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2019

This thesis introduces new applications of optimal transport to algebraic topology.

Specifically we develop a method for building Spines/Souls of manifolds using a definition

of Singularity based on semicouplings and Kantorovich duality. Given an initial manifold

with boundary X, ∂X, we construct continuous homotopy-reductions X ; Z from X

onto subvarieties Z ↪→ X. The main goal of this thesis is constructing Z of maximal

codimension. The subvarieties Z are assembled from a contravariant functor Z : 2Y →

2X , where Z = Z(c, σ, τ) is defined by the semicoupling program from a source (X, σ) to

a target (Y, τ), and a cost c : X × Y → R. Interesting applications arise when the target

Y is a subset of the boundary Y ↪→ ∂X. In Theorems 3.1.1, 4.5.3, 4.5.4 we describe a

criteria for inclusions Z(YI) ↪→ Z(YJ) to be homotopy-isomorphisms and find a maximal

index J ≥ 0 for which (Z := ZJ+1) ↪→ X is a codimension-J homotopy-isomorphism.

Thus we construct large codimension deformation retracts of X onto a subvariety Z (see

Theorems 1.4.1, 1.4.2).

In Theorem 1.5.1 we apply the above homotopy-reductions to the geometric construc-

tion of small-dimensional EΓ classifying spaces, when Γ is a finite-dimensional Bieri-

Eckmann duality group. Thus we obtain Spines of Γ = PGL(Z2), PGL(Z3), etc. We

discuss applications to higher-rank duality groups like arithmetic groups Γ = G(Z),

where the singularity functor Z is a new reduction theory for EΓ models. These ap-

plications are based on a type of “convex” interpretation of Bieri-Eckmann homological

duality and solutions to a homological subprogram we call “Closing the Steinberg sym-
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bol”. The subprogram replaces X with a chain sum F having “well-separated gates”, and

on which Γ freely acts as shift operator. The chain sum F is a type of convex partition-

of-unity of a subdomain of an initial geometric EΓ model X, i.e. F is an approximately

truncated fundamental domain for the Γ action on X. On each chain summand of F

we introduce a family of repulsion and visibility costs c = c|τ , v, and whose functors

Z(c, σ, τ) are conjectured to satisfy sufficient conditions to produce large-codimension

Γ-equivariant homotopy-reductions Z of X. Thus we introduce a new method for the

possible explicit construction of small-dimensional classifying spaces EΓ for groups Γ

satisfying Bieri-Eckmann homological duality.
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Chapter 1

Introduction

Optimal transportation is a subject with a remarkably wide range of applications. Our

thesis develops new applications of optimal transportation to algebraic topology. Every-

thing proceeds from a definition of “Singularity” based on Kantorovich duality, which is

the fundamental linear duality of mass transport. This thesis indicates a new construc-

tion which has some potential to yield the spines long sought by geometers (e.g. [Ash84],

[Thu86]), and such applications were the original motivation for this research.

Let X be an oriented Riemannian manifold-with-corners with boundary Y = ∂X. A

topologist initially interprets Singularity as the “locus-of-discontinuity” of deformation

retract maps r : X → Y , but this definition is not topological since continuous retracts

r from X to Y do not exist. However we submit that optimal transportation is useful

setting to formally define Singularity in the category of topology. This formalization

is summarized by contravariant functors Z : 2Y → 2X between the categories 2X , 2Y of

closed subsets of X, Y . The contravariant functor Z is defined via maximizers of the dual

program to semicouplings programs Z = Z(σ, τ, c) as previously studied in e.g., [HS13,

1.(d)], [CM10].

Mass transport motivates an economic definition: we say Singularity arises wherever

there is competition for limited common resources. Formally we topologize this definition

using duality of c-optimal semicouplings, where c is a choice of cost c : X × Y → R on

a given source space (X, σ), target space (Y, τ), and defined whenever the source σ is

abundant with respect to the prescribed target τ , i.e.∫
X

σ ≥
∫
Y

τ. (1.1)

Kantorovich duality characterizes the topology of Singularity in a contravariant func-

tor Z = Z(σ, τ, c) : 2Y → 2X , defined by Z(YI) = ∩y∈YJ∂cψ(y) whenever equation

1



Chapter 1. Introduction 2

(1.1) is satisfied. Here ∂cψ(y) designates the c-subdifferential of a c-concave potential

ψcc = ψ : Y → R ∪ {−∞}. The formal definitions of c-concavity and ∂cψ(y) is provided

in 2.3.2–2.3.3. Briefly the c-subdifferential ∂cψ(y) consists of all x ∈ X for which

y ∈ argmax{ψ(y′)− c(x, y′) + c(x, y) | y′ ∈ Y }.

The basic theory of c-concavity and c-subdifferentials is nonlinear analogue of the convex-

ity and subdifferentials of convex lower semicontinuous functions à la Fenchel, Alexan-

drov, etc., for the choice of quadratic cost c = dist2/2. See [ET99], [Vil09, Ch.5] for

standard definitions.

Our end goal is to apply our general theory to concrete examples and build new ex-

plicit “Spines” and “Souls” of various spaces of interest to geometers and group theorists

alike. As such this thesis has two phases. The first phase is general, and will identify

hypotheses on costs c : X × Y → R which ensures the existence of large-codimension

homotopy reductions. Our main results are Theorems 1.4.1, 1.4.2 (c.f. 3.1.1, 4.5.4)

described below. In this first phase we thus introduce the general principle of Reduction-

to-Singularity, as arising from duality of mass transport. The second phase is practical,

and concerns the numerical applications of these general theorems. Our main practi-

cal results are Theorem 1.5.1 and the introduction of a subprogram we call ”Closing the

Steinberg symbol” (Chapter 7), and specially designed for constructing small-dimensional

EΓ-classifying spaces when Γ is a finite-dimensional Bieri-Eckmann duality group. Essen-

tially, Closing Steinberg is a combinatorial obstruction to applying our general theorems

in specific instances. We provide some proofs-of-concept of all these ideas in §§7.3–7.4 for

the groups Γ = PGL(Z2), PGL(Z3). Finally we include several conjectures, especially

Conjecture 1.5.2, which assert that specific costs (namely visible repulsion costs c = v,

§5.9.6) satisfy sufficient hypotheses of Theorems 3.1.1 and 4.5.4 to produce new examples

of minimal spines of various EΓ models.

1.1 Kantorovich: the Bridge from Measure to Topol-

ogy

The symbols X, Y are reserved for finite-dimensional Riemannian manifolds-with-corners.

We let σ, τ denote Radon measures on X, Y , called the “source” and “target” measures.

Typically σ, τ are absolutely continuous with respect to the Riemannian volume measures

on X, Y . Or equivalenty, absolutely continuous with respect to the Hausdorff measures

HX , HY .
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The present thesis develops a bridge between measure theory and algebraic topology,

as inspired from Kantorovich duality in optimal transport. The bridge is categorical,

being a contravariant functor Z = Z(c, σ, τ) defined by a cost c : X × Y → R between

source (X, σ) and target (Y, τ) measure spaces. If 2X , 2Y denote the category of closed

subsets of X, Y respectively, then Z can be represented as a contravariant correspondance

Z : 2Y → 2X between closed topological subsets of Y and X.

Contravariance has concrete consequences, and produces explicit equations describ-

ing singular chains. We use the functor Z to parameterize closed subsets Z(YI) ⊂ X

according to closed subsets YI ↪→ Y , and where inclusions YI ↪→ YJ correspond to the

reverse inclusions Z(YI) ←↩ Z(YJ). Assembling these elementary inclusions, we find a

new “cellular” decomposition {Z(YI)}YI of our source space X. The purpose of our ho-

motopy theorems is to identify conditions for which the inclusions Z(YI) ←↩ Z(YJ) are

homotopy isomorphisms. See Chapter 4 and Definition 4.1.1 for details.

Thus we propose Kantorovich’s bridge as a contravariant functor Z : 2Y → 2X and

a new measure-theoretic tool for explicitly constructing topologically-nontrivial subvari-

eties. Our thesis illustrates the idea expressed in [Gro14a, §5.3] that “singular spaces”

be replaced by contravariant functors between suitable categories. In short, a “singular

space” is here not a space but an object, namely the contravariant functor Z. Again,

the functor Z = Z(c, σ, τ) depends on the choice of source (X, σ), target (Y, τ), and

continuous cost function c : X × Y → R.

Our main theorems 1.4.1, 1.4.2, (c.f. 3.1.1, 4.5.4) identify a local condition, which

we call uniform Halfspace (UHS) conditions (see 4.5.2), and identifies indices J ≥ 0

for which the source space X can be continously reduced (via strong deformation re-

tract) to codimension-J subvarieties ZJ+1 ↪→ X. This is the main topological appli-

cation of our thesis. The existence of effective homotopy reductions is a fundamen-

tal problem in algebraic-topology, and especially in homological computations on large-

dimensional manifolds arising as EΓ-models, where Γ is an infinite discrete (torsion-free)

group. We propose a reduction-to-singularity X ; Z method constructing efficient

small-dimensional classifying spaces, c.f. Ch. 6–7, and §1.2 below. A general homotopy-

reduction procedure is expressed in Theorem 1.5.1, which follows from our Closing Stein-

berg symbol construction (Def. 7.2.1 and Thm. 7.2.3).

1.2 Reduction-to-Singularity Principle

This section reinterprets some standard facts from algebraic topology. The author first

learned the subject from [GJ81]. Useful references include [Bre93], [Bro82]. Briefly,
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algebraic topology studies the singular homology functors Hi(−;Z) : TOP → MODZ,

i ∈ Z, which is the covariant functor X 7→ H∗(X) = H∗(X;Z) from the category of

nonpointed topological spaces to the category MODZ of Z-modules (additive abelian

groups). The homology groups are defined on topological spaces X according to the

singular chain complexes {Csing
∗ (X;Z), ∂∗}, and the contravariant cohomology functors

H∗(−;Z) : TOP → MODZ are defined via the cochain complexes {C∗(X;Z),Z), δ∗}
where C∗(X;Z) = Hom(Csing

∗ (X;Z),Z). (Formal definitions are found in §§1.7, 6.2

below).

The first definitive computations in algebraic topology distinguish the one-dimensional

sphere S1 from the one-dimensional line R1. Next one deduces the nonexistence of con-

tinuous deformation retracts from the two-dimensional disk D to its boundary ∂D. It is

useful to emphasize the formal negative nature of this previous sentence. The expression

“there does not exist continuous deformation retracts D × I → ∂D” is of course true in

TOP . It is a logical deduction based on the following algebraic observation: the identity

morphism Id : Z→ Z, defined by n 7→ n of the additive abelian group Z is distinct from

the zero morphism 0Z : Z → Z, n 7→ 0. Yea IdZ 6= 0Z in Hom(Z,Z). More formally,

recall the following useful definition.

Definition 1.2.1. Let X be a topological space, and Y ↪→ X be a subset. We say Y is

a strong deformation retract of X (or, X deformation retracts onto Y ) if there exists a

continuous mapping r : X × [0, 1]→ X with the following properties:

(i) for all x ∈ X, we have r(x, 1) ∈ Y and r(x, 0) = x;

(ii) for all y ∈ Y and t ∈ [0, 1], we have r(y, t) = y.

If X deformation retracts onto Y , then the inclusion i : Y → X is a homotopy

isomorphism and induces an isomorphism H∗(i) : H∗(Y ;Z) → H∗(X;Z) of Z-modules.

A continuous retraction r : X × [0, 1] → X produces a continuous mapping r(x) :=

r(x, 1) : X → Y , and this mapping induces an isomorphism H∗(r) : H∗(X) → H∗(Y )

which is inverse to H∗(i).

Lemma 1.2.2. Let X be a connected, oriented, aspherical topological space, and let

Y ⊂ X be a homologically nontrivial closed subspace. Then there exists no continuous

deformation retracts from X onto Y .

Proof. The hypotheses imply H∗(X) = 0 and H∗(Y ) 6= 0. Suppose r : X → Y is a

continuous retraction. Applying homology functors we find the composition H∗(r ◦ i)
= H∗(r) ◦ H∗(i) defines an endomorphism (algebraic self-mapping) of H∗(Y ;Z). Since
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X is homologically trivial, the induced mapping H∗(i) has zero image, and we find

H∗(r ◦ i) = H∗(r) ◦ H∗(i) coincides with the zero endomorphism of H∗(Y ;Z). However

if r is a strong deformation retract of X onto Y , then the composition r ◦ i coincides

with the identity mapping IdY : Y → Y . Therefore H∗(r ◦ i) = H∗(IdY ) coincides with

the identity automorphism of H∗(Y ;Z) by functoriality. This is a formal contradiction

unless Y is homologically trivial.

The hypotheses are satisfied when X is contractible, and Y = ∂X. The topologist

applies this reductio ad absurdum to deduce the following: if an oriented aspherical

space X has homologically nontrivial boundary Y = ∂X, then there exists no continuous

deformation retracts from X onto the boundary ∂X. Thus some essential obstruction

exists. We propose the singularity loci constructed below are geometric forms of this

obstruction.

Here is the motivating example. Let X = D2 be two-dimensional unit disk, with

boundary Y = ∂X = S1. Suppose the topologist attempts to construct a simple deforma-

tion retract from X to the boundary S1 and proposes the radial projection r(x) = x·|x|−1.

Then r corresponds to a “mapping” X → Y which is almost continuous, but having locus-

of-discontinuity a single point {o}. Observe the inclusion of the locus-of-discontinuity

{o} ↪→ X is a homotopy-isomorphism, i.e. the singleton {o} is homotopic to the disk X.

We claim this homotopy-isomorphism is no coincidence, but rather indicates a general

principle.

1.3 Cost Assumptions

Our strategy replaces continuous retracts r : X → ∂X with c-optimal semicouplings π

from source (X, σ) to target (∂X, τ). We present the basic theory and definitions of the

semicoupling program in Chapter 2. Briefly, a semicoupling from a source (X, σ) to target

(Y := ∂X, τ) is a Borel measure π on the Cartesian product X × Y whose marginals

satisfy projX#π ≤ σ and projY #π = τ . Here proj#π denotes the pushforward measure

of π by projection proj : X → X, defined proj#π[U ] = π[proj−1(U)]. The set of all

semicouplings between source σ and target τ is a weak-∗ compact subset ΠSC(σ, τ). A

c-optimal semicoupling is a semicoupling which minimizes the total cost of transport with

respect to c on ΠSC(σ, τ); see Theorems 2.3.5 and §2.2.

As we’ve seen, continuous retracts r : X → ∂X are nonexistant; but optimal semi-

couplings generally exist whenever σ[X] ≥ τ [Y ]. We propose semicouplings as measure-

theoretic alternatives to retractions from (X, σ) to (∂X, τ). We measure the total
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cost of transport with respect to functions c : X × Y → R ∪ {+∞}. The function

c = c(x, y) represents the cost of transporting a unit mass at source x to target at y.

That dim(X) > dim(∂X) has important consequences throughout our thesis, especially

concerning (Twist) conditions 2.5.1.

Topology forces the nonexistence of continuous retracts. Similarly the geometry of

the cost c controls the topology of the locus-of-discontinuity of c-optimal semicouplings.

For topology to emerge from the measure theory, we require geometric assumptions on

the cost. The proofs of our Theorems 3.1.1, 4.5.4, 1.5.1 below require cost functions

c : X × Y → R ∪ {+∞} satisfying basic assumptions labelled (A0), . . ., (A6). We

abbreviate cy(x) := c(x, y). If f : X → R ∪ {±∞} is a function, we let dom(f) :=

{x ∈ X | f(x) ∈ R}. We assume X is Riemannian such that functions f : X → R
have well-defined gradients ∇xf with respect to the x-variable. The assumptions are the

following:

(A0) The cost function c : X×Y → R∪{+∞} is continuous throughout dom(c) ⊂ X×Y
and uniformly bounded from below, e.g. c ≥ 0. Moreover we assume the sublevels

{x ∈ X | c(x, y) ≤ t} are compact subsets of X for every t ∈ R, and y ∈ Y . That

is, we assume x 7→ c(x, y) is coercive for every y ∈ Y .

(A1) The cost is twice continuously differentiable with respect to the source variable

x, uniformly in y throughout dom(c). So for every y ∈ Y , the Hessian function

x 7→ ∇2
xxc(x, y) exists and is continuous throughout dom(cy).

(A2) The function (x, y) 7→ ||∇xc(x, y)|| is upper semicontinuous throughout dom(c). So

for every t ∈ R the superlevel set {||∇xc(x, y)|| ≥ t} is a closed subset of dom(c).

(A3) For every y ∈ Y , we assume x′ 7→ ∇xc(x
′, y) does not vanish identically on any

open subset of dom(cy).

(A4) The cost satisfies (Twist) condition with respect to the source variable throughout

dom(c). So for every x′ the rule y 7→ ∇xc(x
′, y) defines an injective mapping

dom(cx′)→ Tx′X. See Definition 5.3.3.

(A5) For every x ∈ X, the function y 7→ c(x, y) is continuously differentiable; and for

every y ∈ Y , the gradients ∇yc(x, y) are bounded on compact subsets K ⊂ X.

A further assumption (A6) is convenient for the deformation retracts constructed in

the present thesis. These retracts depend on the nonvanishing of certain “averaged”

vector fields denoted ηavg(x) ∈ TxX. The field ηavg is an average of a Y -parameter family
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of potentials η(x, y) defined with respect to c-concave potentials ψcc = ψ, and parameters

β > 0 by formulas

η(x, y) := |ψ(y0)− ψ(y)− c∆(x, y0, y)|−β∇x(c(x, y0)− c(x, y)) (1.2)

for y0 ∈ ∂cψ(x), y ∈ Y . Compare (3.9), (3.12),4.5.2.

The formal definition of ηavg(x) depends on the setting. Typically there is a Radon

measure ν̄x on Y , depending on x, absolutely continuous with respect to HY , and with

average

ηavg(x) := (ν̄x[Y ])−1

∫
Y

η(x, y)dν̄(y). (1.3)

(A6) The averaged vectors ηavg(x) (1.3) are bounded away from zero, uniformly with

x ∈ Z ′, on the relevant subsets Z ′ of X. (See (3.9), (3.12), 4.5.2) and the hypotheses

of Theorems 3.1.1, 4.5.3, 4.5.4).

In applications, the relevant subsets Z ′ have the form X − A, Zj − Zj+1, etc., in the

notations of Ch.2–4. More precise formulations of (A6) are given in 3.2.2, (3.6), and the

Uniform Halfspace (UHS) Conditions defined in 4.5.2. The assumption (A6) depends on

properties of c-concave potentials defined on Y , and is not an absolute assumption on

the geometry of the cost c like the previous (A0)–(A5).

Consequences of Assumptions (A0), (A1), . . . will be clarified as our thesis progresses.

In the simplest case where the source and target spaces X, Y are compact, and c is

smooth and finite-valued throughout X × Y , then Assumptions (A0)–(A2) are readily

confirmed. Assumption (A3) forbids the cost c(x, y) from being locally constant on any

open subset of X. Assumption (A4) is more discriminate: the continuously differentiable

functions x 7→ c∆(x; y, y′) necessarily have critical points if X is closed compact space.

The Assumption (A4) implies the cross-differences ∇xc∆(x, y, y′) are nonzero for distinct

y, y′, where c∆(x; y, y′) := c(x, y)−c(x, y′) is the two-pointed cross difference. In practice,

costs c which have poles, e.g. c(x, y) = +∞ when x = y, will more readily satisfy

(A4). We will prove (A0)–(A4) implies the general uniqueness of c-optimal semicouplings.

Peculiar to the semicoupling setting is (A4), which requires injectivity of mappings y 7→
∇xc(x, y) : Y → Tx′X for every x ∈ X, where dim(Y ) < dim(X). The Assumption (A5)

is useful in the construction of our deformation retracts in Theorems 4.5.3–4.5.4 below.
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1.4 Deformation Retracts and Theorems 1.4.1, 1.4.2

We continue to assume X, Y are Riemannian manifolds-with-corners, and suppose c :

X × Y → R ∪ {+∞} is a cost satisfying Assumptions (A0)–(A4). Let HY be the

Hausdorff measure on the Riemannian manifold-with-corners Y .

For abundant source σ and target τ , there exists a unique c-optimal semicoupling πopt

from σ to τ . See §§2.4–2.5 below. Uniqueness results also established in [HS13], [CM10].

According to Kantorovich’s duality theorem (§2.3), there exists c-concave potentials ψcc =

ψ : Y → R∪ {−∞} whose c-subdifferential ∂cψ : Y → 2X is uniquely prescribed by πopt.

Thus πopt is supported on the graph of a measurable mapping ∂cψc in X × Y . This is

important idea of optimal transport and developed further in §2.2 below.

The c-optimal semicoupling will not “activate” all the source measure for transport

to τ whenever σ[X] > τ [Y ]. Equivalently, the domain dom(ψc) is a nontrivial subset of

the source X. Informally, c-optimal semicouplings will first allocate as much as possible

from low-cost regions of the source. The union of all these activated low-cost regions

defines a closed domain designated A ↪→ X. Specifically we define A := ∪y∈Y ∂cψ(y).

Our first Theorem 1.4.1 describes a criteria to ensure the activated source A ↪→ X

includes into the source as homotopy-isomorphism.

