figure 2 incurs
a singularity when ϕ = ϕbi(λ), the bifurcation curve separating the regimes in
Figure 2, however we can simply choose the outer homoclinic orbit in Figure 2
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in this case and so the case ϕ = ϕbi(λ) is included in our result. We can now
use Lemma 2, which tells us that the fourier transform of a function that decays
exponentially is analytic in an open neighborhood of the complex plane con-
taining the real line (b = 0 where z = a + bi). From Corollary 8 (see appendix),
we see that f(t) is not identically zero for HSG, HQG and HEL. Hence the real
zeros of the fourier transform, f̂(k) cannot accumulate. It follows that for all
but countably many k ∈ R, M(t0) has simple zeros since sin(kt0) does (eg. at
t0 = 0). 2

Remark 6 Note that if we perturb the potential vorticity λ instead of the do-
main eccentricity s in HSG, a similar conclusion holds, but the calculations are
simpler since the dependence of Hλ,s

SG on λ is much simpler.

4 Discussion and conclusions

In the context of this paper, chaos can be understood to mean sensitivity of the
dynamics to initial conditions, or more specifically, topological conjugacy of a
subset of the dynamics to the bi-infinite shift on two symbols. This mathematics
underlies what is popularly known as the butterfly effect. Bertozzi [3] and sub-
sequent authors have demonstrated that certain elliptical vortex patch solutions
of the 2D Euler equations become chaotic in this sense when small-amplitude
time-periodic perturbations are introduced in the form of a background shearing
field. Our analysis simplifies her argument and strengthens her conclusions, by
showing this chaotic response occurs not only in a positive interval of perturba-
tion frequencies, but at all such frequencies outside of a countable, topologically
isolated set.

Using the same technique, we confirm a similar chaotic response to a gently
oscillating shear field observed numerically by Meacham et al for an ellipti-
cal potential vortex patch evolving as 3D quasi-geostrophic fluid [22], and of
2D semi-geostrophic fluid rotating in an elliptical tank to gentle periodic per-
turbations of the tank’s eccentricity. These results are of interest because the
quasi-geostrophic and semi-geostrophic dynamics are examples of balanced mod-
els: they approximate the primitive equations governing rotating fluids in the
atmosphere and oceans (gravitationally stratified in the 3D case), by using a
separation of time scales to assume pressure gradients instantaneously adjust to
balance the Coriolis force of rotation, and to maintain gravitational stratifica-
tion in 3D. There is considerable evidence for the stabilizing effects of rotation
and stratification in fluids, and one might naively hope the instabilities in the
primitive equations are due to the rapid but non-instantaneous response to im-
balance, and might therefore be absent from the balanced models, enabling the
latter to produce longer, more stable, and reliable forecasts. On the contrary,
our analysis shows the chaotic response of elliptical potential vorticity patches in
the balanced models to be remarkably similar to that of the 2D Euler equation.
The mathematical similarity seems to us somewhat surprising since the equa-
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tions model different physics: the 2D Euler equation, if viewed as a balanced
model, would model motion independent of depth on small horizontal scales,
whereas the semi-geostrophic equation models motion independent of the depth
on large horizontal scales. But the chaotic response of the balanced models is
made less surprising after observing that it occurs in a flow regime outside the
realm of validity of the semi-geostrophic and quasi-geostrophic approximations:
the semi-geostrophic equations, in particular, are not expected to be accurate
for large values λ À 1 of inverse potential vorticity [6].
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A Appendix

The purpose of this appendix is to ensure that the cross product term f(t), as
defined by equation (41), does not vanish identically for any of the Hamiltoni-
ans (17), (25), (30). This is necessary in the proof of Theorem 4 to ensure that
f(t) is non-zero at all but a countable, topologically isolated set of points. We
accomplish this goal by first proving a technical lemma which amounts to ver-
ifying that the level sets of Hλ,s and ∂Hλ,s

∂s are not coincident along the entire
saddle connection q0(t) in Figure 3.

Lemma 7 Given H defined by (17), (25), (30), if (r, 0) ∈ R2 is the homoclinic
fixed point of H in figures 2 and 3 and
(1) ∂2Hλ,s

∂s∂θ (r, 0) = 0,
(2) ∂2Hλ,s

∂s∂r (r, 0) 6= 0,

then we have that ∇Hλ,s(q0(t)) ∧∇∂H
∂s

λ,s
(q0(t)) 6= 0 for some t ∈ R.