Theorem 1.4.1. Let c be cost satisfying Assumptions (A0)–(A4). Suppose the source

σ and target measure τ are absolutely continuous with respect to HX , HY , respectively

and satisfy (1.1). Let π be a c-optimal semicoupling from σ to τ , with dual c-concave

potential ψcc = ψ (2.3.5). Let A be the active domain (2.4.7). Let β := dim(Y ) + 2.

Suppose every x ∈ X − A has the property that

ηavg(x) := (HY [Y ])−1

∫
Y

(c(x, y)− ψ(y))−β · ∇xc(x, y) dHY (y), (1.4)

is bounded away from zero, uniformly with respect to y ∈ Y . Then the inclusion A ↪→ X

is a homotopy-isomorphism, and there exists explicit strong deformation retract h : X ×
[0, 1]→ X of X onto A = h(X, 1).

The Assumption (A6) is key technical hypothesis for constructing the deformation

retract in Theorem 1.4.1. In the setting of 1.4.1, Assumption (A6) takes the following

form. Let A be the active domain of a c-optimal semicoupling. Then (UHS) are satisfied

if the average gradient ηavg(x) is bounded away from 0, uniformly for x ∈ X − A. We

remark that ηavg(x) is certainly nonzero whenever the gradients ∇xc(x, y), y ∈ Y , occupy

a nontrivial halfspace for every x. Or equivalently, whenever the closed convex hull of

∇xc(x, y), y ∈ Y , is disjoint from the origin 0 in TxX.



Chapter 1. Introduction 9

Without the estimate ||ηavg(x)|| ≥ C > 0, our methods could only conclude that the

source X deformation retracts onto ε-neighborhoods Aε = {x ∈ X|d(x,A) < ε} ↪→ X of

A ↪→ X, where ε > 0 is a sufficiently small real number.

Theorem 1.4.1 has the following application to quadratic costs

b(x, y) := d(x, y)2/2 = ||x− y||2/2 (1.5)

for closed subsets X, Y in a Euclidean space RN . The gradients {∇xc(x0, y)}y∈Y are a

subset of Tx0X. Observe that the closed convex hull conv{∇xc(x0, y)}y∈Y contains the

origin 0 in Tx0X if and only if x0 lies in the convex hull conv(Y ) of Y in RN .

We illustrate with an example. Let σ = L be a Lebesgue measure on RN , and let

τ = (100)−1
∑100

i=1 δyi be an empirical measure (normalized sum of Dirac masses on RN).

Evidently (1.1) is satisfied. Consider the restriction of b (1.5) to R2 × Y . There exists

unique b-optimal semicoupling from σ to τ , and let A ⊂ R2 be the active domain. The

active domain A is a union of (possibly overlapping) Euclidean balls. The non-active

domain RN − A is an unbounded open subset of RN . Under the hypotheses of 1.4.1, we

define an averaged potential favg : RN − A→ R which has property that both

favg(xk)→ +∞ and ||∇xfavg(xk)|| → +∞

whenever xk is a sequence in RN − A converging to limk xk = x∞ ∈ ∂A. See (3.3) for

definition of favg. Now the hypotheses of 1.4.1 require favg have no critical points on the

open subset RN − A. The nonexistence of critical points can be achieved by a simple

observation: if A ⊃ conv(Y ), then for every x ∈ RN − A the gradients

∇xc(x, y), y ∈ Y

occupy a nontrivial Halfspace of TxRN . This implies ∇xfavg is uniformly bounded away

from zero.

On the other hand, the hypotheses of 1.4.1 are never satisfied when we restrict b (1.5)

to a convex subset X := F and its boundary Y := ∂F . If σ = 1FL , and if the target τ is

supported on ∂F , and if (1.1) is satisfied with strict inequality, then the active domain A

of the unique b-optimal semicoupling from σ to τ will not contain conv(Y ). Consequently

ηavg will vanish somewhere on X−A, and the hypotheses of 1.4.1 are violated. In Chapter

5 we define a repulsion cost c|τ which will satisfy (UHS) conditions throughout the non

active domains and satisfy hypotheses of 1.4.1.

Now Theorem 1.4.1 is but a first step. Our next Theorem 1.4.2 constructs further
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homotopy-reductions from the active domains A ⊂ X to higher codimension closed

subvarieties Z ↪→ A. We use “subvariety” to mean a subset described by the vanishing

of a collection of twice-continuously differentiable functions. In applications the functions

will even be smooth.

If σ, τ are source, target measures satisfying (1.1), then there exists c-optimal semi-

couplings from σ to τ . Kantorovich duality 2.3.5 implies the existence of c-concave

potentials ψcc = ψ on the target Y . Let Z : 2Y → 2X be the corresponding singularity

functor Z(YI) = ∩y∈YI∂cψc(x). For integers j ≥ 1, we define Zj to be the subset of

x ∈ X where the local tangent cone is at least j-dimensional at x (the formal definition

is provided in §4.3, c.f. 4.2.4, 4.3.4). The singularity structure is naturally cellulated by

the cells

Z ′(x) := Z(∂cψc(x))

and admits a filtration

(X =: Z0)←↩ (A =: Z1)←↩ Z2 ←↩ Z3 ←↩ · · ·

of X by subvarieties Z0, Z1, etc.

Some further notation is necessary:

• Let dY be a metric distance on Y , and let HY be the Hausdorff measure on Y .

• We say φ is δ-separated if ∂cφ(x) is a δ-separated discrete subset of Y for every

x ∈ dom(φ), i.e. if dY (y0, y1) ≥ δ for every y0 6= y1 in ∂cφ(x).

• Abbreviate Y ′(x) := dom(cx), and let 1Y ′(x) be the indicator function.

• Under the assumptions (A0)–(A3), the cell Z ′(x) is has well-defined tangent space

TxZ
′(x). Let prZ′ : TxX → TxZ

′(x) be the orthogonal projection.

• For a real parameter β > 0 and x ∈ X, y ∈ Y ′(x) := dom(cx), define the collection

of tangent vectors

η(x, y) := |ψ(y0)− ψ(y) + c∆(x; y, y0)|−β · prZ′(∇xc∆(x; y, y0)).

• For every x, let ν̄ = ν̄x be the Radon measure on Y defined by

dν̄(y) := (1− ed(y,∂cψc(x))2/δ).1Y ′(x).dHY (y),

and define

ηavg(x) := (ν̄[Y ])−1

∫
Y

η(x, y) dν̄(y). (1.6)

À priori, ηavg(x) is a vector in TxZ
′. We say (UHS) Conditions are satisfied if ηavg is



Chapter 1. Introduction 11

uniformly bounded away from zero (c.f. Definition 4.5.2).

Our next result identifies the maximal index J ≥ 1 such that (A = Z1)←↩ ZJ+1 is a

homotopy-isomorphism, and indeed a strong deformation retract.

Theorem 1.4.2. Let c be a cost satisfying Assumptions (A0)–(A6). Suppose σ, τ are

source, target measures which are absolutely continuous with respect to HX ,HY , respec-

tively and satisfying (1.1). Let ψcc = ψ be a c-concave potential (2.3.5) dual to the

c-optimal semicoupling from σ to τ , and suppose φ = ψc is a δ-separated c-convex poten-

tial for some δ > 0. Let j ≥ 1 be an integer.

(a) Suppose there exists a parameter β > 0 such that ηavg(x
′) (1.6) is bounded away

from zero, uniformly with respect to x′ ∈ Zj − Zj+1; and

(b) ∂cψc(x′) ∩ Zj+1 6= ∅ for every x′ ∈ Zj − Zj+1.

Then the inclusion Zj+1 ↪→ Zj is a homotopy-isomorphism, and even a strong de-

formation retract. Furthermore if J ≥ 1 is the maximal integer such that every x′ ∈
ZJ − ZJ+1 satisfies conditions (a)–(b), then the inclusion ZJ+1 ↪→ Z1 is a homotopy-

isomorphism, and there exists an explicit strong deformation retract.

In practice the hypotheses (i)–(ii) of Theorem 1.4.2 may be difficult to verify. We

elaborate further in Chapter 2.3.

Interesting applications arise when the target is the boundary Y = ∂X of the source

X. Combining Theorems 1.4.1, 1.4.2, we find cost functions c : X × ∂X → R ∪ {+∞}
satisfying Assumptions (A0)–(A6) and sufficient (UHS) conditions produce codimension-

J deformations of the initial source space X onto locally-lipschitz subvarieties ZJ+1,

where J is an index ≥ 0. We describe topological applications in Chapters 5, 6, 7.

1.5 Closing the Steinberg symbol and Theorem 1.5.1

The second phase of our thesis relates to algebraic topology, and applies the above

Reduction-to-Singularity to construct small-dimensional EΓ classifying spaces, where

Γ is an infinite discrete Bieri-Eckmann duality group of dimension ν and with dualiz-

ing module D. See [BS73] for definitions. The setting implies Γ is finitely-generated,

virtually-torsion free. E.g. Γ = PGL(Z2), PGL(Z3), Sp(Z4), G(Z) arithmetic groups,

mapping class groups MCG(Σg) of closed surfaces, knot-groups, etc. Our goal:

Given a finitely generated group Γ satisfying Bieri-Eckmann’s homological

duality [BE73], to display an EΓ-model X with proper-discontinuous free

action X ×Γ→ X having topological dimension dim(X) equal to the virtual

cohomological dimension vcd(Γ) of the group Γ.
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This problem has been intensively studied since Borel-Serre’s computation

vcd(G(Z)) = dim(K\0G(R))− rankQ(G),

where G is a Q-split reductive linear algebraic group scheme and rankQ(G) is the so-called

Q-rank of G, c.f. [BS73], [Ser71]. For instance

vcd(GL(Z2)) = 2− 1 = 1, vcd(Sp(Z4)) = 5− 2 = 3.

For algebraic groups G with Q-rank equal to one, the above problem simplifies since nu-

merous adhoc methods are available for continuously retracting an open manifold onto

a codimension-one hypersurface, c.f. [Yas07]. But a general method has been appar-

ently hidden from sight for higher codimensions, with the notable exceptions of [Gro91],

[Ash84], [Sou78], [MM93]. We propose our Theorems 1.4.1 – 1.4.2 yield a new technique

for constructing homotopy-reductions of large-codimension based on the reduction-to-

singularity idea.

To implement the Theorems 1.4.1, 1.4.2 however require some further ideas. We as-

sume a user first has an explicit geometric EΓ model X available for sampling, e.g. (X, d)

an finite-dimensional Cartan-Hadamard space with isometric group action X × Γ → X

which is proper discontinuous, free, and with finite volume quotient. Typically the space

dimension dim(X) is much larger than the cohomological dimension ν := cd(Γ), ν <<

dim(X). To effectively construct EΓ models Z with dim(Z ) = ν is largely unsolved

problem. Our thesis constructs new Γ-invariant closed subsets Z with dim(Z ) <<

dim(X) and for which Z ↪→ X is a homotopy-isomorphism and construct Γ-equivariant

homotopy-reductions X ; Z . Our retractions are geometric-flows which continuously

collapse X onto a large-codimension subvariety Z . Given an initial EΓ-model X, our

technique exhibits the large-codimension retract as the locus-of-discontinuity of a “retrac-

tion” (i.e. c-optimal semicoupling) from X to the boundary ∂X. But which boundary,

which cost?

Our thesis studies these questions with our rational excision models, denoted X[t],

and repulsion costs. The excision models X[t] := X − ∪λW t
λ are obtained by equiv-

ariantly scooping-out/excising Γ-rational horoballs W t
λ from X, with respect to a suffi-

ciently “small” Γ-equivariant parameter t. The family of horoballs {W t
λ} are modelled

on constant-curvature halfspaces far at-infinity. The Γ-rationality implies X[t] and ∂X[t]

are Γ-invariant subsets of X. Crucially they inherit proper-discontinuous actions

X[t]× Γ→ X[t], ∂X[t]× Γ→ ∂X[t].
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The key property of our excisions X[t] is that the reduced-homology of the boundary

D := H̃∗(∂X[t];Z), with its natural ZΓ-module structure, is explicit resolution of the

Bieri-Eckmann dualizing module for Γ.

The homological modules D := H̃∗(∂X[t]) are called Steinberg modules. The ZΓ-

module D is principal and infinite cyclic, generated by a cycle [B]. I.e. [B] is a basic

“sphere-at-infinity” and are called Steinberg symbols. Contractibility of X[t], the stan-

dard long-exact sequence of relative homology, and the κ ≤ 0 geometry of X implies the

boundary map ∂ : H∗+1(X[t], ∂X[t]) → H̃∗(∂X[t]) is an isomorphism and with inverse

given by “flat filling”. Now the relative cycle FILL[B] is also called a Steinberg symbol

and is a disk. The dimension of this disk is precisely the maximal codimension of a spine.

Homological duality implies this disk P := FILL[B] is dual, with respect to intersection

homology, to the spine fundamental class. Therefore minimal spines are transverse to

Steinberg symbols and intersect precisely at a point. But we see how the Steinberg sym-

bol retracts to a point P ; pt. Our goal is to interpolate this retraction throughout X[t]

to obtain X[t] ; Z . We achieve this interpolation using the singularity functor arising

from the visible repulsion costs v defined in §5.9.6.

Next we replace the excision X[t] with a chain sum F , where Γ acts on F as a type

of shift operator. For formal definition of “chain sum” we refer the reader to [GJ81] or

any reference of singular homology. The chain summands of F are a principal Γ-set, and

the action F × Γ→ F is equivariantly isomorphic to Γ× Γ→ Γ. These chain sums are

defined by the user solving an elementary combinatorial subprogram we call Closing the

Steinberg symbol, to be introduced in Chapter 7. The problem of Closing Steinberg is

motivated by the following question. Suppose we have a countable collection of embedded

isometric equilateral triangles {Ni}i∈I , where each Ni has a prescribed embedding Ni ↪→
Rd into some d-dimensional affine space. Evidently each triangle N is 2-dimensional with

boundary ∂N =M. The question is: can we determine a finite subset I ′ ⊂ I for which

the chain sum
∑

I′ Ni has chain boundary

∂(
∑
I′

Ni) =
∑
I′

∂Ni =
∑
I′

Mi

vanishing over Z/2-coefficients? In otherwords, can we arrange the triangles Ni to form

the boundary of a cube, or regular platonic solid, or some other closed convex polyhedron?

There is important interpretation of Closing Steinberg in terms of algebraic topology

and group-cohomology. Let Cq be the q-th singular homology groups. Algebraically we

find the finite subset I of Γ, which Closes Steinberg and defines the convex base-chain

F = F (I) in F corresponds to a symbol ξ ∈ Cq(X, ∂X;Z/2) satisfying ∂0ξ = 0 with
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Figure 1.1: When ∂(A+B + C) = 0 (mod 2), we define F = conv(A,B,C)

respect to the formal boundary operator ∂0 : Cq(X, ∂X;Z/2) → Cq−1(∂X;Z/2). This

algebraic-topological interpretation is further developed in Chapters 6.

Our method is defined for groups Γ satisfying Bieri-Eckmann’s homological duality

generalizing Poincaré duality [BE73]. Specifically, Closing Steinberg amounts to con-

structing a nontrivial 0-cycle ξ ∈ H0(Γ;Z2Γ⊗D). Here Z2Γ := Z/2⊗ZZΓ is the induced

ZΓ-module with coefficients over Z/2, considered as trivial ZΓ-module. We remark that

Bieri-Eckmann duality implies H0(Γ;Z2Γ⊗D) ≈ Hν(Γ;Z2Γ) 6= 0 where ν = vcd(Γ).

In applications below the triangles N are replace with a flat-filled relative chain P ∈
Cq(X[t], ∂X[t];Z) whose chain-boundary ∂[P ] = B is generator of Steinberg module

D. To Close the Steinberg symbol requires finding a finite subset I of Γ for which

the translates P.I have positions in (X[t], ∂X[t]) bounding a closed geodesically convex

domain F = conv[P.I]. The symmetry group Γ acts isometrically on X[t] × ∂X[t], and

we form the chain sum F := SUM [F (I).Γ], of the Γ-translates of the convex base chain

F = F (I). Our hypotheses ensure the chain sum F becomes a cubical fundamental

class. The chain sum F can be interpreted as a “partition-of-unity” of the support

supp(F ) ⊂ X. To successfully close the Steinberg symbol allows the user to replace a

space X with supp(F ) and the chain sum F . Our hypotheses of Closing Steinberg (see

7.2.1, 7.2.3) ensures the support supp(F ) is aspherical and homotopy-equivalent to X.

The above Theorems 1.4.1, 1.4.2 are general topological theorems obtained by our

semicoupling methods. The theorems require costs c which satisfy the necessary hy-

potheses, and this is nontrivial. As we elaborated above, the quadratic costs are not

sufficient, and we find best results obtained with our anti-quadratic repulsion costs.

The following Theorem 1.5.1 summarizes our applications of the previous Theo-
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Figure 1.2: A chain sum F =
∑

i∈I Fi with well-separated one dimensional gates

rems 1.4.1– 1.4.2. The theorem is a multi-stepped reduction program with input a

geometric EΓ model X, and outputs a Γ-equivariant homotopy reduction of X onto

a codimension-J closed subvariety Z where the index J ≥ 0 is defined according to the

hypotheses of Theorems 1.4.1, 1.4.2.

The reduction program runs as follows:

(a) Given an initial geometric EΓ model X, equivariantly scoop out the Γ-rational

horoballs W t
λ and obtain a manifold-with-corners X[t] := X − ∪λW t

λ. (6.3.3, 5.5.1)

(b) The boundary Y := ∂X[t] is Γ-invariant, and the induced Γ-action is geometric

(e.g., proper discontinuous). Choose the excision parameter t such that the natural

ZΓ-module D := H̃q(∂X[t];Z) is the Steinberg module of Γ. (6.5.2, 6.4.3) Let B be a

generator of D with flat-filling P = FILL[B].

(c) Find a finite subset I ⊂ Γ which successfully Closes the Steinberg symbol, and

replace the excision model X[t] with the chain sum F , where

F :=
∑
γ∈Γ

F [t].γ, and F [t] := conv[P.I] ∩X[t],

(7.2.1, 7.2.3).

(d) Let Yε be the ε-regularization of Y for small ε > 0 (5.7.1), and let Ω ⊂ F [t] be
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the visibility domain (5.9.3). Define the chain sum

Ω :=
∑
γ∈Γ

Ω.γ,

and let

v : Ω× Yε → R ∪ {+∞}

be the visible repulsion cost (5.9.6).

(e) Let τ be a Γ-invariant volume measure on Y (τ is canonical modulo scalars since

Γ acts geometrically on Y ). The construction of Yε is also Γ-invariant, and let τε be the

invariant volume measure on Yε (unique modulo scalars). Choose scalars satisfying

ρ :=

∫
Ω/Γ

σ/

∫
Yε/Γ

τε > 1. (1.7)

(f) For ρ > 1 and ρ ≈ 1+ sufficiently small, let Z : 2Yε → 2Ω be the Kantorovich

functor defined by v-convex potentials, which are dual maximizers to the v-optimal semi-

coupling from 1Ωσ to τε.

Following the above steps (a)–(f), we arrive at the following application of Theorems

1.4.1, 1.4.2.

Theorem 1.5.1. Let X × Γ → X be a geometric EΓ-model with Γ-invariant volume

measure σ (6.1.2). Let Z : 2Yε → 2Ω be defined by the above items (a)–(f). If J ≥ 0 is

the maximal index where the hypotheses of 1.4.1–1.4.2 are satisfied throughout ZJ , then

Z := ZJ+1 is a Γ-equivariant codimension-J strong-deformation retract of X.

For arbitrary source and targets σ, τ , the maximal index J output by Theorem 1.5.1

is possibly J = 0. In this the hypotheses of Theorem 1.4.1 fail, and Theorem 1.5.1 is

trivial. In case J = 1, then Theorem 1.5.1 reduces to a special case of Theorem 1.4.1.

For the applications developed in Chapters 5, 6, 7, we expect the maximal index J is

larger, say at least J ≥ 2. In case J ≥ 2 we find interesting large codimension retracts

of the initial source X, and such retracts were our original motivation.

We emphasize that the primary obstruction to the reduction program of Theorem

1.5.1 is verifying the (UHS) conditions throughout the necessary subdomains. For general

costs this appears difficult problem. The (UHS) conditions amount to requiring an aver-

age gradient vector ηavg(x) (defined in (4.8)) be nonzero, and have a sequence of nonzero

projections projZ′ηavg(x) 6= 0 for select subvarieties Z ′ containing x in X. See §4.5 and

Definition 4.5.2 for details. A second obstruction is the hypothesis Z ′(x) ∩ Zj+1 6= ∅ for

x ∈ Zj, which is necessary for the retraction defined in 1.4.2.
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The definition of Closing Steinberg is specially adapted to geometric EΓ models as

described in §§7.3, 7.4 below when Γ is a standard arithmetic group. Thus we conjecture

that Theorem 1.5.1 yields singularity structures which can be homotopy-reduced to the

maximal codimension, and thus we propose new EΓ-models Z with space dimension

equal to the cohomological dimension of Γ. This conjecture requires verifying several

properties of the visibility cost v (5.2, 5.9.6).

Conjecture 1.5.2. Under the hypotheses of Theorem 1.5.1, we conjecture that

(i) the visible repulsion cost v satisfies Assumptions (A0)–(A6); and

(ii) when the ratio ρ (1.7) is sufficiently close to 1+, the activated source A = Z1 of the

unique v-optimal semicoupling is a continuous equivariant deformation retract of

the source domain Ω ≈ X; and

(iii) the maximal index J ≥ 1 for which the hypotheses of 1.4.2 are satisfied is equal to

J = q + 1, where q is the topological dimension of spheres generating the Steinberg

module D ;

(iv) the inclusion ZJ+1 ↪→ X is a Γ-equivariant homotopy-isomorphism, and even a

strong deformation retract with dim(ZJ+1) = cd(Γ).

The Conjecture 1.5.2 proposes the subvariety Z := ZJ+1 is a minimal-dimension spine

of EΓ, where the explicit retracts are given by our Theorems 1.4.1–1.4.2. The Conjecture

1.5.2 requires several steps be verified. First we need verify the differential-geometric

(Twist) condition for the visibility cost v, i.e. we require the function dom(vx′) → Tx′F

defined by the rule y 7→ ∇xv(x′, y) be injective for every choice of x′ in F . Next we need

establish the homotopy-isomorphism between the activated source domain’s inclusion

(Z1 = A) ↪→ (Z0 = F ). Finally we need verify (UHS) conditions are satisfied throughout

the subvarieties Z1, Z2, . . . and their local “cells” Z ′ = Z(∂vψv(x′)), where ψv is the

v-convex potential output by Kantorovich duality. We postpone verification to future

investigations.

1.6 Thesis Outline

Now we outline the contents of our thesis. Our thesis has two phases. The first phase is

general, and develops our applications of optimal transport (and specifically the category

of semicouplings) to algebraic topology. Chapter 2 is largely a survey of known results

in the optimal transportation literature. We develop the principles of the semicoupling
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program: existence, uniqueness, and Kantorovich duality for costs satisfying Assumptions

(A0)–(A4). We conclude Chapter 2 with the proof of Theorem 1.4.1 (see 3.1.1), which is

the base case for the larger-codimension retracts constructed in the next chapters.

Our Chapter 4 develops the basic geometric properties of Kantorovich’s contravari-

ant singularity functor Z : 2Y → 2X . Section 4.1 is central to our thesis, especially

Definition 4.1.1. Section 4.2 describes the local topology of the singularities and proves

a useful codimension estimate. Assuming the cost satisfies Assumptions (A0)–(A6) and

sufficient (UHS) conditions, we conclude Chapter 4 with the proof of our Theorem 1.4.2;

see Theorems 4.5.3, 4.5.4 from §4.5. Thus Chapters 2–4 establish a general method

for constructing strong deformation retracts based on Kantorovich duality and optimal

transport.

The general results of the previous chapters require special costs for applications.

Chapter 5 introduces a new class of cost functions called repulsion and visibility costs.

These repulsion costs are distinct from the familiar “attraction” costs, e.g. quadratic

costs c = d2/2. To apply the homotopy-reductions of Theorems 1.4.1, 1.4.2 requires we

verify the repulsion costs satisfy the necessary Assumptions (A0)–(A6). In this direction,

our thesis admittedly achieves only partial results. Specifically we easily find the costs

satisfy Assumptions (A0)–(A3) and (A5). But we only succeed in demonstrating (A4)

for the repulsion cost denoted c|τ (Definition 5.3.2, Prop. 5.3.3). However we present

simple heuristics suggesting the costs satisfy the Assumption (A4), i.e. (Twist). The

remaining Assumption (A6) remains a conjecture.

The remaining Chapter 6 and Chapter 7 develop the applications of our repulsion

costs and singularity functors to geometric EΓ models. In Chapter 6 we let Γ designate

a countable discrete group, and describe the background on EΓ-models X, and their

Γ-equivariant excision models X[t], which are manifolds-with-corners having Γ-invariant

topological boundary ∂X[t]. The results of Chapter 6 are surely well-known to the ex-

perts, although our emphasis on excisions rather than bordifications has perhaps been

unappreciated hitherto. This is the key to applying our semicoupling methods to EΓ

models, and we outline the basic ideas in §6.3. The excision construction, and its re-

lation to Bieri-Eckmann’s homological duality is described in §6.4 and summarized in

Theorem 6.5.2. This theorem appears in various forms throughout the literature, e.g.

it is effectively Borel-Serre’s rational bordification model from [BS73], coupled with our

own variation of Grayson’s construction [Gra84].

The final Chapter 7 introduces the problem of Closing the Steinberg symbol, which is

a homological subprogram we discovered to replace the excision model X[t] with a cubical

chain sum F . This idea is defined and established in Definition 7.2.1 and Theorem 7.2.3,
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respectively. Successfully Closing Steinberg is key step towards the effective application

of our semicoupling method to topological EΓ models. The key feature of F is that

Γ acts as shift-operator on the summands of F . The summands of F are excisions of

convex sets on which we install the repulsion costs from previous Chapter 5, thereby

implementing the reduction-program detailed in Theorem 1.5.1. We conclude with some

basic examples of Closing Steinberg in §§7.3–7.4.

1.7 Conventions and Notations

Throughout the thesis we adopt the following conventions: we let X, Y denote manifolds-

with-corners, equipped with a Riemannian distance functions d = distX ,distY . See

[BS73, Appendix] for formal definitions regarding “les variétés à coins”. Briefly we recall

a space X is a manifold-with-corners if X is locally modelled (via diffeomorphisms) to

sectors Rk
+×Rn−k for various integers 0 ≤ k ≤ n, where n = dim(X) and R+ := [0,+∞).

We let volX and volY be the volume measures on X, Y . The Hausdorff measures are

abbreviated HX = H dim(X). We reserve σ and τ for Radon measures on X and Y , called

“source” and “target” measures, respectively. Typically σ, τ are mutually absolutely-

continuous with respect to the Hausdorff measures HX , HY . The support supp(µ) of a

Radon measure µ is the minimal closed subset of full µ-measure. The domain dom(f) of

a function f : X → R ∪ {+∞} consists of all points x where f(x) < +∞.

The singularity structures arising from our thesis are assembled from closed subvari-

eties of the source space. We follow Poincaré ’s original terminology of “varieties’ and

“subvarieties” from [Poi95, §§10–12]. In this thesis a subvariety Z of X is a closed subset

defined by a collection of explicit equations (c.f. §4.2). If the equations are described by

Lipschitz (or DC) functions, then we call Z a Lipschitz (or DC) subvariety. In applica-

tions the functions are usually smooth.

A topological space X is aspherical if X is connected and all homotopy-groups of

the universal cover X̃ are trivial. If X has the structure of a locally finite cell complex,

then X is aspherical if and only if X̃ is contractible. A continuous map f : X →
X ′ between topological spaces is a homotopy-isomorphism if the induced maps πi(f) :

πi(X)→ πi(X
′) are isomorphisms for all homotopy groups πi, i = 0, 1, 2, . . .. According

to Whitehead’s Theorem [Bre93, §VII.11], f is a homotopy-isomorphism if and only if

the morphisms induced on homology Hi(f) : Hi(X) → Hi(X
′) are isomorphisms for all

i. A space X deformation retracts onto the subspace A if there exists a continuous map

h : X × [0, 1] → X such that h(x, 0) = x, h(x, 1) ∈ A, h(a, t) = a for all x ∈ X, a ∈ A,

t ∈ [0, 1]. A deformation retract h defines homotopy-isomorphisms x 7→ h(x, 1). For the
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formal definitions of chain complexes, chain maps, cochain complexes, cochain maps, and

the Koszul complex, we refer the reader to [Lan05, §§XX.1-2, XXI.1,2,4]. The singular

chain groups {Csing
q (X)|q = 0, 1, 2, . . .} on a topological space X are formally defined in

[GJ81], or [Bre93, Chapter IV]. For the definition of simplicial chain groups and chain

sums, see [Bre93, p. IV.21].

The identity mapping on whatever set is denoted Id. A category C is a collection

of objects Obj(C) (a set), and a collection of morphisms between objects HomC(X, Y )

(the set of morphisms in C between objects X, Y ) with the property that compositions

of morphisms is well-defined in C and associative, and for every object X the identity

mapping IdX ∈ HomC(X,X). A subcategory C ′ of C is a category whose objects are

a subset of the objects of C, and where HomC′(X, Y ) ⊂ HomC(X, Y ) for every pair

of objects in C ′. A functor F : C → D between categories C,D is for every object X

in C, and object F (X) in D, and for every morphism f : X → Y in C, a morphism

F (f) : F (X)→ F (Y ) in D. The functor F is contravariant if F (f ◦ g) = F (g) ◦F (f) for

every pair of morphisms f, g in C with composition f ◦ g in C. The functor is covariant

if F (f ◦ g) = F (f) ◦ F (g). See [Lan05, p. 1.11] for complete definitions.

The symbol Γ usually designates an infinite torsion-free discrete group. Follow-

ing standard notation, EΓ is the universal cover X̃ of an Eilenberg-Maclane space

X = K(Γ, 1). The singular chain groups on X̃, with their natural Γ-action, are a topolog-

ical model for the group-theoretic Γ-cohomology. We let cd(Γ) denote the cohomological

dimension of Γ, and equal to the unique integer ν ≥ 0 for which the group-theoretic coho-

mology group Hν(Γ;ZΓ) is nonzero, [Bro82]. A cubulation of a group Γ is an EΓ-model

which has explicit cellular structure defined in terms of geometric identifications between

cubes In = [0, 1]n for n ≥ 0, with additional “wall-structures”. Precise definitions are

given in §7.2 in terms of chain sums and “gates”, e.g. Definition 5.1.1. We let F denote a

geodesically convex compact subset in a complete Riemannian manifold, and E denotes

the extreme-point functor, E [F ] consists of the extreme-points on F .



Chapter 2

Background: Semicouplings and

Kantorovich Duality

The present chapter is largely review, especially §§2.1 –2.5 which assembles the basic

facts of optimal semicouplings.

Our thesis relates algebraic topology to measure theory by replacing “continuous de-

formation retracts r : X → Y ” (which are nonexistent according to Brouwer’s theorem,

§1.2), with “c-optimal semicouplings πopt” between a source (X, σ) and target (Y, τ), and

where c : X×Y → R∪{+∞} is a cost function satisfying the various Assumptions (A0),

(A1), . . . from §1.3.

The main theme of our thesis is to replace the graphs of continuous retracts r, with

semicouplings and specifically c-minimal semicouplings (see the minimization program

(2.5) in Section 2.3 below). Following Kantorovich’s duality theorem, we study the

dual maximization program to obtain Kantorovich’s contravariant singularity functor

Z : 2Y → 2X defined by the rule

YI 7→ Z(YI) = ∩y∗∈YI∂cψ(y∗)

for closed subsets YI ↪→ Y . The maximizers correspond to c-concave potentials ψ :

Y → R ∪ {−∞}, see §2.3. The functor Z produces subvarieties Z(YI) ↪→ X described

explicitly by the dual potentials ψ, ψc and c, see §4.2 for explicit local equations. The

functor Z : 2∂X → 2X produces locally DC-subvarieties Z of X for which the inclusions

Z ↪→ X are homotopy-isomorphisms. See Theorems 4.5.3, 4.5.4 for details.

We need remark on the definition of “probability” and its relation to optimal trans-

portation methods. The standard methods of couplings and Monge-Kantorovich duality

[Vil09], [San15] are contingent on the hypothesis that source and target measures have

21
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identically equal masses. That is, source σ and target τ must satisfy∫
X

σ −
∫
Y

τ = 0. (2.1)

The present thesis develops in the semicoupling category, and replaces (2.1) with the

hypothesis that source measures σ be “abundant” with respect to a target measure τ ,

namely: ∫
X

σ −
∫
Y

τ ≥ 0. (2.2)

Semicouplings are abundant, while couplings need not exist (especially when inequality

(2.1) is strict). However the existence of a renormalization factor (
∫
Y
τ)−1 < +∞ is a

useful hypothesis. For instance, we prove the à priori existence of c-optimal semicou-

plings in §2.2, and our proofs shall assume the target measure τ has been renormalized

to a probability measure. But the practical construction of the dual Kantorovich po-

tentials does not require the renormalization, and nor does our proof of the existence of

Kantorovich minimizers in §2.3. This illustrates the logical convenience of assuming an

inequality
∫
X
σ < +∞, rather than exactly evaluating some real number (

∫
X
σ)−1.

There are advantages in ignoring the normalization condition (2.1), as studied by

some authors, notably [HS13], [CM10], [Fig10b]. In this thesis, our applications to arith-

metic groups (see §6) would be immediately obstructed if we required users to explicitly

normalize the relevant Haar measures. This requires exactly calculating the volumes

of polyhedral fundamental domains, and this calculation is practically impossible, e.g.

compare [Lan66]. So from the beginning, our applications do not require precise normal-

ization factors.

2.1 Optimal Semicouplings and Cost

Now we introduce the optimal semicoupling program. We continue with the notations

from the Introduction. We reserve X, Y for complete finite-dimensional manifolds-with-

corners. Let σ, τ be Radon measures on the source and target X, Y . Let projX : X×Y →
X, projY : X × Y → Y be the canonical continuous projections. We typically assume

σ, τ are absolutely-continuous with respect to HX , HY .

Definition 2.1.1 (Semicoupling). A semicoupling between source (X, σ) and target

(Y, τ) is a Borel measure π on the product space X × Y with target-marginal satisfying

projY #π = τ , and source-marginal satisfying projX#π ≤ σ.
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The inequality projX#π ≤ σ holds if for every Borel subset O, the numerical inequal-

ity (projX#π)[O] ≤ σ[O] is satisfied. We remark that π is a coupling between σ and τ

when projX#π = σ.

Next let SC(σ, τ) ⊂ M≥0(X × Y ) denote the set of all semicoupling measures π

between source σ and target τ . One finds SC(σ, τ) is empty unless is satisfied, in which

case we say “the source σ is abundant relative to the target τ”. Informally a semicoupling

π ∈ SC(σ, τ) describes an allocation of some activated source particles which fill (or

saturate) a prescribed target.

A standard argument using Prokhorov’s compactness criterion implies the following

lemma, c.f. [Vil09, Lemma 4.4, pp.44]. We recall that a sequence of semicouplings

{πk}k=1,2,... converges to π∞ in the narrow-topology if limk→+∞
∫
X×Y f(x, y).dπ(x, y) for

every bounded continuous function f ∈ BC(X).

Lemma 2.1.2. The set of semicouplings SC(σ, τ) is compact convex subset of M≥0(X×
Y ) with respect to the narrow topology.

Proof. The convexity of semicouplings is clear. For every ε > 0 both σ and τ admit

compact subsets Kε, Lε such that σ[X − Kε] < ε and τ [Y − Lε] < ε. But for any

semicoupling π ∈ SC(σ, τ), we find

π[(X −Kε)× (Y − Lε)] ≤ π[(X −Kε)× Y ] + π[X × (Y − Lε)] < 2ε,

since π[(X−Kε)×Y ] = σ[X−Kε] and π[X× (Y −Lε)] = τ [Y −Lε]. Therefore SC(σ, τ)

is precompact with respect to the weak-∗ topology by Prokhorov’s theorem. But it’s

immediate that SC(σ, τ) is weak-∗ closed, and therefore the set is weak-∗ compact.

2.2 Existence of c-Optimal Semicouplings

Now we instroduce costs. There is no canonical semicoupling without, say, selecting

a linear functional on SC(σ, τ) and then minimizing. In §1.3 we described several as-

sumptions, labelled (A0), . . ., (A5). The Assumptions (A0)–(A3) are rather generic.

The Assumption (A4) implies the general uniqueness of semicouplings, see Proposition

2.5.8. The uniqueness of such optimal semicouplings is important for our topological

applications, since we are proposing the singularity structure of optimal semicouplings as

canonical topological model. The final basic assumption our thesis requires is Assump-

tion (A6) which is a “small-cancellation” hypothesis on local tangent vectors and ensures

certain averages are nonzero. The nonvanishing of these averages is necessary for the

continuity of the deformation retracts constructed in Chapter 2.3.



Chapter 2. Background: Semicouplings and Kantorovich Duality 24

The existence of c-optimal couplings for costs satisfying (A0)−−(A2) is a standard

consequence of Fatou’s lemma and Prokhorov’s precompactness theorem. If π is a Radon

measure on X × Y , then we define

C[π] :=

∫
X×Y

c(x, y)dπ(x, y).

Proposition 2.2.1. Let σ, τ be source and target measures with
∫
Y

1dτ = 1. If c is

continuous cost, then c-optimal semicouplings πopt exist such that

C[πopt] = inf
π∈SC(σ,τ)

C[π].

Closer inspection reveals that Proposition 2.2.1 only requires c be lower semicontin-

uous, c.f. [Vil09], [San15].

We can leverage the existence of optimal couplings to the case of semicouplings. In-

deed the transportation literature finds two different approaches to questions of existence

and uniqueness of optimal semicouplings. The method of [CM10] interprets semicouplings

as conventional couplings by formally adjoining a graveyard point {†} to the target, en-

larging Y to Y+ = Y
∐
{†}. The target measure τ is then extended (relative to the source

σ) to the measure τ+ := τ +α.δ†, where α is the positive scalar α :=
∫
X

1.σ]−
∫
Y

1.τ and

δ† is the Dirac measure supported at the graveyard point {†}. The cost is extended to

c+ : X × (Y ∪ {†})→ R by declaring {†} a “tariff-free reservoir”. Concretely we assume

c+(x, y) > 0 whenever y ∈ Y , and c+(x, †) = 0, for every x ∈ X. There is then a natural

correspondance between semicouplings π ∈ SC(σ, τ) and couplings π+ between σ and

τ+. We observe that c+ is continuous if and only if c is continuous.

An alternative approach to semicouplings and uniqueness is developed in [HS13],

wherein a different reduction to the coupling theory is described. Recall that the support

of a measure space (X, σ) is denoted spt(σ), and defined to be the smallest closed subset of

X of full measure. The argument in [HS13] regarding uniqueness is two-stepped. First one

determines conditions on the cost for the activated source domain A = spt(projX#πopt) to

be uniquely determined. In the second step, the semicoupling is restricted to the activated

source, and the restriction defines a coupling between 1A.σ and target τ . Thus we are

reduced to standard coupling theory. By standard arguments, one finds (Twist) condition

the main hypothesis controlling uniqueness of the optimal coupling. We elaborate further

in the next section.
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2.3 Kantorovich Duality

In the following sections we prove that c-optimal semicouplings satisfying Assumptions

(A0)–(A4) have σ-a.e. uniquely defined active domain A ↪→ X. Restricting to the active

domain, we obtain a coupling 1A×Y .π between 1A.σ and τ which is optimal with respect

to the restricted cost

c|A(x, y) =

{
c(x, y), if x ∈ A,

+∞, if else.
(2.3)

Uniqueness of the optimal semicoupling now reduces to the question of whether the

c|A-optimal coupling is unique. In the following sections we describe how so-called

(Twist) conditions on the cost implies a general uniqueness of optimal couplings. The

meaning of (Twist) is best illustrated through Kantorovich duality which we introduce

below. Standard references for Kantorovich duality with respect to continuous costs

include [Vil09, Ch.5], or [San15]. The following definitions are exceedingly useful.

Definition 2.3.1 (c-transforms). If ψ : Y → R∪{−∞} is any function on the target Y ,

then the c-Legendre transform ψc : X → R ∪ {+∞} is defined by

ψc(x) := sup
y∈Y

[ψ(y)− c(x, y)],

for x ∈ X.

If φ : X → R∪{+∞} is any function on the source X, then the c-Legendre transform

φc : Y → R ∪ {−∞} is defined by the rule

φc(y) = inf
x∈X

[c(x, y) + φ(x)],

for y ∈ Y .

Definition 2.3.2 (c-concavity). A function ψ : Y → R ∪ {−∞} is c-concave if ψcc =

(ψc)c coincides pointwise with ψ. Equivalently ψ is c-concave if there exists a lower

semicontinuous function φ : X → R ∪ {+∞} such that φc = ψ pointwise.

The above definitions imply ψ, ψc satisfy the pointwise inequality

− ψc(x) + ψ(y) ≤ c(x, y) (2.4)

for all x ∈ X, y ∈ Y . The inequality (2.4) and especially the case of equality is very

important for this thesis.
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Definition 2.3.3 (c-subdifferential). Let ψ : Y → R ∪ {−∞} be c-concave potential

ψcc = ψ. Select y0 ∈ Y where ψ(y0) is finite-valued. The subdifferential ∂cψ(y0) ⊂ X

consists of those points x′ ∈ X such that

−ψc(x′) + ψ(y0) = c(x′, y0).

Or equivalently such that for all y ∈ Y ,

ψ(y)− c(x′, y) ≤ ψ(y0)− c(x′, y0).

Assumptions (A0), . . . , (A4) on the cost c imply various properties of c-convex po-

tentials and c-subdifferentials. The first useful property is that c-subdifferentials are

nonempty wherever the potentials φ(x) or ψ(y) are finite, see Lemma 2.3.4 below. Recall

the domain of φ is defined dom(φ) := {x ∈ X |φ(x) < +∞}.

Lemma 2.3.4. Let c : X × Y → R be a cost satisfying Assumptions (A0)–(A2). Let

ψ : Y → R ∪ {−∞} be a c-concave potential (ψc)c = ψ. Abbreviate φ = ψc. Suppose

there exists y′ ∈ Y such that ψ(y) 6= −∞. Then:

(i) ψ is an upper semicontinuous function; and

(ii) ∂cψ(y) is a nonempty closed subset of X for every y ∈ dom(ψ); and

(iii) φ is lower semicontinuous function; and

(iv) ∂cψ(y) is a nonempty closed subset of Y for every x ∈ dom(φ).