Proof: We inspect local behavior around the homoclinic fixed point (r, 0) and
demonstrate that the contours of Hλ,s and ∂Hλ,s

∂s are not parallel. Conditions
(1) and (2) above allow us to conclude that the level set of ∂Hλ,s

∂s passing through
the point (r, 0) intersects the x-axis at an angle of π/2. It was shown in [20] that
the fixed point (r, 0) for HSG is non-degenerate, meaning det[D2Hλ,s

SG(r, 0)] 6= 0.
The fixed points are shown to be non-degenerate for Hλ,s

QG in [23]. Bertozzi [3]
makes use of the fact that the fixed point is hyperbolic, and this can be seen
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easily by computing

det[D2Hλ,s
EL(r, 0)] = s

√
r2 − 1

(
1

(r + 1)2
+

s

2(r2 − 1)

)
6= 0,

when r > 1. We also see from a simple calculation that ∂Hλ,s

∂r∂θ (r, 0) = 0 for
all three Hamiltonians and hence the matrix D2Hλ,s is diagonalized in these
coordinates at the fixed point. This, combined with the non-vanishing of the de-
terminant ensures that the saddle connection of the unperturbed Hamiltonians
will not intersect the x-axis at an angle of π/2. The implicit function theorem
therefore ensures that in a local neighborhood of the fixed point, the contours
of Hλ,s and ∂Hλ,s

∂s are not parallel due to the non-degeneracy of the fixed point
(the contours of Hλ,s appear as in Figure 3). Hence there must exist a point on
q0(t) near (r, 0) where ∇Hλ,s and ∇∂Hλ,s

∂s are not parallel, and hence a point

where ∇Hλ,s(q0(t)) ∧∇∂H
∂s

λ,s
(q0(t)) 6= 0. 2

We now proceed with the calculations:

Corollary 8 The cross product term, f(t), defined by (42) is non-zero for some
t ∈ R for HQG, HSG and HEL.

Proof: We complete the proof by breaking it down into three cases, for the
Hamiltonians HQG, HEL and HSG defined by equations (25), (30), and (17)
respectively.

Case 1: Quasi-geostrophic vortex patch.

We must show that

∇Hλ,s
QG(q0(t)) ∧∇∂HQG

∂s

λ,s

(q0(t)) 6= 0 for some t ∈ R. (48)

Lemma 6 gives us three conditions that we can verify that are sufficient to yield
this result.
Differentiating (25) with respect to the parameter s gives,

∂Hλ,s
QG

∂s
= −1

2

√
r2 − 1 cos θ.

Differentiating with respect to θ clearly gives
∂Hλ,s

QG

∂s∂θ = 0 at the point θ = 0, but

∂2Hλ,s
QG

∂s∂r
=
−1
2

r cos θ√
r2 − 1

,

which does not vanish where r is defined and θ = 0. By choosing r = r0 to be
the homoclinic fixed point that H possesses, we have that conditions (1), (2), (3)
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in Lemma 6 are satisfied and the result follows.

Case 2: Kirchoff elliptical vortex patch.

Proof: The argument is exactly the same as it was for QG because of the
similarity of the Hamiltonians HQG and HEL and we refer the reader to case 1
for the calculation. 2

Case 3: Semi-geostrophic vortex patch.

Proof: This calculation is more laborious than for HEL and HQG. We define

z(r, θ; s) =
√

2
√

1 + rs +
√

(r2 − 1)(s2 − 1) cos θ, (49)

Differentiating (17) with respect to the parameter s gives,

∂HSG

∂s

λ,s

= 2λ2 − λ

z

∂

∂s

(
z2

)

= 2λ2 − λ

z

[
2r + 2s cos θ

√
r2 − 1
s2 − 1

]
(50)

Now

∂2HSG

∂s∂r

λ,s

= −λ
∂

∂r

[r + s cos θ
√

r2−1
s2−1

z

]
(51)

We wish to determine under what conditions ∂2HSG

∂s∂r

λ,s
(r, π) = 0. So we find the

zeros of (51) with θ = π,

z

(
1− rs√

(r2 − 1)(s2 − 1)

)
− 1

z

(
r − s

√
r2 − 1
s2 − 1

)(
s− r

√
s2 − 1
r2 − 1

)
= 0 (52)

Upon substituting r = cosh(σ) and s = cosh(ϕ), we obtain the equation

2(1 + cosh(σ − ϕ)) cosh(σ − ϕ) = sinh2(σ − ϕ) (53)

Using cosh2(σ − ϕ)− sinh2(σ − ϕ) = 1 yields

2 cosh(σ − ϕ) + 1 + cosh2(σ − ϕ) = 0

which finally gives,
(cosh(σ − ϕ) + 1)2 = 0. (54)

Now (54) has no solutions and so choosing r = r0 to be the fixed point of
Hλ,s

SG on the x-axis, conditions (1), (2), (3) in Lemma 6 are satisfied for Hλ,s
SG and

hence the result follows. 2
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