Proof. The Assumption (A0) implies ψ(y) = infx∈X [c(x, y) + ψc(x)] for every y ∈ Y is

an upper semicontinuous function of y. Indeed ψ is equal to the pointwise infimum of a

family of continuous functions, namely the X-parameter family of continuous functions

y 7→ c(x, y) + ψc(x). Likewise the c-transform ψc(x) is a lower semicontinuous function

of the source variable x. This proves (i), (iii).

The inequality (2.4) is an equality precisely when x ∈ ∂cψ(y), or equivalently ψ(y) ≥
c(x, y)+ψc(x). So the subdifferential ∂cψ(y) coincides with a sublevel set of x 7→ ψc(x)+

c(x, y) and is therefore closed according to Assumption (A2). Thus ∂cψ(y) is a closed

subset of X for every y ∈ Y . Likewise ∂cψc(x) is closed subset of Y for every x ∈ dom(ψc).

It remains to show the c-subdifferentials are nonempty on the appropriate domains.

Observe that φ = ψc is bounded from below on X unless ψ is identically −∞. Indeed if

{xj}j=1,2,... is a sequence in X such that limj→+∞ φ(xj) = −∞, then ψ ≡ −∞. This is

clear from the definition φ(x) = supy∈Y [ψ(y)− c(x, y)], and the Assumption (A0) that c

is uniformly bounded below on X × Y .
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Moreover the Assumptions (A0)–(A1) imply the infimum defining ψ(y) can be re-

stricted to a compact subset of X. Indeed (A1) includes the hypothesis that the sublevels

{x ∈ X|cy(x) ≤ t} are compact subsets of X for every t ∈ R. If ψ(y) is finite, then we

claim the infimum defining ψ(y) can be restricted to a sublevel set. But observe that

{xk}k cannot be a minimizing sequence with c(xk, y) diverging to +∞ when ψ(y) is finite.

So there exists t ∈ R such that

ψ(y) = inf
{x | c(x,y)≤t}

[φ(x) + c(x, y)].

But lower semicontinuous functions restricted to compact subsets attain their minima.

Therefore ∂cψ(y) is nonempty whenever ψ(y) < +∞. Since x ∈ ∂cψ(y) if and only if y ∈
∂cφ(x) whenever ψcc = ψ and φ = ψc, we find ∂cφ(x) nonempty whenever x ∈ dom(φ),

as follows from the definition 2.3.3 and the arguments above. This establishes (ii), (iv).

Further properties of c-convex potentials are developed in Section 2.5 below, c.f.

Lemmas 2.5.2, 2.5.5, and Proposition 2.5.7.

For the remainder of this section, we suppose the unique active domain A has been

specified (Proposition 2.4.7) and we set c = c|A. The semicoupling program then reduces

to the coupling program. Both the semicoupling and coupling programs are driven by

the “cost” of transporting a unit source mass to a unit target mass. The standard

interpretation imagines some industrialist having source (A, 1A.σ) and prescribed target

measure (Y, τ). The industrialist looks to activate a source domain in order to transport

measure to the target – and all the while minimizing the total transit cost. As we’ve

seen, this is a linear minimization program over a convex compact set.

On the other hand, Kantorovich’s dual program is defined in terms of “prices”. And

here one imagines an autonomous transporter who negotiates prices with the industrialist.

The transporter offers to purchase units of source measure at price φ(x), and then sells

these units at various target locations at the price ψ(y). The industrialist knows the cost

of direct transport from source x to target y is c(x, y), so the transporter must propose

competitive prices to the industrialist. These competitive prices imply a constraint on

prices, namely

−φ(x) + ψ(y) ≤ c(x, y), for all x ∈ A, y ∈ Y.

Now the transporter is seeking to maximize his/her own total surplus, namely the max-

imization program

sup
(φ,ψ)

[−
∫
A

φ(x)dσ(x) +

∫
Y

ψ(y)dτ(y)],
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the supremum taken over all pairs of functions φ : A→ R ∪ {+∞}, ψ : Y → R ∪ {−∞}
satisfying the pointwise constraint −φ(x) + ψ(y) ≤ c(x, y).

Now suppose the transporter has competitive prices (φ, ψ). How may the diligent

transporter improve these prices to a pair (φ′, ψ′) having greater profit? For given source

point x′, the transporter is obliged to satisfy ψ(y) − c(x′, y) ≤ φ(x′) for all y ∈ Y . This

says supy∈Y [ψ(y) − c(x′, y)] ≤ φ(x′). But to minimize purchase price, the observant

transporter replaces φ with φ′(x′) = supy∈Y [ψ(y) − c(x′, y)]. Similarly for target point

y′, the transporter wants to maximize the retail price subject to the constraint, and this

maximum price is ψ′(y′) := infx∈A[φ′(x) + c(x, y′)]. One readily sees the prices (φ′, ψ′)

are at least as profitable than the original (φ, ψ). So the maximization program can

be restricted to those pairs of functions (φ, ψ) which are maximally-competitive with

respect to the cost c. This leads to the fundamental definitions of the c-Fenchel-Legendre

transform, c-concavity, and the c-subdifferential as defined above.

We denote the weak-∗ convex compact subset of couplings between 1Aσ and τ by

ΠC(1A.σ, τ). The pointwise inequality (2.4) implies the inequality

sup
ψ c-concave

[−
∫
A

ψc(x).dσ(x) +

∫
Y

ψ(y).dτ(y)] ≤ inf
π∈ΠC(1A.σ,τ)

C[π]. (2.5)

Kantorovich duality says the inequality (2.5) is an equality “sup = inf”, and says

there is “no duality gap” between the primal minimization and the dual maximization

program. There are two basic questions to be addressed regarding (2.5):

(a) Is the supremum realized by c-concave potentials ψ?,

(b) Is the infimum realized by a c-optimal semicoupling π?

The Assumption (A0) that our costs c are continuous implies the answers to (a) and

(b) are well-known. The following Theorem is quoted from [Vil09, Theorem 5.10, pp.57].

Theorem 2.3.5. Let c : A× Y → R be a bounded nonnegative continuous cost. Then:

- There is no duality gap between the primal program and the dual program, and

sup
ψ c-concave

[

∫
A

−ψc(x)dσ(x) +

∫
Y

ψ(y)dτ(y)] = min
π∈ΠC(1A.σ,τ)

c[π].

- The dual program is solvable, and there exists a c|A-concave potential ψ∗ : Y →
R ∪ {−∞} such that∫

A

−ψc∗(x)dσ(x) +

∫
Y

ψ∗(y)dτ(y)] = sup
ψ c-concave

[

∫
A

−ψc(x)dσ(x) +

∫
Y

ψ(y)dτ(y)].
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To prove the existence of Kantorovich potentials dual to c-optimal semicouplings, it

is again convenient to follow [CM10]. We first adjoin a tariff-free reservoir {†} to Y ,

obtaining an auxiliary target space Y+ := Y
∐
{†} with target measure τ+ and c+ as

defined above.

The hypotheses of 2.3.5 are satisfied. Therefore there exists maximizers (φ+, ψ+) to

the dual program

sup
−φ+(x)+ψ+(y)≤c+(x,y)

x∈X, y∈Y+

J+[φ+, ψ+], (2.6)

where

J+[φ+, ψ+] := −
∫
X

φ+(x)dσ(x) +

∫
Y+

ψ+(y)dτ(y).

Let (φ+, ψ+) be maximizers for the program (2.7). Then φ+ = (ψ+)c+ is c+-convex

and (ψ
c+
+ )c+ = ψ+. Now we apply a standard restriction argument to (φ+, ψ+) to obtain

a c-convex potential φ0 = ψc0 on the subset A := ∪y∈Y ∂c+ψ+(y) of X. We refer the reader

to [Vil09, Lemma 5.18, pp.75] for details.

Lemma 2.3.6. In the above notation, let (φ+, ψ+) be c+-dual potentials maximizing

Kantorovich’s dual program (2.7) for the extended cost c+. Restricting ψ+ to Y ↪→ Y+,

we obtain a c-concave potential maximizing Kantorovich’s dual program on the subdomain

A := ∪y∈Y ∂cψ0(y) in X.

Proof. We replace the c+-convex potential φ+ = (ψ+)c+ with a c-convex potential φ0 by

the following construction. Define ψ0(†) := −∞ and ψ0(y) = ψ+(y) for y ∈ Y. Then

φ0(x) := (ψ0)c(x) = sup
y∈Y

[ψ0(y)− c(x, y)]

is c-convex. Moreover we see:

- ψ0 ≤ ψ+ pointwise throughout Y ; and

- φ0 ≥ φ+ pointwise throughout X; and

- φ0(x) = φ+(x) whenever there exists y ∈ Y with x ∈ ∂c+ψ+(y); and

- ∂c+φ+(x) ⊂ ∂cφ0(x) whenever there exists y ∈ Y with x ∈ ∂c+ψ+(y).

Thus restricting to A := ∪y∈Y ∂cψ0(y) in X, we obtain a c-convex potential φ0 sup-

ported on A.

The restrictions (φ0, ψ0) are c-dual potentials, and we find (φ0, ψ0) are maximizers to

the restricted dual program

sup
−φ(x)+ψ(y)≤c(x,y)

x∈A, y∈Y

JA[φ, ψ], (2.7)
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where

JA[φ, ψ] := −
∫
A

φ(x)dσ(x) +

∫
Y

ψ(y)dτ(y).

We see −φ0, ψ0 are c-concave with φ0 = ψc0.

2.4 Uniqueness of Activated Domain

The previous Section described the existence of c-optimal semicouplings for costs c satis-

fying Assumptions (A0)–(A4). Henceforth our discussion shall assume c-optimal semicou-

plings exist, and with existence given we next turn to uniqueness. Following the approach

of [HS13], our basic uniqueness result for optimal semicouplings is two-stepped. First

there is a monotonicity condition, namely Assumption (A3) from Section 1.3 which en-

sures uniqueness of activated source domains. The further asymmetric (Twist) condition

(Assumption (A4)) then proves uniqueness of the optimal coupling, following a standard

argument, e.g. [Vil09, Ch.12].

Lemma 2.4.1. Let π be a semicoupling between abundant source σ and target τ . Then

projX#π is absolutely continuous with respect to the source measure σ, and there exists

a measurable function f : X → [0, 1] for which f.σ = projX#π and
∫
U
f(x).dσ(x) =

π[U × Y ] for every Borel subset U of X.

Proof. The semicoupling π is a Borel measure and projX is evidently Borel measur-

able, so projX#π is a Borel measure on X. The definition of π ∈ SC(σ, τ) implies

projX#π is absolutely continuous with respect to σ. So Radon-Nikodym theorem im-

plies d(projX#π)(x) = f(x)dσ(x)+dν(x), where f(x)dσ(x) is absolutely-continuous part

with respect to σ, and dν(x) is the singular part.

Now we use Lebesgue’s density theorem, which says: for σ-almost all x ∈ X, the limit

lim
r→0+

(projX#π)[B(x, r)]/σ[B(x, r)] =: f(x)

exists and is finite. Thus we obtain a Borel measurable function f : X → [0, 1] such

that f.σ = projX#π. For further details we refer the reader to [Vil03, Proposition 4.7,

pp.132].

Definition 2.4.2 (Active Domain). For given π ∈ SC(σ, τ), let f = fπ be the Radon-

Nikodym derivative of projX#π with respect to σ as in Lemma 2.4.1. Then A := {f >
0} ⊂ X is the activated source domain of the semicoupling.
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Now we formulate the BangBang principle, which characterizes the activated source

of an optimal semicoupling. BangBang is classical and we refer the reader to [HL69,

§II.12.1, pp.46], or [HS13, Prop 6.3, pp.2471], or [CM10, Prop 3.1, Thm 3.4].

Proposition 2.4.3 (BangBang Principle). Let π be semicoupling in SC(σ, τ) and (x′, y′) ∈
spt[π]. For a real number t < c(x′, y′), consider the Low-cost and High-cost regions

L := {c(−, y′) < t} ∩ spt[σ], and H := {c(−, y′) ≥ t} ∩ spt[σ]

in X. If σ[L] > 0 and σ[H] > 0, and if the restricted density 1L · f is not measurably

identical to 1L, then we can immediately construct an improved semicoupling π̃ such that

c[π̃] < c[π], and therefore π is not c-optimal.

Proof. Trivially we have 1L.σ = 1L.f.σ + 1L.(1− f).σ. If 1L.(1− f).σ is not identically

zero, then we can replace the semicoupling π with a semicoupling π̃ of strictly lower

cost. Indeed mass is then more efficiently transport to y′ from L rather than from H.

Any active mass supported on H at density no greater than σ[{1L.(1− f) > 0}] is more

efficiented routed out of L. Rerouting the mass defines a semicoupling π̃ with total cost

strictly less than π.

Corollary 2.4.4. The marginal source density f : X → [0, 1] defined in 2.4.2 and

Lemma 2.4.1 of an optimal semicoupling is measurably identical to the constant unit

function f = 1 throughout the support {f > 0}. Therefore projX#πopt = 1A · σ for every

c-optimal semicoupling πopt and some active domain A ⊂ X.

Proof. The BangBang principle says c-efficient semicouplings πopt draw from high-cost

source regions only after the lower-cost resources have been totally exhausted. The active

domain A therefore admits no nontrivial Low-cost/High-cost partitions as in 2.4.3.

Next we clarify the role of Assumption (A3) from §1.3, which equivalently says the

function x 7→ c(x, y) is non-constant on every open subset of dom(cy), for every y ∈ Y .

Lemma 2.4.5 ((Mono)). Let c : X × Y → R ∪ {+∞} be cost satisfying Assumptions

(A0)–(A3), and let σ be a Radon measure on the source X. Then for every y ∈ Y ,

the single-variable function t 7→ σ[{cy < t}] is strictly monotone-increasing for t ∈
spt(cy#σ) ⊂ R.

Proof. Since cy is continuous, we find {t1 < cy < t2} is an open subset of X and dom(cy)

for every t1, t2 ∈ R. The subset {t1 < cy < t2} is nonempty for t1, t2 ∈ spt(cy#σ). It is

sufficient to prove

σ[{t1 < cy < t2}] > 0 (2.8)
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for every connected interval [t1, t2] ⊂ spt(cy#σ). But by definition of support, the strict-

positivity of (2.8) follows. Thus the function t 7→ σ[{cy < t}] as desired.

We say a cost c : X × Y → R is monotone with respect to a source measure σ if the

conclusion of Lemma 2.4.5 holds. Equivalently a cost is monotone with respect to σ if

for every t ∈ R, y ∈ Y , we have σ[{cy = t}] = 0 whenever σ[{cy ≤ t}] > 0.

Lemma 2.4.6. Let cost c satisfy Assumption (Mono) with respect to source measure σ.

If A ↪→ X is the active domain of an c-optimal semicoupling, then there exists a unique

measurable function t : Y → R such that A can be expressed as the union of closed

cy-sublevel sets

A := ∪y∈Y {x | c(x, y) ≤ t(y)}. (2.9)

Proof. This is direct consequence of Proposition 2.4.3. For every y ∈ Y we define t(y) as

the supremum of all t ∈ R for which 1A.σ[{cy > t}] > 0.

Remark. The measurable function t : Y → R from Lemma 2.4.6 can be identified with

the negative of a c-concave potential ψ : Y → R∪{−∞} satisfying the dual maximization

program from Theorem 2.3.5, c.f. [CM10]. In otherwords t(y) = −ψ(y) for all y ∈ Y .

This explicit identification will be useful in §3.

Proposition 2.4.7. [Unique Activation] Let (X, σ) be source and (Y, τ) target. Suppose

the cost c : X × Y → R is monotonic with respect to σ (c.f. Lemma 2.4.5). Then the

activated source domain A = Aπ of a c-optimal semicoupling π ∈ SC(σ, τ) is unique

modulo sets of vanishing σ-measure.

Proof. If A,A′ are active source domains of c-optimal semicouplings π, π′, then 1/2.π +

1/2.π′ is also c-optimal, and with source-marginal 1/2.1A + 1/2.1A′ . Let A∆A′ be the

set-theoretic symmetric difference. Then we have trivial identity

1/2.1A + 1/2.1A′ = 1A∩A′ + 1/2.1A∆A′ ,

where A∩A′ and A∆A′ are disjoint. Now suppose σ[A∆A′] > 0. Then A∆A′ is nonempty.

Selecting some y ∈ A∆A′, we consider the marginal cost x 7→ cy(x) := c(x, y). If c

satisfies (Mono), then cy restricted to A∆A′ is nonconstant and A∆A′ can be partitioned

into Low- and High-cost regions L,H satisfying the hypotheses of BangBang 2.4.3. But

this contradicts the c-optimality of 1
2
π + 1

2
π′. So σ[A∆A′] = 0 and the active domains

A,A′ coincide σ-a.e.
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Figure 2.1: Disconnected Active Domain

Figure 2.2: Connected Active Domain when mass[σ]/mass[τ ] ≈ 1+

2.5 Uniqueness of Optimal Semicouplings

Thus far we have established the existence of optimal semicouplings and uniqueness of

active domains. Now we describe the (Twist) hypothesis and the uniqueness of opti-

mal couplings when the source measure σ is absolutely continuous with respect to the

reference source measure H d
X in X.

The next definition elaborates Assumption (A4) from §1.3.

Definition 2.5.1 ((Twist)). Let c : X×Y → R be cost function satisfying Assumptions

(A0)–(A1). Then c satisfies (Twist) condition if for every x′ ∈ X the rule

y 7→ ∇xc(x
′, y)

defines an injective mapping ∇xc(x
′, ·) : dom(cx′)→ Tx′X.

Observe that (Twist) condition is equivalent to the function

x 7→ c∆(x; y0, y1) := c(x, y0)− c(x, y1)

admitting no critical points onX, whenever y0, y1 ∈ Y are distinct. IfX is compact closed

manifold without boundary, then the standard Morse theory applied to x 7→ c∆(x; y0, y1)
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implies the existence of critical points, and thus violates (Twist). Our settings assume

X is a manifold-with-corners with nontrivial boundary ∂X 6= ∅. The (Twist) condition

requires c∆ admit no critical points on the interior of X, and all maxima/minima exist

on the boundary. For instance, the repulsion cost constructed in Chapter 5 have the

property that c∆(x; y0, y1) converges to −∞ when x → y1, and converges to +∞ when

x → y0, and all other level sets c∆(−; y0, y1)−1(s) ⊂ X are topologically connected and

separating X into two components, for every s ∈ R,

The Kantorovich duality yields a useful heuristic by which (Twist) condition ensures

uniqueness of optimal couplings. The following lemmas are adapted from [GM96, Ap-

pendix C]. Recall the source X is equipped with a Riemannian distance function dX ,

and dim(X)-dimensional Hausdorff measure HX .

Lemma 2.5.2. Let c be cost function satisfying Assumptions (A0), (A1), and (A2). Let

D be compact geodesic disk in X, and V a compact subset of Y such that c(x, y) < +∞
for every x ∈ D, y ∈ V . Define

L(y) := sup
x,x′∈D

|c(x, y)− c(x′, y)|
dX(x, x′)

for every y ∈ V . Then:

(i) the Lipschitz constant L(y) is finite for every y ∈ V ; and

(ii) the Lipschitz constant y 7→ L(y) is upper semicontinuous function of y ∈ V .

Proof. According to (A1), for every fixed y ∈ V the function x 7→ c(x, y) is twice-

continuously differentiable. So the supremum defining L(y) is attained on the com-

pact D. Moreover the convexity of D and the mean value theorem implies L(y) =

supx∈D ||∇xc(x, y)||, where the supremum again exists and is finite after (A1). This

proves (i).

Suppose {yi|i = 1, 2, . . .} is sequence in V ⊂ Y converging to limit y∞ ∈ V . For each

yi, select some x′i for which L(yi) = ||∇xc(x
′
i, yi)||. But D is compact, so there exists

convergent subsequence of {x′i}. Extracting a convergent subsequence and relabelling

indices, we find limi→+∞ x
′
i = x∞ for some limit x∞. Now Assumption (A2) says the

function (x, y) 7→ ||∇xc(x, y)|| is upper semicontinuous, and therefore

||∇xc(x∞, y∞)|| ≥ lim sup
i→+∞

||∇xc(x
′
i, yi)||.

But ||∇xc(x
′
i, yi)|| = L(yi) for every index i, and L(y∞) ≥ ||∇xc(x∞, y∞)|| according to

the definition of L. Therefore L(y∞) ≥ lim supi→+∞ L(yi). This proves (ii).
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Proposition 2.5.3. Let c : X×Y → R be a cost satisfying Assumptions (A0)–(A5). Let

ψ : Y → R ∪ {−∞} be a c-concave potential. Then ψ is locally Lipschitz on its domain

ψ : dom(ψ)→ R.

Proof. The definition of c-concavity says ψ(y) = infx∈X{φ(x)+c(x, y)} for some function

φ : X → R ∪ {+∞}. Thus ψ is the pointwise infimum of the X-family of functions

y 7→ φ(x) + c(x, y). Now we observe the infimum defining ψ(y) can be restricted to a

compact subset K ⊂ X, where K depends on y. Indeed the assumption (A1) implies

c(x, y) diverges to +∞ whenever x diverges in X. Moreover if φ is c-convex, then φ is

lower semicontinuous and attains its maximum on any compact subset K of X. Therefore

φ(x) + c(x, y) is bounded on compact subsets of X, and the infimum defining ψ can be

restricted to a compact subset K wherever φ(y) 6= −∞. So ψ(y) = infx∈K{φ(x)+c(x, y)},
and Assumption (A5) implies this family is uniformly Lipschitz. Therefore ψ(y) is locally

Lipschitz function for y ∈ dom(ψ).

Recall the definition of semiconvexity [Vil09, Definition 10.10, pp.228]:

Definition 2.5.4 (Semiconvexity). A function φ : X → R ∪ {+∞} is semiconvex on an

open subset U of X with modulus C > 0 at x0 ∈ X if for every constant-speed geodesic

path γ(t), for 0 ≤ t ≤ 1 whose image is included in U , the inequality

φ(γ(t)) ≤ (1− t)φ(γ(0)) + tφ(γ(1)) + t(1− t)Cdist(γ(0), γ(1))2 (2.10)

is satisfied for 0 ≤ t ≤ 1. The function is locally semiconvex if φ is semiconvex at every

x0 ∈ U , with respect to a modulus C > 0 depending uniformly on γ(0), γ(1) varying in

compact subsets K of U .

Lemma 2.5.5. Let c : X × Y → R be cost satisfying Assumptions (A0)–(A2). Then

every c-convex potentialψc : X → R ∪ {+∞} is HX-almost everywhere locally-Lipschitz

on its domain dom(ψc) ⊂ X. Furthermore every c-convex potential is locally-semiconvex

on dom(ψc).

Proof. The definition of c-convexity implies φ(x) = ψc(x) = supy∈Y {ψ(y) − c(x, y)} for

every x ∈ X. Assumption (A0) implies the cost (x, y) 7→ c(x, y) is bounded with bounded

sublevels. So for every x such that ψc(x) < +∞, the supremum defining ψc(x) can be

restricted to a compact subset K ⊂ Y , where K = K(x) varies with x. From Lemma

2.5.2 the family of functions {x 7→ ψ(y) − c(x, y) | y ∈ dom(cx)} are locally Lipschitz,

with respect to some finite Lipschitz constant L and independant of y. Indeed the upper

semicontinuity of y 7→ L(y) implies supy∈K L(y) is attained and finite over the compact
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K. This implies ψc is locally Lipschitz, with finite Lipschitz constant as satisfied by the

family {ψ(y) − c(x, y) | y ∈ K}. Furthermore, from the definition of c-concavity, for

every x ∈ dom(ψc) ⊂ X we find ψc(x) inherits the same local semiconvexity constants

as the family of functions {ψ(y)− c(x, y) | y ∈ K}.

Under Assumptions (A0)–(A2) the graph of ∂cψc is a closed subset of X × Y , as the

following Lemma shows.

Lemma 2.5.6. Let c : X×Y → R be cost satisfying Assumptions (A0)–(A2). Let φ = ψc

be a c-convex potential on X. Then the c-subdifferential ∂cφ(x) is lower semicontinuous

with respect to x ∈ dom(φ). So if x1, x2, . . . is a sequence in dom(φ) converging to x∞ ∈
dom(φ), then the Gromov-Hausdorff limit limk→+∞ ∂

cφ(xk) is contained in ∂cφ(x∞).

Proof. Lemma 2.3.4 implies φ and ψ = φc are lower semicontinuous and upper semicon-

tinuous, respectively. Let (xk, yk) be a sequence in dom(φ)× dom(ψ) with yk ∈ ∂cφ(xk)

for k = 1, 2, . . .. Then −φ(xk) + ψ(yk) = c(xk, yk) for all k. But semicontinuity implies

lim inf
k→+∞

φ(xk) ≥ φ(x∞), lim sup
k→+∞

ψ(yk) ≤ ψ(y∞).

Therefore

lim sup
k→+∞

−φ(x∞) + ψ(y∞) ≥ c(x∞, y∞),

which implies y∞ ∈ ∂cφ(x∞), as desired.

Proposition 2.5.7. Let c be cost satisfying Assumptions (A0)–(A2). Then c-convex

potentials ψc are HX-almost everywhere differentiable on dom(ψc) ⊂ X. Thus dom(Dψc)

is a full HX-measure subset of dom(ψc).

Proof. According to Lemma 2.5.5, the c-convex potentials ψc are locally Lipschitz on their

domains dom(ψc) ⊂ X. Rademacher’s theorem, [Vil09, Thm 10.8, pp.222], says locally

Lipschitz functions are almost-everywhere differentiable on dom(ψc) with respect to HX

on their domains. Therefore ∇xψ
c exists almost everywhere on dom(ψc) as desired.

These preliminaries lead to the following standard uniqueness result, c.f. [Vil09, Thms

10.28, 10.42]:

Theorem 2.5.8. Suppose cost c satisfies Assumptions (A0)–(A4). Let source σ be abso-

lutely continuous with respect to HX . Suppose σ is abundant with respect to target τ and

(2.1) holds. Then there exists a unique c-optimal semicoupling modulo sets of measure
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zero between σ and τ , and this c-optimal semicoupling is supported on the graph of a

measurable map T : A→ Y , where A ⊂ X is the active domain.

Proof. By Theorem 2.4.7 we know there exists a unique active domain A for the c-optimal

semicouplings. We assume this unique active domain A has been identified, and restrict

ourselves to the c|A-optimal coupling problem between 1Aσ and τ . From Theorem 2.3.5

we know the dual program admits c|A-concave maximizers ψ, ψc|A =: φ on Y,A, respec-

tively. By Lemma 2.5.7 the c|A-convex potential φ is almost everywhere differentiable on

its domain dom(φ) ⊂ A. Let dom(Dφ) denote the domain of differentiability in dom(φ).

Then dom(Dφ) is a full-measure subset of dom(φ) by (2.5.7). By the definition of c|A,

we find dom(Dφ) is full measure subset of A.

Under the (Twist) condition, the rule

T (x) := ∇xc(x, ·)−1(−∇xφ(x)) (2.11)

is a well-defined map T : dom(Dφ)→ Y .

Claim #1: Under the above hypotheses, T defines a Borel-measurable map T :

A→ Y which pushes forward the restricted source 1Aσ to τ . This observation is due to

Gangbo [Gan95][pp.8-9], c.f. [McC01, Proof of Thm. 9].

Assuming Claim #1, the pushforward (Id × T )#1Aσ defines a semicoupling π∗ in

SC(σ, τ). But π∗ is c|A-optimal, since −ψc(x) + ψ(y) = c(x, y) holds almost everywhere

(according to (2.11)) on the support of π∗, and therefore “sup=min” in (2.5). Thus π∗ is

supported on the graph of T . And in fact a standard argument proves that every c-optimal

semicoupling is necessarily supported on the graph of some map of the form (2.11), c.f.

[Vil09][Ch.10, pp.216]. But the property that optimal semicouplings are supported on

the graphs of measurable maps T implies the semicouplings are unique, modulo sets of

zero measure. Indeed if π∗, π∗′ are c|A-optimal, then their convex combination 1
2
π∗+ 1

2
π∗′

is again c-optimal. But this convex combination cannot be supported on the graph of

a measurable function, unless the graphs supporting π∗, π∗′ coincide almost-everywhere

and then π∗, π∗′ coincide almost-everywhere.



Chapter 3

Deforming Source onto Active

Domain X ; A

3.1 Statement of Theorem 1.4.1

The previous chapter described the background on c-optimal semicouplings and Kan-

torovich duality. This chapter 3 is topological and contains our first result, namely

Theorem 1.4.1 from the Introduction, c.f. Theorem 3.1.1. A cost satisfying (A0)–(A3)

has a uniquely defined closed active domain A ⊂ X (recall Lemma 2.4.6 and equa-

tion (2.9)). Our goal is to identify conditions for which the inclusion A ↪→ X is a

homotopy-isomorphism. We denote the source space X =: Z(∅), and define the activated

source A =: Z1. We prove below that sufficient Halfspace conditions imply A ↪→ X is a

homotopy-isomorphism when cost satisfies Assumptions (A0)–(A5). These deformations

will be generalized in the next chapters, where we introduce Kantorovich’s contravariant

singularity functor Z : 2Y → 2X , and describe homotopy-reductions Z(YI) ; Z(YJ)

between various cells for closed subsets YI ↪→ YJ .

For simplicity, we shall assume dom(cx) = Y for every x. The argument can be

extended without difficulty to the case where dom(cx) is a proper subset of Y for x ∈ X.

Theorem 3.1.1. Let c be cost satisfying Assumptions (A0)–(A4). Suppose the source

σ and target measure τ are absolutely continuous with respect to HX , HY , respectively

and satisfy (1.1). Let π be a c-optimal semicoupling from σ to τ , with dual c-concave

potential ψ : Y → R ∪ −∞}, ψcc = ψ (2.3.5). Let A = {x|c(x, y) − ψ(y) ≤ 0} be the

active domain (2.4.7). Let β := dim(Y ) + 2.

38
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Figure 3.1: Halfspace Conditions fail and active domain is not homotopy-equivalent to
source for euclidean quadratic cost c(x, y) = ||x− y||2/2.

Suppose every x ∈ X − A has the property that

ηavg(x) := (HY [Y ])−1

∫
Y

(c(x, y)− ψ(y))−β · ∇xc(x, y)dHY (y), (3.1)

is bounded away from zero, uniformly with respect to y ∈ Y . Then the inclusion A ↪→ X

is a homotopy-isomorphism, and there exists explicit strong deformation retract h : X ×
[0, 1]→ X of X onto A = h(X, 1).

The arguments of 3.1.1 demonstrate that the disactivated domain X−A deformation

retracts onto every ε-neighborhood of A in X. I.e., X deformation retracts onto

(A)ε := {x ∈ X | dist(x,A) ≤ ε}

for every ε > 0. The purpose of 3.1.1 is to obtain continuous deformations at ε = 0. Our

strategy studies the flow generated by an averaged vector field ηavg(x) = ∇xfavg, which

is the gradient of an averaged potential favg. C.f. [Nee85, §3].

The hypothesis that ηavg(x) is uniformly bounded away from zero is a weak version

of the following condition.

Definition 3.1.2. A collection E = {ηi | i ∈ I} ⊂ TxX of tangent vectors satisfies

the Halfspace condition if there exists a nonzero linear functional ` : TxX → R with

`(ηi) > 0 simultaneously for all i ∈ I.

Equivalently, Halfspace condition says the convex hull conv[E] = conv[{ηi | i ∈ I}] ⊂
TxX does not contain the origin 0 ∈ TxX.
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3.2 Averaged Gradients and Finite-Time Blow-Up

Suppose we have a Radon measure ν̄ on the target Y , absolutely continuous with respect

to HY , and we take the average gradient with respect to ν̄. The following lemma for-

mally establishes that this averaged-gradient is indeed the gradient field of a continuously

differentiable “averaged” potential.

Lemma 3.2.1. Let β > 0. Let ν1, ν2, ν3, . . . be a sequence of empirical probability mea-

sures, i.e. renormalized sums of Dirac masses, which converge as N → +∞ in the weak-∗
topology to the renormalized probability measure (ν̄[Y ])−1 · ν̄ on Y . Then:

(i) For x ∈ X − A, the limit

lim
N→+∞

∫
Y

(c(x, y)− ψ(y))−βdνN(y) (3.2)

exists and converges to the finite integral

favg(x) := (ν̄[Y ])−1

∫
Y

(c(x, y)− ψ(y)))−β.dν̄(y). (3.3)

(ii) The rule favg : X − A → R defines a continuously differentiable function with

gradient

∇xfavg = (ν̄[Y ])−1

∫
Y

∇x(c(x, y)− ψ(y))−β.dν̄(y).

Proof. If c satisfies (A0)–(A4), then the limit defining favg converges uniformly on com-

pact subsets of X − A. So the limit (3.2) exists and is finite. Moreover the uniform

convergence on compact subsets implies (ii), since the approximants are continously dif-

ferentiable on X−A. Therefore∇xfavg is the average of∇x(c(x, y)−ψ(y))−β with respect

to ν̄, as desired.

For y ∈ Y , x ∈ X − A, and β > 0, we abbreviate

fy(x) := (c(x, y)− ψ(y))−β. (3.4)

According to 3.2.1 we define

favg : X − A→ R, favg(x) = (ν̄[Y ])−1

∫
Y

fy(x).dν̄(y). (3.5)

Definition 3.2.2 (Property (C)). The collection of functions {fy| y ∈ Y } satisfies

Property (C) throughout X − A with respect to the uniform probability measure 1
ν̄[Y ]

ν̄
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if there exists constant C > 0 such that

||∇xfavg|| ≥ C

∫
Y

||∇xfy||.dν̄(y) (3.6)

pointwise throughout X − A.

When Y is finite, #(Y ) < +∞, the estimate (3.6) requires the ratio

||∇xfavg||/max
y∈Y
||∇xfy||

be uniformly bounded away from zero throughout X − A. In this case, Property (C)

and Halfspace Condition 3.1.2 ensures the divergence of the average ∇xfavg whenever a

gradient summand ∇xfy diverges.

When Y is infinite with positive dimension, the pointwise divergence of an integrand

||fy|| → +∞ need not imply the divergence of the average favg for every choice of β > 0.

The rate at which fy diverges must be sufficiently large. When cost c satisfies Assump-

tions (A0)–(A5), Lemma 2.5.3 proves that c-concave potentials ψ : Y → R ∪ {−∞} are

locally Lipschitz throughout dom(ψ). This implies β = dim(Y ) + 2 is sufficient. If xkk

is a countable sequence in X − A, then favg(xk) diverges to +∞ if and only if fy(xk)

diverges for y belonging to some subset V ⊂ Y .

Lemma 3.2.3. Let c : X × Y → R be cost satisfying (A0)–(A5), as above, and A ⊂ X

the active domain of a c-optimal semicoupling. Fix y0 ∈ Y , and abbreviate f0(x) :=

fy0(x) = (c(x, y0)− ψ(y0))−β for some β > 0, x ∈ X. Suppose:

(a) ∇xc(x, y0) is uniformly bounded away from the origin; and

(b) ∇2
xxc(x, y0) is uniformly bounded above with respect to x ∈ X − A.

Then for every K > 0, there exists ε > 0 such that ∇2
xxf0 ≥ K.Id > 0 in the direction

of ∇xc(x, y0) throughout the ε-neighborhood of {f0 = +∞} in X − A.

Proof. The function f0 is well-defined on {c(x, y0) > ψ(y0)} ⊂ X. If x converges to

x∞ ∈ {c(x, y0) ≤ ψ(y0)}, then both f0, ∇xf0 diverge to infinity. We find ∇2
xxf0 is equal

to

β(1+β)(c(x, y0)−ψ(y0))−2−β∇xc(x, y0)⊗∇xc(x, y0)−β(c(x, y0)−ψ(y0))−1−β∇2
xxc(x, y0).

By Proposition 3.2.2 the gradients ∇xc(x, y0) are uniformly bounded away from zero

in neighborhoods of {f0 = +∞}. Assumption (A2) implies ∇2
xxc(x, y0) is uniformly

bounded above on superlevel sets {f0 ≥ T} for all T > 0. Factoring out the term
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β(c(x, y0)− ψ(y0))−1−β, we find ∇2
xxf0 is positively proportional

(1 + β)(c(x, y0)− ψ(y0))−1∇xc(x, y0)⊗∇xc(x, y0)−∇2
xxc(x, y0). (3.7)

We observe (3.7) diverges to +∞ with (c(x, y0)−ψ(y0))−1. This implies ∇2
xxf0 is positive

semidefinite when c(x, y0)− ψ(y0) > 0 is sufficiently small, and strongly convex

∇2
xxf0 ≥ K > 0

in the direction of ∇xc(x, y0).

By Assumption (A1) the sublevels {x | ψ(y0) ≤ c(x, y0) ≤ ψ(y0) + ε′} are compact

subsets of X − A for every ε′ > 0. This implies a sufficiently small ε > 0 exists for

which ∇2
xxf0 ≥ K.Id > 0 throughout the ε-neighborhood of {f0 = +∞} in the direction

∇xc(x, y0).

Example. To illustrate Lemma 3.2.3, consider the f(x) = x−β for x ≥ 0, β > 0. The

gradient flow x′ = (−β)x−1−β is bounded away from zero in neighborhoods of the pole

at x = 0, and indeed diverges to +∞. Moreover f ′′(x) is obviously bounded away zero

and diverging to +∞ as x→ 0+.

For initial condition x0 > 0, the integral curve of the negative gradient flow is equal to

x(s) = (x2+β
0 − β(β + 2)s)1/(2+β), which converges in finite time to the pole at x = 0 over

the interval 0 ≤ s ≤ 1
β(β+2)

x2+β
0 . Thus we find ω(x0) = 1

β(β+2)
x2+β

0 varies continuously

with respect to x0 > 0, and is even Lipschitz. Compare Lemma 3.2.6 below.

The blow-up in finite time is typical property of the gradient flow defined by the

potentials f0. Actually our applications require verifying these same properties for the

averaged potential favg and its gradient ∇xfavg.

Lemma 3.2.4. Let favg be the average defined in Lemma 3.2.1, equation (3.3), with

exponent β = dim(Y ) + 2. If the distance from x ∈ X − A to the boundary ∂A is

sufficiently small, then favg is strongly convex in the direction of ∇xfavg.

Proof. Let xk be a sequence in X − A converging to a point x∞ ∈ {favg = +∞}. The

choice of β says favg diverges if and only integrands fy diverge, and there exists a subset

V ⊂ Y such that fy diverges to +∞ for every y ∈ V . The divergence of fy, y ∈ V also

implies the divergence of the gradients ∇xfy and Hessians D2
xxfy, (see (3.7) in proof of

3.2.3). Moreover the Hessians D2favg|xk are positive semidefinite when k is sufficiently

large, being the asymptotic to the average rank-one quadratic forms 〈∇xfy,−〉2. So
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D2favg[∇xfavg] is asymptotic to the average of

〈∇xfy,∇xfavg〉2 (3.8)

for y ∈ V . Now we claim

lim
k→+∞

〈∇xfy|xk ,∇xfavg|xk〉2 = +∞, unless ∇xfy,∇xfavg are orthogonal.

The (UHS) conditions imply ∇xfavg is uniformly bounded away from zero, and therefore

the inner products (3.8) are not identically zero for all y ∈ V . This implies the divergence

of D2favg[∇xfavg]|xk as k → +∞.

Lemma 3.2.5 (Finite-time Blow-up). Suppose the functions {fy | y ∈ Y } satisfy (3.6)

as above. Then for every initial value x0 ∈ dom(favg), the gradient flow defined by the

average gradient x′ = ∇xfavg diverges to infinity in finite time.

Proof. The estimate (3.6) shows the gradient∇xfavg is uniformly bounded away from zero

in the neighborhoods of the poles {favg = +∞} in X−A. Moreover favg is asymptotically

convex in neighborhoods of the poles using Lemma 3.2.4 along directions of ∇xfavg. This

implies the gradient flow x′ = ∇xfavg, x(0) = x0 blows-up in finite-time for every initial

value x0 ∈ X − A.

Informally the estimate (3.6) implies every step in the discretized gradient flow (e.g.,

Euler scheme) has a definite size. Meanwhile the asymptotic convexity of Lemma 3.2.3

implies the discretized gradient flow well approximates the continuous gradient flow. But

if step-sizes have a definite magnitude, then we definitely approach the poles after a finite

number of steps and the integral curves blow-up in finite time.

The blow-up in finite time (Lemma 3.2.5) implies the maximal forward-time interval

of existence for the gradient flow is a bounded interval I(x0) := [0, ω(x0)) ⊂ [0,+∞). For

general ordinary differential equations, it’s known that ω(x0) is lower semicontinuous as

a function of x0: for a sequence of initial values x0, x1, . . . converging to some x∞, we have

ω(x∞) ≤ lim infk→+∞ ω(xk). See [Har64, Theorem 2.1, pp.94]. In our particular setting,

it is further necessary to establish the continuity of this maximal interval of existence.

This is established in Lemma 3.2.6 below.

Lemma 3.2.6. Let c satisfy Assumptions (A0)–(A5). Then the maximal intervals of

existence I(x0) = [0, ω(x0)) of solutions to the initial value problem 3.10 vary continuously
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with respect to the initial point x0. In otherwords, x0 7→ ω(x0) varies continuously with

x ∈ X − A.

Proof. Our assumptions imply the domain X − A is a complete open set. Furthermore

ηavg(x) being uniformly bounded away from zero implies the trajectories s 7→ Ψ(x0, s) are

finite on compact subsets of X − A. Therefore ω(x0) is characterized by the two limits

lim
s→ω(x0)−

Ψ(x0, s) ∈ ∂A, lim
s→ω(x0)−

||Ψ(x0, s)|| = +∞,

and here we take advantage of the divergence ||ηavg(x)|| → +∞ as x→ ∂A.

Moreover the asymptotic concavity (Proposition 3.2.4) of the average potential defin-

ing ηavg(x) implies the flow defined by 3.10 is asymptotically contracting. This implies

ω(x0) is actually a Lipschitz function of x0, i.e. satisfying |ω(x1)−ω(x0)| ≤ C.||x1− x0||
for some constant C = C(x0) depending on x0 ∈ X−A. Hence ω is a continuous function,

as desired.

3.3 Proof of Theorem 1.4.1

Now we establish Theorem 3.1.1, which is Theorem 1.4.1 from the Introduction.

Proof of Theorem 3.1.1. According to Lemma 2.4.6 the active domain A can be expressed

as ∪y∈Y {x | c(x, y) ≤ ψ(y)} for the Kantorovich potential ψ : Y → R. If Halfspace

Condition is satisfied at x ∈ X −A, then the collection of gradients {∇xc(x, y) | y ∈ Y }
are all nonzero vectors and occupy some common nontrivial halfspace of TxX. If we

define

η(x, y) := (c(x, y)− ψ(y))−1−β · ∇xc(x, y),

then likewise {η(x, y) | y ∈ Y } is a collection of vectors satisfying Halfspace condition.

We divide the argument into two cases.

(Case I) Assume Y is finite with N = #(Y ) < +∞. Define

ηavg(x) := N−1
∑
y∈Y

[(c(x, y)− ψ(y))−1−β · ∇xc(x, y)]. (3.9)

Evidently when Y is finite, the sum (3.9) is finite vector. Then x 7→ ηavg(x) is a well-

defined nonvanishing vector field on X − A which diverges whenever a denominator

converges c(x, y)→ ψ(y)+. Thus η(x, avg) is finite if and only if x ∈ X − A.

We propose integrating the vector field x 7→ ηavg(x) throughout X −A to obtain the

desired retraction. For every initial point x0 ∈ X − A, there exists a unique solution
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Ψ(x0, s) to the ordinary differential equation

d

ds
|(x0,s)Ψ = ηavg(Ψ(x0, s)), Ψ(x0, 0) = x0, (3.10)

and defined over a maximal interval of existence I(x0) = [0, ω(x0)).

According to Lemma 3.2.6 the maximal interval I(x0) varies continuously with respect

to x0 ∈ X − A. Moreover orbits {Ψ(x0, s) | s ∈ I(x0)} converge in finite-time to the

boundary ∂(X − A) for every initial value x0 ∈ X − A.

Finally, Lemma 3.2.6 below proves the orbits can be continuously reparameterized to

obtain a continuous mapping Ψ′ : (X − A)× [0, 1]→ X defined by

Ψ′(x0, s) = Ψ(x0, sω(x0)). (3.11)

(Case II) Suppose Y is infinite set, with uniform measure HY . We define ηavg(x)

according to the vector-valued Bochner integral

ηavg(x) := (

∫
dom(cx)

dHY )−1

∫
dom(cx)

(c(x, y)− ψ(y))−1−β · ∇xc(x, y)dHY (y), (3.12)

where dom(cx) is closed compact subset of Y for every x ∈ X by Assumption (A0).

Assumption (A5) implies the exponent β = dim(Y ) + 1 is suitable according to Propo-

sition 2.5.3. Lemma 3.2.1 implies the vector field ηavg(x) = ∇xfavg is the gradient of a

continuously differentiable potential favg defined on X − A.

The proof proceeds as in (Case I). The vector field x 7→ ηavg(x) is well-defined nonvan-

ishing vector field on X−A which diverges to +∞ whenever some denominator converges

c(x, y) → ψ(y)+. We integrate the gradient fields and obtain the retraction of X − A

onto the poles ∂A. The flow converges in finite-time by Lemma 3.2.5. We reparameterize

the flow according to equation (3.11), and obtain a continuous deformation using Lemma

3.2.6.



Chapter 4

Kantorovich Singularity and

Topological Theorem 1.4.2

The present chapter describes topological properties of the singularities of optimal semi-

couplings. The main result is Theorem 1.4.2 from the Introduction, c.f. 4.5.3–4.5.4.

This chapter also develops the central definition of our thesis, namely Kantorovich’s con-

travariant singularity functor Z : 2Y → 2X , defined Z = Z(c, σ, τ) with respect to a

choice of cost c satisfying Assumptions (A0)–(A4), and source, target measures σ, τ on

X, Y , respectively.

4.1 Kantorovich’s Contravariant Singularity Functor

Our thesis proposes a bridge between measure and algebraic topology. The bridge is

realized by the contravariant functor Z : 2Y → 2X , where 2Y designates the category

of closed subsets YI of Y , and where morphisms are the inclusions YI ⊂ YJ between

closed subsets YI , YJ whenever they exist. Likewise for 2X . The singularity functor

Z : 2Y → 2X is defined relative to a cost c on X × Y satisfying Assumptions (A0)–

(A4). Let σ, τ be absolutely continuous with respect to the Hausdorff measures HX ,

HY on X, Y respectively. By Theorems 2.4.7 and 2.5.8 there exists unique c-minimizing

measures, and c-concave potentials ψcc = ψ on Y . The c-subdifferential ∂cψ is uniquely

determined, but the choice of potentials – i.e. the maximizers in dual maximization

program (2.5) – are generally nonunique.

Definition 4.1.1 (Kantorovich Singularity). Let ψ : Y → R ∪ {−∞} be a c-concave

potential on Y . Then the Kantorovich singularities in X are the closed subvarieties Z(YI)

46
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Figure 4.1: Singularity structure Z on active domain A = Z1

functorially assembled from the closed subsets YI of Y by the rule

YI 7→ Z(YI) := ∩y∈YI∂cψ(y).

We declare Z(∅Y ) := X for the empty subset ∅Y of Y .

The definition Z(YI) = ∩YIZ(y) yields a contravariant functor Z : 2Y → 2X where

morphisms YI ↪→ YJ correspond to Z(YI) ←↩ Z(YJ) in X. The contravariant functor

Z is uniquely prescribed by the choice of (c, σ, τ) whenever c satisfies (A0)–(A4), and

σ, τ are absolutely continuous as defined above. For (c, σ, τ) satisfying the assumptions

above, the singularity Z = Z(c, σ, τ) will generally admit many closed subsets YI ⊂ Y

for which the cells Z(YI) ⊂ X are empty Z(YI) = ∅X . It is useful to restrict ourselves to

the nontrivial image of Z and formally define the support.

Definition 4.1.2. The support of the contravariant functor Z : 2Y → 2X is the subcate-

gory of 2Y , denoted spt(Z), whose objects are the closed subsets YI of Y for which Z(YI)

is nonempty subset of X.

So spt(Z) = {YI ⊂ Y | Z(YI) 6= ∅X}. Note that ∅Y ⊂ Y is object in subcategory

spt(Z), since Z(∅Y ) = X according to Definition 4.1.1.

For given x ∈ X, we interpret Z ′(x) := Z(∂cψc(x)) as a “cellular neighborhood” of

x in the active domain A =: Z1. The c-concavity ψcc = ψ provides explicit equations

describing Z ′(x). See Section 4.2 and (4.4).

We conclude this section with the observation that the graph of the singularity functor

Z(σ, τ, c) is a closed subcategory of 2Y ×2X , and hence upper semicontinuous with respect
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Figure 4.2: Singularity structure on Z2

to Gromov-Hausdorff limits of (σ, τ, c). We refer the reader to any standard textbook

on category theory for definition of “natural transformations” of functors, e.g. [Lan05,

Ch.1].

Proposition 4.1.3. Let X, Y be Riemannian manifolds-with-corners. Let σk, τk, k ≥ 1,

be a sequence of measures which converge in weak-∗ topology to σ, τ , respectively. Let

ck : X×Y → R be a sequence of costs which converge pointwise to a cost c : X×Y → R.

Suppose ck, c satisfy Assumptions (A0)–(A3).

Then the correspondance

Zk : (σk, τk, ck) 7→ Z(σk, τk, ck)

varies upper semicontinuously, and there exists an injective natural transformation be-

tween the functors

Z(σ, τ, c) ↪→ lim
k→+∞

Z(σk, τk, ck).

In particular, for every closed subset YI of Y , the cell Z(YI) is an embedded subset of the

Gromov-Hausdorff limit limk→+∞ Zk(YI).

Proof. See Lemma 2.5.6, c.f. [Vil09, Thm. 28.9, pp.780–790].

The point of 4.1.3 is that the singularities of the limit (σ, τ, c) are no more complicated

than the approximant singularities of (σk, τk, ck). In fact the singularity often simplifies

in various limits. Proposition 4.1.3 is familiar property of lower semicontinuous convex
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functions: if φk : X → R is a sequence of lower semicontinuous convex functions which

converge pointwise to a limit limk→+∞ φk = φ0, then for every x ∈ X, the subdifferential

∂φ0(x) is a subset of the Hausdorff limit limk→+∞ ∂φk(x). That is, the graph of the

subdifferential Id× ∂φ of a lower semicontinuous convex function φ is a closed subset of

RN × RN .

4.2 Local Topology and Local Dimensions of Z

The present section examines the local differential topology and dimensions of Kan-

torovich’s contravariant functor Z : 2Y → 2X , where the cost c satisfies Assumptions

(A0)–(A5). If ψ : Y → R ∪ {−∞} is a c-concave potential, then we first seek a descrip-

tion of the differential topology of the cells

Z ′(x) := Z(∂cψc(x)).

The main results are 4.2.4 and 4.3.4. The proof of 4.2.4 is essentially a local adaptation

of the recent work of [KM18], and 4.3.4 is a corollary to a theorem of Alberti [Alb94].

Let the reader recall the definitions of c-concavity (§2.3) and c-subdifferentials (2.3.3).

The c-concavity ψcc = ψ represents a pointwise inequality on Y , namely

− ψc(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ X × Y. (4.1)

The case of equality −ψc(x) +ψ(y) = c(x, y) is most important, and occurs if and only if

y ∈ ∂cψc(x), and if and only if x ∈ ∂cψ(y). We recall that c-optimal semicouplings π are

supported on the graphs of c-subdifferentials, hence the equality −ψc(x) +ψ(y) = c(x, y)

holds π-a.e., when ψ is a c-concave maximizer to Kantorovich’s dual program.

Recall that if ϕ : RN → R∪{+∞} is a convex lower semicontinuous function on some

N -dimensional vector space, then the following are equivalent [ET99, I.5.3, pp.23]:

- ϕ is continuous and finite at x ∈ RN , with ∂ϕ(x) a singleton;

- φ is differentiable at x with ∂ϕ(x) = {Dϕ(x)}.
Thus ϕ is continuous throughout the interior of dom(ϕ). So if φ = ψc is a c-convex

potential on X, then ∂cφ(x) is multivalued if and only if φ is non-differentiable at x.

Returning to c-convexity, in case ∂cφ(x0) is a singleton, say {y0}, then −ψc(x0) +

ψ(y) < c(x0, y) for every y 6= y0. The set of x’s with y0 ∈ ∂cφ(x) is then characterized as

the subset where

ψ(y0) ≥ c(x, y0) + φ(x)
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according to (4.1), i.e. as the superlevel set of x 7→ c(x, y0) + φ(x) and Assumptions

(A0)–(A3) imply these superlevel sets are closed. More concretely, we find Z({y0}) is

characterized by the equations

Z({y0} = {x ∈ X| ψ(y0) = c(x, y0) + φ(x)}. (4.2)

Equivalently, we find x ∈ ∂cψ(y0) if and only if

y0 ∈ argmax[{ψ(y)− c(x, y) + c(x, y0) | y ∈ Y }]. (4.3)

If x is such that ∂cψc(x) is not a singleton, say including two distinct points y0, y1,

then x satisfies the equations

ψc(x) + c(x, y0) = ψ(y0), ψc(x) + c(x, y1) = ψ(y1).

Subtracting these two equations, we can eliminate φ(x) and obtain the equation

0 = ψ(y1)− ψ(y0)− c∆(x, y0, y1),

where we abbreviate c∆(x; y, y′) := c(x, y)− c(x, y′) for the two-pointed cross difference.

If y0 ∈ ∂cψc(x), and y /∈ ∂cψc(x), then

0 < ψ(y)− ψ(y0)− c∆(x, y, y0).

Definition 4.2.1. Let ϕ be a c-convex potential on X, ϕcc = ϕ. We say x ∈ dom(ϕ) is

a singular point if ϕ is not differentiable at x.

If x0 ∈ X is a singular point, then ∂cϕ(x0) is not a singleton and the cell Z ′(x0) is

described by the system of equations

Z ′(x0) = {x ∈ X | 0 = ψ(y0)− ψ(y1)− c∆(x; y0, y1), y1 ∈ ∂cψc(x0), y1 6= y0} (4.4)

according to (4.3), where ψ = ϕc.

From the equations (4.4) we obtain the following:

Lemma 4.2.2. Under Assumptions (A0)–(A3), the cell Z ′(x) = Z(∂cψc(x)) is a closed

locally DC-subvariety in X for every singular point x ∈ dom(ψc).

Proof. The cell Z ′(x) is the intersection of sets of the form ∂cψ(y), which are closed 2.3.4.

Assumption (A1) implies x 7→ ∇2
xxc(x, y) is locally bounded above on X, uniformly
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in y. Therefore every x admits a neighborhood U and a constant C ≥ 0 such that

∇2
xxc(x, y) ≤ C.Id uniformly with respect to y throughout U . This implies x 7→ c(x, y)

is locally semiconcave function on X, uniformly in y. Therefore the cross-differences

x 7→ c∆(x; y, y′) are locally DC-functions, uniformly in y, y′ in Y . This observation and

equation (4.4) implies Z ′(x) is locally-DC subvariety of X.

To illustrate, consider the Euclidean quadratic cost c(x, y) = ||x− y||2/2. The cross-

difference c∆(x, y, y′) is an affine function of x, namely

c∆(x, y, y′) = 〈x, y′ − y〉+ ||y||2/2− ||y′||2/2.

Therefore the cells Z ′(x) are locally affine subsets of X for every singular point x.

We caution the reader that Lemma 4.2.2 does not the specify the dimension of Z ′(x)

– the dimension of these cells is addressed below 4.2.4.

Again Z ′(x) is viewed as a local cell on the active domain x ∈ Z1 = A. Our next

step is to describe the space of directions TxZ
′(x) (compare [Vil09, Def.10.4.6, pp.257]).

The definition of the vector field ηavg(x) ∈ TxZ ′ involves the orthogonal projection prZ′ :

TxX → TxZ
′ of TxX onto the space of directions.

Lemma 4.2.3. Let x ∈ X be a singular point, where ∂cψc(x) is not a singleton. Then

the space of directions TxZ
′(x) is a subset of the orthogonal complement

orthog[{∇xc∆(x; y0, y1) | y1, y0 ∈ ∂cψc(x)}]

in TxX.

Proof. Let φ = ψc. For y0, y1 ∈ Y , we abbreviate A(x, y0, y1) = c∆(x, y, y0)−ψ(y)+ψ(y0).

If x is a singular point, then Z ′(x) is characterized by the vanishing A(x̄, y, y′) = 0 for

y, y′ ∈ ∂cφ(x). A first-order deformation η at x and tangent to Z ′(x) must preserve the

system of equations {A(x, y, y′) = 0| y, y′ ∈ ∂cφ(x)}. But this only if η ∈ TxX satisfies

the homogeneous linear equations η · ∇xc∆(x, y, y′) = 0 for every y, y′ ∈ ∂cφ(x).

Lemma 4.2.3 indicates the expected Hausdorff dimension of Z ′(x), namely the di-

mension of the orthogonal complement {∇xc∆(x, y, y′) | y, y′ ∈ ∂cψc(x)}. A standard

application of Clarke’s Nonsmooth Implicit Function theorem confirms this dimension

estimate. Some preliminary notation is convenient. Recall X is a Riemannian manifold-

with-corners, equipped with Riemannian exponential mapping expx : TxX → X. If

(X, d) is complete Cartan-Hadamard space, then expx is diffeomorphism between TxX

and the universal covering space X̃. On general Riemannian manifold-with-corners X
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the exponential map is a local diffeomorphism between sufficiently small open neigh-

borhoods U of x0 ∈ X with open balls U ′ in the tangent space Tx0X. So we have C1

diffeomorphisms between local neighborhoods of x0 ∈ X with neighborhoods of 0 in eu-

clidean space Rn, with n = dim(X) = dim(Tx0X). Thus for every x0 ∈ X there exists a

local diffeomorphism splitting Bε(x0) as a product Bε(x
′
0)× Bε(x

′′
0), viewed as subset of

Rn−j ×Rj with x0 = (x′0, x
′′
0) for j ≥ 0.

Recall c satisfies Assumptions (A0)–(A4). Let ψ : Y → R ∪ {−∞} be a c-concave

potential, with φ = ψc. Let Z1 := A be the active domain of the semicoupling defined

by ψ, and let x0 ∈ Z1.

Proposition 4.2.4. Under the above hypotheses, let x0 be a singular point. Suppose

the gradients {∇xc∆(x; y0, y1) | y0, y1 ∈ ∂cψc(x0)} span a j-dimensional subspace of TxX

for every x ∈ Z ′(x0). Then Z ′(x0) is a codimension-j local DC-subvariety of the active

domain Z1.

Proof. Fix some y0 ∈ ∂φ(x0). Abbreviate A(x, y) := c(x, y) − c(x, y0). Consider the

mapping G : Bε(x0)→ Rd defined by

G(x) = (A(x, y1), A(x, y2), . . . A(x, yj))

for y0, y1, . . . , yj ∈ ∂cψc(x0). Assume

{∇xA(x0, yi, y0)}1≤i≤j

is a linearly independant subset of Tx0X. The map G : Bε(x0)→ Rj is local DC-function

according to Lemma 4.2.2.

We use exponential mapping to obtain local C1-diffeomorphism between an open

neighborhood of x0 in X. Next we apply the DC-implicit function theorem as stated

in [KM18, Thm 3.8], and conclude there exists ε > 0 and a biLipschitz DC-mapping φ

from Bε(x
′
0) ⊂ Rn−j to Bε(x

′′
0) ⊂ Rj such that, for all x = (x′, x′′) ∈ Bε(x

′
0) × Bε(x

′′
0) ⊂

Rn−j × Rj we have G(x) = G(x′, x′′) = 0 if and only if x′′ = φ(x′).

The basic subdifferential inequalities (4.4) imply G(x) = 0 if and only if x ∈ Z ′(x0)∩
B(x0, ε). Now because Z ′(x0) can be covered by countably many sufficiently small

open balls, we conclude that Z ′(x0) is a local DC-subvariety with Hausdorff dimension

dimH Z ′(x0) = n− j.

The above 4.2.4 is a type of “constant-rank” theorem for Lipschitz maps, c.f. [Cla76].
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N.B. The description of TxZ
′(x) is symmetric with respect to y1, y0. There is further

symmetry from the additive relations between cross-costs

c∆(x; y0, y1) + c∆(x; y1, y2) = c∆(x; y0, y2).

This implies the obvious estimate codimZ ′(x) ≤ #(∂cψc(x))−1 under general conditions.

Recently [KM18] obtained an explicit parameterization of singularities arising from

Euclidean quadratic costs, employing a hypothesis of affine independance between the

connected components of the subdifferentials ∂cψc(x). Their parameterization requires

a global splitting X = X0 × X1 of the source domain to express singularities (“tears”

in their terminology) as the graphs of DC-functions G : X0 → X1 as above. Further

hypotheses on the convexity of source and target are required for their arguments.

4.3 The Descending Filtration {Zj}j≥0

Following an idea of Prof. D. Bar-Natan [Bar02a] we “skewer the cube” 2X (more ac-

curately the support spt(Z)) according to local codimensions and obtain a descending

filtration. The previous section described various cells Z ′(x) which decompose the ac-

tivated source A of optimal semicouplings. Assembling these cells into the Kantorovich

functor Z : 2Y → 2X leads to a useful filtration of the source X.

Definition 4.3.1. For integers j = 0, 1, 2, . . ., let

Zj+1 := {x ∈ X| dim[span{∇xc∆(x; y, y′) | y, y′ ∈ ∂cψc(x)}] ≥ j}

where Z ′(x) = Z(∂cψc(x)) for a c-concave potential ψcc = ψ on target space Y .

According to the definition, Zj is supported on the subcategory spt(Z) of 2Y for every

j ≥ 1. The activated support A coincides with the support of Z1. From the definition we

find Zj+1 is the union of cells Z(YI) for which the local dimension is at least j. The cells

Z(YI) are closed (2.3.4). If the support spt(Z) of the functor is finite, then the unions

Zj+1 are closed. However if spt(Z) is infinite, then the union Z2, Z3, . . . is possibly not

closed and depends on the cost c. For example, the Euclidean quadratic cost c = d2/2

typically has Z2 not closed when the target Y has dim(Y ) > 0. This motivates our study

of “repulsion” costs in Chapter 5, where we expect Z2 is always closed in practice.

Now we replace the c-subdifferentials with an important “localized” version using

(Twist) condition (A4). The c-subdifferential ∂cψc of a c-convex function ψc : X →
R ∪ {+∞} is non-local subset of Y . The subsets ∂cψc ⊂ Y depends on global datum,
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namely the values of c(x, y) for all y ∈ dom(cx). Hence ∂cψc(x0) depends on the values

of ψ(y) and ψc(x) for every y ∈ Y, x ∈ X and not simply the local behaviour of ψc near

x0. It is useful to introduce a local subdifferential, namely the so-called “subgradients”

of a function ψc : X → R ∪ {+∞}.

Definition 4.3.2 (Local Subgradients ∂•φ). Let U be open set in X, sufficiently small

such U is C1-diffeomorphic to an open subset of Rn where n = dim(X). Let φ : U → R
be a function. Then φ is subdifferentiable at x with subgradient v∗ ∈ T ∗xX if

φ(z) ≥ φ(x) + v∗(z − x) + o(|z − x|) for all z near x.

Let ∂•φ(x) ⊂ T ∗xX denote the set of all subgradients to φ at x. Here o is the “little-oh”

notation.

Evidently the subgradient ∂•φ(x) is local, and depending on the values of φ near x.

Moreover ∂•φ(x) is a closed convex subset of T ∗xX for every x ∈ dom(φ).

The Assumptions (A0)–(A3) imply ψc : X → R∪{+∞} is locally semiconvex over its

domain dom(ψc) ⊂ X (Lemma 2.5.5). In otherwords, every x ∈ dom(ψc) admits an open

neighborhood U of x and a constant C ≥ 0 such that D2ψc ≥ −CId throughout U , where

D2ψc = D2
xxψ

c is the distributional Hessian in the source variable x ([Vil09, Theorem

14.1, pp.363]). So given a c-convex potential ψc on X, for every x0 ∈ X there exists open

neighborhood U and C ≥ 0 such that ψc|Ux + C||x||2/2 is strictly-convex throughout

U . This implies the local subdifferential and subgradients ∂•ψ
c(x) coincide with the

convex-analytic subdifferential of the local function ψc|U + C||x||2/2, when restricted to

the sufficiently small neighborhood x in X.

Having introduced the local subdifferential, there is important comparison between

∂cψc(x0) ⊂ Y and ∂•ψ
c(x0), assuming (Twist) condition Assumption (A4). This relation

is the inclusion

∂cψc(x0) ⊂ {y ∈ Y | − ∇xc(x0, y) ∈ ∂•ψc(x0)}. (4.5)

Observe ∂cψc(x0) is nonempty whenever x0 ∈ dom(ψc). We abuse notation and

denote ∇xc(x, y) for the canonical covector in T ∗xX, with the tangent vector in TxX

using the ambient Riemannian structure. The inclusion (4.5) allows us to replace the

global c-subdifferential ∂cψc with the local convex set of subgradients ∂•ψ
c. The inclusion

is generally strict. However it produces basic upper bounds on the Hausdorff dimension

of ∂cψc. We quote the following theorem of G. Alberti:

Theorem 4.3.3 ([Alb94]). Let f : Rn → R be proper lowersemicontinuous convex func-
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tion. For every 0 < k < n, let Sk(f) ⊂ Rn be the subset defined by

Sk(f) := {x ∈ Rn| dimH (∂•(f)) ≥ k}.

Then Sk(f) can be covered by countably many (n− k)-dimensional DC-manifolds.

In otherwords Sk(f) is countably (n − k)-rectifiable and has Hausdorff dimension

≤ (n− k). If f is +∞-valued on Rn, then Alberti’s method shows Sk(f) can be covered

by countably many (n′ − k)-dimensional manifolds where n′ = dimH (dom(f)). The

domain dom(f) is a closed convex subset of Rn having well-defined Hausdorff dimension.

Proposition 4.3.4. Let c : X × Y → R ∪ {+∞} be cost satisfying Assumptions (A0)–

(A4). Let ψ : Y → R ∪ {−∞} be c-concave potential ψcc = ψ with singularity functor

Z : 2Y → 2X . Define n′ := dimH (dom(ψc)). Then for every integer j ≥ 1, the subvariety

Zj has Hausdorff dimension

dimH (Zj) ≤ n′ − j + 1.

Proof. Consider the inclusion (4.5). For given x0, let U be the open neighborhood

and C > 0 such that ψc|U + C||x||2/2 is strictly-convex throughout U . For x ∈ U

the c-subdifferentials ∂cψc(x) are contained in the closed convex local subdifferentials

∂•ψ
c|U(x). Now we have equality

∂•(ψ
c|U(x) + C|x|2/2) = ∂•ψ

c|U(x) + C〈−, x〉. (4.6)

So the local subdifferential ∂•(ψ
c
U + C|x|2/2) in T ∗xX is an affine translate of ∂•ψ

c|U by

the linear functional C〈−, x〉.
Next we apply Alberti’s theorem to the localized convex function ψc|U+C|x|2/2. Thus

Sk(ψc|U +C|x|2/2) and Sk(ψc|U) can be covered by countably many (n′−k)-dimensional

manifolds where n′ := dimH (domψc|U).

Finally we relate dimH (∂•ψ
c|U(x)) to the Hausdorff dimension of Z ′(x) = Z(∂cψc(x))

= ∩y∈∂cψc(x)∂
cψ(y). From the definition of subgradients, we have

conv({∇xc(x, y)|y ∈ ∂cψc(x)}) ⊂ ∂•ψ
c(x).

Moreover the closed convex hull conv({∇xc(x, y)|y ∈ ∂cψc(x)}) has dimension

j = dim(span{∇xc∆(x, y, y0) | y ∈ ∂cψc(x)}).
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For every x ∈ Zj we conclude Zj ∩U ⊂ Sj(ψc|U +C|x|2/2), which according to Alberti’s

theorem 4.3.3 yields the upper bound dimH (Zj ∩ U) ≤ n′ − j. To conclude, we observe

that Zj can be covered by countably many open neighborhoods U of points x ∈ Zj.

We supplement 4.3.4 with the following application of Clarke’s Implicit Function

Theorem, which gives a criterion for the singularities Z2, Z3, . . . to be closed subsets of

X.

Proposition 4.3.5. Let c : X × Y → R be a cost satisfying Assumptions (A0)–(A4).

Let φ = ψc be a c-convex potential on X. Suppose the sup-norm of the gradients

∇xc∆(x, y0, y1), y0, y1 ∈ ∂cφ(x) is nonzero, uniformly with respect to x ∈ Z2. Then

Z2 is a closed subset of X.

Proof. Consequence of Clarke’s Implicit Function Theorem, c.f. [Vil09, Proof of Theorem

10.50, pp.262–264].

The above proposition 4.3.5 can be generalized to the following criterion for Zj to be

a closed subset. If I is a collection of vectors, then spanZ(I) is the group of all finite

Z-linear combinations
∑

v∈I nvv, for nv ∈ Z. We define the “height” of I, denoted ht(I),

to be the volume of the quotient span(I)/spanZ(I) with respect to a fixed Lebesgue

measure.

Proposition 4.3.6. Let c : X × Y → R be a cost satisfying Assumptions (A0)–(A4).

Let φ = ψc be a c-convex potential on X. Fix j ≥ 1. For every x ∈ Zj, let Ix be the

collection of gradients

Ix := {∇xc∆(x, y0, y1) | y0, y1 ∈ ∂cφ(x)}.

Suppose the heights ht(Ix) are bounded away from zero, uniformly with respect to x ∈ Zj.
Then Zj is a closed subset of X.

Proof. We leave the proof to the reader, being again a consequence of Clarke’s Implicit

Function Theorem.

4.4 Brief Review of Singularity in the Literature

The term “singularity” is evidently overburdened, and having various interpretations

within the literature. We use the term “singularity” as arising in convex geometry: if
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φ is a lower semicontinuous convex function on RN , then the “singularity” of φ corre-

sponds to the locus of non-differentiability on dom(φ), i.e. the set of points x ∈ dom(φ)

where ∂φ(x) ⊂ (RN)∗ is not single-valued. From the viewpoint of optimal transport,

“singularity” then refers to the locus-of-discontinuity of c-optimal semicouplings.

The Kantorovich singularity (Def. 4.1.1) is both categorical and topological, and pro-

vides an alternative view to the so-called “regularity theory” of optimal transportation.

Regularity in optimal transport usually refers to the Monge map T defined in (2.11) in

Chapter 2. There is large volume of research concerning the C1,α or C2, C∞ regularity

of T under various hypotheses on c, σ, τ . C.f. [Vil09, Ch.12]. Our thesis however is

strictly interested in the discontinuities of T . So we pass silently over questions of the

type “How regular is the map T away from the singularities?”. This thesis rather studies

the continuity properties of the locus-of-discontinuity of T .

Several results concerning singularities of optimal transports have been attained in

the literature. Alberti’s paper [Alb94] is basic starting point. A.Figalli [Fig10a] studies

the singularities of optimal transports between two probability measures supported on

bounded open domains in the plane R2 with respect to the quadratic Euclidean cost

c(x, y) = ||x − y||2/2 (equivalently c = −〈x, y〉). The main result of [Fig10a, §3.2] is

that the singularity (Z2 in our notation) has topological closure Z2 in R2 with zero

two-dimensional Hausdorff measure, H 2(Z2) = 0. (Here we remark that the closure Z2

is not easily topologized from the singularity Z2. In otherwords the closure is not ex-

plicit). Figalli’s work was extended in [FK10], where the determination H n(Z2) = 0

was established for singularities of optimal couplings under the hypothesis that proba-

bility measures are supported on bounded open domains of Rn, and again with respect

to Euclidean quadratic cost. In [PF] a similar result is established with respect to more

general costs on Rn satisfying basic nondegeneracy conditions, namely:

• the cost c ∈ C2(X × Y ) with ||c||C2 < +∞,

• the rule x 7→ ∇yc(x, y) is injective map for every y,

• the rule y 7→ ∇xc(x, y) is injective map for every x, and

• det(D2
xyc) 6= 0 for all (x, y).

The investigations of Figalli suggest the following: if the source and target measures

σ, τ are absolutely continuous to HX ,HY , and the cost c satisfies (A0)–(A4), then the

singularity Z2 has Hausdorff dimension satisfying

dimH (Z2) ≤ dim(Y ).

We motivate this dimension formula in 4.3.4. The recent work [KM18] confirms this
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estimate under some particular conditions, namely Euclidean quadratic cost, convex

source, and convexity and affine-independance of the disjoint target components.

The goal of the present thesis is to establish topological properties of the singularities

of optimal transports. This problem has not appeared in the literature, and we believe it

is important area of study, and especially for applications to various topological problems

(e.g. explicit souls and spines).

4.5 Local–Global Homotopy Reductions: δ-Separated

potentials and (UHS) Conditions

This section generalizes the homotopy-reduction constructed in 3.1.1, and establishes a

retraction procedure Z1 ; Z2 ; · · · ; ZJ+1, defined up to some maximal index J ≥ 1

for which the inclusions

Z1 ←↩ Z2 ←↩ · · ·ZJ+1

are simultaneously homotopy isomorphisms. These retractions require our cost c satisfy

Assumptions (A0)–(A6) and two additional hypotheses, namely a “separation” property

4.5.1 and “Uniform Halfspace Conditions” 4.5.2. The retract is obtained by integrating a

vector field, denoted ηavg(x), whose flow under the above assumptions yields continuous

deformation retracts (Theorem 4.5.4). Our motivation for these retracts arose from at-

tempting to interpret Soulé-Ash’s “well-rounded retract” [Ash84], [Sou78] in the category

of semicouplings and Kantorovich duality. Applications of the well-rounded retract in

the “geometry-of-numbers” can be found in [PS08], [Ste07, §A.6.4].

The first hypothesis necessary for the continuity of our retracts is the following “sep-

aration” property.

Definition 4.5.1 (Separated c-subdifferentials). Let c : X × Y → R be a cost satisfying

Assumptions (A0)–(A4). Let φ = ψc be a c-convex function, φ : X → R ∪ {+∞}. Let

dY : Y × Y → R be a distance function on Y . Then φ is δ-separated if ∂cφ(x) is a

δ-separated subset of Y with dY (y0, y1) ≥ δ for every y0 6= y1, y0, y1 ∈ ∂cφ(x).

Separation is a property of the singular points in x ∈ Z2 ⊂ dom(φ), and is trivially

satisfied when Z2 is empty. If the target Y is discrete, then every c-convex potential

φ is separated, with say δ = 1
3

maxy,y′∈Y d(y, y′). If Y is connected, dim(Y ) > 0, then

the hypotheses of 4.5.1 are nontrivial. For example, when c(x, y) = ||x − y||2/2 is the

quadratic Euclidean cost, then c-convex potentials φ are often not separated when Z2 is

nonempty. The δ-separation of the visibility costs defined in 5.9.6 is conjectured in 5.9.9.
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The next important hypothesis for constructing our retractions is the (UHS) condi-

tion. Some notation is necessary. Again let c be a cost satisfying Assumptions (A0)–(A6).

Abbreviate Y ′(x) := dom(cx). Let the source σ and target measure τ be absolutely-

continuous with respect to the Hausdorff measures HX and HY on X, Y , respectively.

Let ψcc = ψ be a c-concave potential maximizing Kantorovich’s dual problem (§2.3) rel-

ative to a source σ and target τ . Let Z = Z(c, σ, τ) be the corresponding Kantorovich

functor. For x ∈ Z ′, let prZ′ : TxX → TxZ
′ denote the orthogonal-projection mapping,

where TxZ
′ is the space of directions of Z ′ at x.

Definition 4.5.2. In the above notation, let φ = ψc be a δ-separated c-convex potential

for some δ > 0 (Definition 4.5.1). Let x0 ∈ dom(ψc), and abbreviate Z ′ := Z(∂cψc(x0)).

Select any y0 ∈ ∂cψc(x0).

For parameter β > 2, x ∈ Z ′, y ∈ Y , define tangent vectors η(x, y) ∈ TxX by the

equation

η(x, y) := |ψ(y0)− ψ(y) + c∆(x; y, y0)|−β · prZ′(∇xc∆(x; y, y0)). (4.7)

Relative to x0, τ , let ν̄ be the Radon measure on Y defined by

dν̄(y) := (1− exp−d2
Y (y,∂cψc(x0))/δ).1Y ′(x0).dτ(y).

Then Uniform Halfspace (UHS) conditions are satisfied at x in Z ′ with respect to the

parameter β if:

(UHS1) the Bochner integral ηavg(x) defined by

ηavg(x) := (ν̄[Y ])−1

∫
Y

η(x, y).dν̄(y) (4.8)

is nonzero finite vector in TxZ
′ − {0}; and

(UHS2) there exists a constant C > 0, uniform with x ∈ Z ′, for which the estimate

||ηavg(x)|| ≥ C

∫
Y

||η(x, y)||dν̄(y) > 0 (4.9)

holds.

We make some remarks. First, we observe (UHS2) basically implies (UHS1). Second,

the definition of η(x, y) is independant of the choice of y0 ∈ ∂cψc(x′). Third, in practice

the parameter β > 2 is taken sufficiently large to ensure the divergence of ηavg(x) when-

ever x converges into ∂Z ′. If c satisfies Assumption (A5), then ψ(y) is locally Lipschitz
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(Prop.2.5.3) and the exponent β = dim(Y ) + 2 is sufficient. Compare §3, Case (II) in

the proof of Theorem 3.1.1. Finally, we observe that symmetry improves (UHS) condi-

tions, i.e. if Γ acts isometrically on X × Y , then c-optimal semicouplings will also be

Γ-equivariant (whenever σ, τ are).

Now we state our theorem.

Theorem 4.5.3. Let c : X × Y → R ∪ {+∞} be cost satisfying Assumptions (A0)–

(A6). Suppose the source σ and target measure τ are absolutely continuous with respect

to the Hausdorff measures on X, Y , with ρ =
∫
X
σ/
∫
Y
τ ≥ 1. Let πopt be the c-optimal

semicoupling from σ to τ and Z = Z(c, σ, τ) be the contravariant singularity functor

Z : 2Y → 2X (4.1.1). Let x′ ∈ Z1 be a point supported on the activated domain of an

optimal semicoupling πopt, and abbreviate Z ′ := Z(∂cψc(x′)) = ∩y0∈∂cψc(x′)∂
cψ(y0).

If (UHS) Conditions are satisfied for all points x ∈ Z ′∩Zj (4.5.2), and Z ′∩Zj+1 6= ∅
is nonempty, and φ is separated (4.5.1),

then there exists a continuous map

Ψ : (Z ′ ∩ Zj)× [0, 1]→ Z ′ ∩ Zj

such that:

(i) Ψ(x, s) = x for all x ∈ Z ′ ∩ Zj+1; and

(ii) Ψ(x, 0) = x for all x ∈ Z ′; and

(iii) Ψ(x′′, 1) ∈ Z ′ ∩ Zj+1 for all x′′ ∈ Z ′ ∩ Zj.
In addition, if the above hypotheses are satisfied, then Z ′∩Zj+1 is strong deformation

retract of Z ′ ∩ Zj and the inclusion

Z ′ ∩ Zj+1 ↪→ Z ′ ∩ Zj

is a homotopy-isomorphism.

The vector field ηavg(x) defined in Theorem 4.5.3 is tangent to the cell Z ′(x), and

therefore the flow is constrained to the cells Z ′(x). For x varying over Zj, the vector field

ηavg(x) varies continuously with respect to x according to Lemma 2.3.4. The hypothesis

Z ′ ∩ Zj+1 6= ∅ cannot be ignored, and definitely necessary for continuity of the gradient

flow of ηavg.

Next we claim the mappings

{Ψ : Z ′(x) ∩ Zj → Z ′(x) ∩ Zj}
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assemble to a continuous retraction Zj × [0, 1] → Zj, for x ∈ Zj, which establishes that

Zj ←↩ Zj+1 is a homotopy-isomorphism.

Theorem 4.5.4. Let c, σ, τ, Z, Z ′ be defined as in Theorem 4.5.3.

If j ≥ 1 is an integer such that (UHS) Conditions are satisfied for all points x ∈ Zj,
and Z ′(x) ∩ Zj+1 6= ∅ for every x ∈ Zj − Zj+1, and ψ is separated (Definition 4.5.1),

then the local homotopy-equivalences

{Ψ : (Z ′ ∩ Zj)× [0, 1]→ Z ′ ∩ Zj+1}

constructed in Theorem 4.5.3 assemble to a continuous deformation retract Zj × [0, 1]→
Zj+1.

In addition, if J ≥ 1 is that maximal integer where (UHS) conditions are satisfied

throughout ZJ , then composing the retractions {Ψ} produces a codimension-J homotopy-

isomorphism Z1 ' ZJ+1.

The proof of Theorems 4.5.3–4.5.4 is analogous to our proof of Theorem 3.1.1, which

is the “base case” retraction of X = Z0 onto the activated domain A = Z1. The formal

proof of 3.1.1 required Lemmas 3.2.5, 3.2.6. Likewise the formal proofs of 4.5.3–4.5.4

require analogous lemmas, summarized in:

Lemma 4.5.5. In the notations of 4.5.3–4.5.4 be satisfied. Let j ≥ 1 be such that (UHS)

conditions are satisfied for all x ∈ Zj, and Z ′(x)∩Zj+1 6= ∅ for every x ∈ Zj −Zj+1, and

ψc is separated.

For x0 ∈ Zj − Zj+1, consider the initial value problem

x′ = ηavg(x), x(0) = x0. (4.10)

(a) For every initial value x0 ∈ Zj − Zj+1, the flow Ψ defined by (4.10) diverges to

infinity in finite time.

(b) The maximum interval of existence I(x0) := [0, ω(x0)) of solutions to (4.10) varies

continuously with respect to the initial value x0 ∈ Zj − Zj+1.

Proof. We follow the arguments of 3.2.5. First (UHS) implies the flow (4.10) is well-

defined and extendible throughout the interior of the cells Z ′(x0) ⊂ Zj. At the ω-limit

point

x̄ := lim
t→ω(x0)−

x(t)
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we claim x̄ ∈ Z ′(x0) ∩ Zj+1. The key point is to verify x̄ ∈ Zj+1. At the ω-limit point,

we find

∂cφ(x̄) ⊃ {ȳ}
∐

∂cφ(x0),

and the subdifferential at x̄ contains at least one new target point ȳ ∈ Y . The (UHS)

condition implies the average of the projections ∇xc∆(x̄, y0, ȳ) (with respect to ν̄) is

a nonzero vector of Tx̄Z
′, and linearly independant from the nonzero tangent vectors

∇xc∆(x̄, y1, y0), y0, y1 ∈ ∂cφ(x0) (which are orthogonal to Tx̄Z
′). This proves x̄ ∈ Zj+1.

This proves (a).

Next we claim the flow defined by Ψ is asymptotically contracting, and therefore ω is

a Lipschitz continuous function. The same arguments from 3.2.3, 3.2.4 shows the vector

field ηavg is the gradient of an averaged potential favg, and this potential is asymptotically

convex in the direction of ∇xfavg. This proves (b).

Sketch of proof for Theorem 4.5.3. We follow the proof of Theorem 3.1.1, and construct a

continuous vector field ηavg(x
′) on Z ′∩Zj which blows-up precisely on Z ′∩Zj+1 ⊂ Z ′∩Zj,

which we assume is nonempty. For initial points x′, the maximal interval of existence

I(x′) = [0, ω(x′)) varies continuously with respect to x′ (see Lemma 4.5.5). The field

ηavg(x
′) will generate a global forward-time continuous mapping

Ψ : (Z ′ ∩ Zj)× I → Z ′ ∩ Zj

satisfying the usual ordinary differential equation d
ds

[Ψ(x′, s′)] = ηavg(Ψ(x′, s′)) for all

s′ ∈ I(x′). The flow Ψ is reparameterized according to the parameter ω(x0) to obtain a

continuous deformation retract Ψ′ : (Z ′ ∩ Zj)× [0, 1]→ Z ′ ∩ Zj as desired.

Proof of Theorem 4.5.3. The (UHS) conditions ensure the cross-differences c∆ have non-

vanishing gradient∇xc∆ 6= 0 throughout the domain Z ′, and the gradients∇xc∆ vary con-

tinuously over Zj. Moreover the uniform Halfspace condition (UHS2) ensures ||ηavg(x)||
is uniformly bounded away from zero in neighborhoods of the poles {||ηavg(x)|| = +∞} =

Z ′ ∩ Zj+1 in Z ′ ∩ Zj.
The vector field ηavg(x

′) integrates to a global forward-time flow Ψ : Z ′ ∩ Zj × I →
Z ′ ∩ Zj, where as usual we have d/ds[Ψ(x′, s′)] = ηavg(Ψ(x′, s′)) for all s′ ∈ I(x′). Ac-

cording to Lemma 4.5.5, for every choice of x = x(0) initial value on Z ′(x) ∩ Zj, the

trajectory x = x(t) converges in finite time to Z ′ ∩ Zj+1 with respect to the flow (3.10).

Our Assumptions (A0)–(A6) imply continuous dependance on the choice of initial value.

The argument from Proposition 3.2.4 with Lemma 4.5.5 prove the flow Ψ can be repa-
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Figure 4.3: Horospherically truncated pair of pants, with active domain relative to a
repulsion cost (Def.5.3.2 from §5.3). Halfspace Conditions fail. P ; Z1 ; Z2 are
homotopy equivalent, where P is pair of pants. But Z2 does not deformation retract to
Z3

rameterized according to the parameter ω(x0) to obtain a continuous deformation retract

Ψ′ of Z ′ ∩ Zj onto Z ′ ∩ Zj, as desired.

Finally we observe the “local” homotopy-isomorphisms {Ψ : Z ′(x) ∩ Zj ; Z ′(x) ∩
Zj+1} assemble to a continuous deformation retract of Zj ' Zj+1 and establish Theorem

4.5.4:

Proof of Theorem 4.5.4. The proof of Theorem 4.5.3 constructs homotopy deformations

Z ′(x) ∩ Zj → Z ′(x) ∩ Zj+1, where Z ′(x) = Z(∂ψc(x)) ⊂ Z1 for a given x in Zj. When

x varies over Zj, the corresponding Z ′ = Z ′(x) are either coincident or intersect along

a subset of Zj+1. So the local strong deformation retracts {Ψ} constructed in Theorem

4.5.4 assemble to a continuous deformation retract Zj×[0, 1]→ Zj. Therefore Zj ←↩ Zj+1

is a homotopy-isomorphism. Composing the retractions Zj ; Zj+1 for j = 1, . . . , J yields

the deformation retract Z1 ; ZJ+1, as desired.



Chapter 5

Repulsion Costs

The previous Chapters have assumed c is a general cost satisfying the Assumptions

(A0), . . ., (A6), etc. Practical applications require explicit costs which satisfy all these

conditions simultaneously. This chapter introduces various costs c1, v, with their own

peculiar features which, at least partially satisfy these conditions. We interpret these

intermediate costs as “sign posts”, guiding us to the visibility cost v on convex excisions

as candidate to satisfy all hypotheses required in Theorems 4.5.3 and 4.5.4.

5.1 Chain sums and Well-Separated Gates

This first section formalizes the idea of chain sums and gates, as represented in Figure

1.2 from the Introduction. We begin with general definitions, and then specialize to a

more symmetric setting involving an isometric group action X ×Γ→ X. This will serve

our applications in Chapters 6, 7.

Let {Fi}i∈I be countable collection of compact convex subsets of complete Cartan-

Hadamard source space (X, d). Given such {Fi}i∈I we let F denote the chain sum

F = F I =
∑
i∈I

Fi,

in the sense of singular chains and singular homology, e.g [GJ81].

Now suppose {Fi}i∈I consists of distinct compact convex sets, and

E [Fi ∩ Fj] ⊂ E [Fi] ∩ E [Fj]

for all indices i, j ∈ I. Abbreviate Fij := Fi ∩ Fj. For every index i, assume Fij is

nonempty for only finitely many indices j. Each Fij is compact convex subset. Let F ′ij

64
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denote the relative-interior F ′ij := Fij − ∂Fij.

Definition 5.1.1. In the above notation, let {G−} = π0(∪i,jF ′ij) be the set of connected

components of ∪i,jF ′ij. The set of gates {G} of the chain sum F = SUM [{Fi}i∈I ] is the

set {G} of closures G := G− of the connected components of ∪i,jF ′ij.

In otherwords we consider the set {G−} := π0(∪i,jF ′ij), and define the set of gates {G}
as the topological closures G = G− of the connected components {G−} = π0(∪i,jF ′ij).
The hypotheses of Definition 5.1.1 imply ∪i,jFij is a closed subset of X.

Definition 5.1.2. The gates {G} of a chain sum F =
∑

i Fi are well-separated if the

components G,G′ of the set {G} are pairwise isometric.

Now we specialize via group symmetries. Suppose Γ is countable group acting by

isometries on a complete Cartan-Hadamard space (X, d). If F is compact convex subset

of X, then the set of Γ-translates F.Γ determines a chain sum F =
∑

γ F.γ. The gates

{G} of the chain sum F form a Γ-set, i.e. the set of gates {G} is Γ-invariant, and therefore

supports a Γ-action. Indeed gates correspond to nontrivial intersections F.γ ∩ F.δ 6= ∅
for γ, δ ∈ Γ, γ 6= δ.

The convex chain sums arising from isometric Γ-actions will feature in our applications

below. There is a further useful hypothesis which ensures the gates are as Γ-symmetric

as possible. Recall that a Γ-set is principal if Γ acts simply transitively (equivalently,

there exists unique orbit and orbit map is a bijection).

Definition 5.1.3. The chain sum F =
∑

γ F.γ has Γ-well-separated gates if the Γ-set

of gates {G} = {F.γ ∩ F.δ 6= ∅} is a principal Γ-set. Or equivalently, the gates are

well-separated with respect to Γ if there exists some fixed gate G′ for which all other

gates are uniquely Γ-isometric.

Our applications in Chapters 6–7 are mainly concerned with chain sums F assembled

from a type of “semiregular” convex polyhedra F . Specifically we construct F from

finite collections of regular polytope (“panels”) G,G′, . . ., defining F = conv(G,G′, . . .).

We enforce various conditions on the panels G,G′, . . ., for instance we require E [F ] =

E [G] ∪ E [G′] ∪ · · · . The specific hypotheses are detailed in Ch.7 and formalized in our

definition of “Closing Steinberg”. Compare §1.5 from the Introduction.

5.2 Hypotheses and Practical Applications

The topological results of our thesis address two issues. The first is abstract: we identify

hypotheses on costs c which guarantee that activated source domains of c-optimal semi-

couplings admit large-codimension retracts. See Theorems 4.5.3, 4.5.4. The second issue
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addressed by this thesis is practical, and concerns the application of our general theory to

particular costs. Here some creativity is required because the popular quadratic distance

costs c = d2/2 often do not satisfy the necessary properties.

Certain hypotheses are necessary for the practical applications of our costs in Chapters

6–7. Let F be a chain sum with well-separated gates {G} (§5.1). In our applications the

summands of F are convex-excisions F [t], and we will focus on the excision boundaries

∂∗F [t] as the target space (see Def. 5.5.3). We let ∂∗F be the chain sum whose summands

are the excision boundaries ∂∗F [t]. For a gate G, we define ∂∗G := ∂∗F ∩ G. The costs

c : F × ∂∗F → R ∪ {+∞} best suited for our applications have the following properties:

(D0) the cost c is repulsive with c(x, y) = +∞ whenever (x, y) ∈ ∂∗F × ∂∗F ;

(D1) the cost is infinite c(x, y) = +∞ if x, y occupy disjoint chain summands of F .

(D2) if G is a gate of F and x ∈ G, then dom(cx) ⊂ G;

(D3) the cost c satisfies Assumptions (A0)–(A6), recall §1.3;

(D4) the restriction of c to any gate G yields a cost

c|G : G× ∂∗G→ R ∪ {+∞}

which satisfies sufficient (UHS) conditions;

(D5) if HG is the Hausdorff measure on G, and τG := 1
ρ
H∂∗G is the rescaled Hausdorff

measure on ∂∗G, with ∫
G

HG/

∫
∂∗G

τG ≈ 1+,

then the homotopy-reductions of Thms. 4.5.3–4.5.4 defined relative to c|G-optimal

semicouplings from source HG to target τG) yield deformation retracts G ; {pt}
of the gates G to points.

The properties (D0)–(D2) describes some properties of dom(c), and describes some

“localization” properties of c to chain summands and gates. Conditions (D0)–(D2) imply

c is assembled from the local costs c|G over the gates G.

Conditions (D3)–(D4) are mainly concerned with (Twist) and sufficient (UHS) condi-

tions being satisfied. Again, if the gates have many symmetries, then the above conditions

are more easily satisfied. The reader may recall that (Twist) ensures the uniqueness of c-

optimal semicouplings, c.f. Proposition 2.5.8. (Twist) condition, i.e. Assumption (A4),

is weaker condition than the usual (Twist) from the coupling theory. In our settings
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Figure 5.1: Singularity structures of c2 on regular 2-simplex and regular square satisfy
properties (D0)–(D5)

the target space Y = ∂∗F is of strictly smaller dimension than the source X = F ,

with dim(Y ) < dim(X). Here is advantage of semicouplings setting, and motivating the

Conjecture 5.9.7.

The condition (D5) in practice is attained whenever the gates have sufficiently many

symmetries. Of course the gates G are contractible, since they are basically convex, but

the point is that the retractions of 4.5.4 successfully retract G to the maximal codi-

mension. Applying 4.5.4 to costs c on F × ∂∗F , we then obtain continuous homotopy

reductions which are interpolations of the local gate retracts G ; {pt} defined by c|G.

The conditions (D0)–(D5) imply the gate retracts can be continuously assembled to ob-

tain a retraction F ; Z satisfying

dim(Z) + dim(G) = dim(F ).

It is nontrivial problem to define a cost c satisfying (D0)–(D5). Eventually we define

the visible repulsion costs in §5.9 which we conjecture satisfies (D0)–(D5). In low dimen-

sions we can verify that the properties (D0)–(D5) hold in special cases. We also define a

class of repulsion costs c|τ which readily satisfy (D0)–(D3).

The following example illustrates some of the above ideas. This example will be

generalized in the following sections.

Example. Let X = N2 denote a two-dimensional regular simplex, equipped with two-

dimensional Hausdorff measure σ. The target Y = E [N] = {y0, y1, y2} is a discrete

three-point set, with target measure τ positively proportional to δy0 + δy1 + δy2 . Suppose
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Figure 5.2: The pink line designates the one-dimensional gate G. The yellow line des-
ignates the interpolated singularity structure with respect to the gated-visibility cost
v.

σ, τ satisfy

ρ :=

∫
X

σ/

∫
Y

τ ≥ 1.

We define v : X × Y → R ∪ {∞} by the formula

v(x, y0) :=
1

2
||x− y0||−2 +

λ1

1− λ0

||x− y1||−2 +
λ2

1− λ0

||x− y2||−2, (5.1)

where 0 ≤ λi ≤ 1 are the unique scalars satisfying

λ0 + λ1 + λ2 = 1, bar(λ0δy0 + λ1δy1 + λ2δy2) = x.

Permuting the indices, we define v(x, y1), v(x, y2) by similar formulas.

Now suppose I is a countable set, and {Ni|i ∈ I} is a countable collection of simplices

with chain sum F =
∑

i∈I Ni having well-separated gates {G} isometric to a given one-

dimensional simplex (i.e. fixed compact interval). The visibility cost v defined in equation

(5.1) extends to a repulsion cost v on F ×E [F ] satisfying properties (D0)–(D5) as above.

5.3 Repulsion Costs c|τ on Convex Sets

The previous section idenfifies some conditions necessary for the applications of our gen-

eral homotopy theorems. Here we face the problem of not having yet identified a suffi-

ciently canonical repulsion cost, but rather having several types of repulsion costs with
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their own peculiar features. We illustrate these ideas in the Euclidean space RN , but

eventually generalize everything to Cartan-Hadamard nonpositively curved manifolds.

Let F be a compact convex subset of the Euclidean space RN with standard distance

d(x, y) = ||x− y||. Recall some standard facts:

• the dimension dimH (F ) of F is the dimension of the minimal affine subspace con-

taining F .

• The boundary Y = ∂F is closed subset, and F , ∂F have integral Hausdorff dimen-

sions dimH (F ) = dimH (∂F ) + 1.

• The distance d on F restricts to a distance dist = d|Y × Y on Y .

• A point x ∈ F is an extreme point if x is not the midpoint of any pair of distinct

points x0, x1 ∈ F , x0 6= x1, and where x = [x0, x1]1/2 implies x0 = x1 = x.

• Alexandrov’s construction ([Ale06], [Oli07]) of Gauss curvature using “spherical

images” is a Radon measure ω on ∂F , defined as follows: let y ∈ ∂F be a boundary

point, and consider the set of all normal hyperplanes N(y) supporting F at y. The

subset N(y) is a closed convex cone in the linear dual space (RN)∗. The measure ω on

∂F is defined to be the spherical-measure of N(y).

• The extreme point set E := E [F ] is a subset of ∂F , possibly not closed and possibly

with irrational Hausdorff dimension. For example Cantor’s middle-third construction and

the so-called Cantor staircase function readily leads to compact convex sets with extreme

points E [F ] homeomorphic to a Cantor set.

• The subsets E [F ] and ∂F may coincide. If F is strictly convex, then ∂F contains

no nontrivial affine segments and E [F ] = ∂F .

All our constructions apply to compact convex subsets F with the following property:

Definition 5.3.1. A convex compact subset F has integral-dimension extreme points

(IDE) if there exists subsets E(0), E(1), E(2) . . . of ∂F partitioning the extreme pointset

E [F ] = E(0)
∐

E(1)
∐
· · · ,

and where E(j) is either empty or has constant local Hausdorff dimension dimloc
H E(j) = j

for j = 0, 1, 2, . . ..

Recall a subset D has local Hausdorff dimension d at x ∈ D if the intersection

D ∩Br(x) has Hausdorff dimension d for sufficiently small r-balls Br(x) centred at x. In

otherwords, if

lim inf
r→0+

dimH (D ∩Br(x)) = d.
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for every x ∈ D. The subset D has constant local Hausdorff dimension if the local

Hausdorff dimension is constant with respect to x ∈ D.

If F has property (IDE), then the extreme points support a sufficiently canonical

Hausdorff-type measure

H can
E := HE(0) + HE(1) + · · · .

Plainly F has (IDE) if either E [F ] = ∂F , or if E [F ] is discrete and F is polyhedral.

Definition 5.3.2. Let F be compact convex set with property (IDE) and extreme points

E := E [F ]. Let τ be a Radon measure on E absolutely-continuous with respect to H can
E .

For y ∈ E, let e(y) be the local Hausdorff dimension.

The repulsion cost c|τ : F × E → R ∪ {+∞} is defined

c|τ(x, y0) := [

∫
E

d(x, y)−2−e(y)dτ(y)]− 1

2
d(x, y0)−2−e(y0).

The exponent e in Definition 5.3.2 ensures that c(x, y) diverges to +∞ whenever x

converges to any point x→ y in E. Indee our choice of e is motivated by the observation

that
∫
x∈RN | ||x||<1

||x||−p diverges to +∞ whenever p ≥ N in Euclidean space. The term

−1/2.d(x, y0)−2−e imparts a definite “home-preference” to c|τ on F ×E. When a source

point x is close to an extreme point y0 in E, then the various pairings c|τ(x, y∗), y∗ 6=
y0, dominates c|τ(x, y0). So when a point x is activated there is no confusion in the

optimization program: the point x goes to the lowest-cost target y0.

Example. In case E = ∂F and dimH (E) = N , we directly define c1 with respect to the

Hausdorff measure τ = H∂F , and obtain

c1(x, y0) := (

∫
∂F

d(x, y)−2−NdH∂F (y))− 1

2
d(x, y0)−2−N .

Example. Let Y = {0, 1} be subset of X = conv[Y ] = [0, 1] and τ = δ0 +δ1. Abbreviate

c = c|HY . If x ∈ X, then

c|HY (x, 0) =
1

2
|x|−2 + |x− 1|−2, and c|HY (x, 1) = |x|−2 +

1

2
|x− 1|−2.

The graph is modelled in Figure 5.3.

Example. Let Y := {y0, . . . , y5} be extreme points of a closed hexagonX := conv[y0, . . . , y5]

in the complex plane C = R2, defined by yk = e2πik/6 for k = 0, 1, . . . , 5. Let the target

measure on Y = E [X] be the atomic measure HY = δy0 + · · · + δy5 . If x is contained in
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Figure 5.3: Graph of repulsion cost x 7→ c|HY (x, 0). The assymmetry reflects the “home-
preference” of x to y = 0.

the convex hull X, then the cost of transporting a unit mass from x to y0 = 1 + 0 · i is

c|HY (x, y0) :=
1

2
· d(x, y0)−2 + d(x, y1)−2 + · · ·+ d(x, y5)−2.

The graph is modelled in Figure 5.4. The costs c(x, yk) are defined by similar formulas.

Example. Let F be a three-dimensional ellipsoid with extreme points E [F ] = ∂F =: Y .

Let τ = HY be uniform Hausdorff measure on the extreme points. Then we have

c(x, y0) := (

∫
Y

d(x, y)−4dHY (y))− 1

2
d(x, y0)−4.

Having defined the repulsion-costs, we now consider which Assumptions (A0), (A1),

etc., are satisfied.

Proposition 5.3.3. Let X = F be a compact geodesically-convex set with property (IDE)

as above. Let Y = E = E [F ] be the extreme-point set with canonical measure H can
E and

τ a Radon measure on E absolutely continuous with respect to H can
E .

Then c|τ defined in Definition 5.3.2 satisfies Assumptions (A0)–(A5) throughout

dom(c) = (X − Y )× Y .

Proof. Evidently x 7→ d(x, y)−2−e(y) is smooth and strictly positive for x 6= y, and diverg-

ing to +∞ when x → y. Now examine the integral defining c(x, y0) in Definition 5.3.2.

If x ∈ X − Y , then the integrand is smooth and finitely-valued with respect to y ∈ E.

Now E is relatively-compact, and integrating over E we find c|τ is uniformly-continuous

on compact subsets of dom(c) = (X − Y )× Y . This proves (A0). By similar arguments,

applied to ∇xd(x, y0)−2−e and ∇2
xxd(x, y0)−2−e , we find c|τ is twice-continuously differen-

tiable on dom(c). Again, since Y is relatively compact we deduce ∇2
xxd(x, y0)−2−e varies
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Figure 5.4: Graph of repulsion cost x 7→ c|HY (x, (1, 0)). The “home-preference” implies
the pole at y = 1 + 0 · i has smaller diameter than the other poles.

Figure 5.5: Target measure is an empirical measure approximately equal to the one-
dimensional Hausdorff measure on the boundary Y = ∂X of an ellipse X. Source measure
is an empirical measure approximately equal to two-dimensional Hausdorff measure on
the ellipse X.
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Figure 5.6: Cell structure corresponding to the singularities of optimal semicoupling with
respect to repulsion cost c1. The singularity Z2 is a one-dimensional and the inclusion
Z2 ⊂ X is a homotopy-isomorphism.

uniformly with respect to y ∈ Y . Likewise we find the sublevels of cy : dom(cy) → R
are compact subsets of X. This proves (A1). Now we also see ||∇xc(x, y)|| varies con-

tinuously with respect to y. So (A2) is satisfied. Finally the reader finds that variations

in d(x, y0)−2−e prove the cost is nowhere locally constant, and (A3) is satisfied. The

verification of (A5) is likewise left to the reader. Now we address Assumption (A4),

the important (Twist) condition. Abbreviate dy := dHY (y). Fix x ∈ F . Abbreviate

q(x, y) = d(x, y)2+e(y).

Then (Twist) requires the rule

y0 7→
∫
E

∇xq(x, y)−1dy − 1

2
∇xq(x, y0)−1

be an injective mapping E → Tx′F . The left summand is independant of y0. Moreover

convexity of the domain F implies the injectivity of the rule y0 7→ ∇xq(x, y0)−1. This

establishes (Twist).

5.4 Repulsion Costs and Theorems 1.4.1, 1.4.2

The main Theorems of this thesis, namely Thm. 1.4.1, 1.4.2, require certain hypotheses

be verified by the cost function c. In this section we examine whether the above repulsion

costs c|τ satisfy these hypotheses. For simplicity, we restrict ourselves to the following

case: X is source space with source measure σ absolutely continuous with respect to

HX . We assume the target space Y is a subset of ∂X, with target measure τ absolutely
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continuous with respect to HY . The ratio ρ :=
∫
X
σ/
∫
Y
τ is a parameter ρ > 1. If c is

a repulsion cost as defined in §5.3, then for every ρ > 1 there exists a unique c-optimal

semicoupling a pair of a c-concave potential ψ on Y (unique modulo additive constant).

We abbreviate ψc = φ. For every ρ > 1, the active domain is denoted A := Aρ. As

ρ → 1+ we find Aρ fills up X. That c is a repulsion cost implies c(x, y) = +∞ for

every (x, y) ∈ Y × Y ⊂ X × Y . Therefore the nonactivated domain X − Aρ is an open

neighborhood of the “poles” Y in X.

Lemma 5.4.1. In the above notations, let c be a repulsion cost (§5.3). When ρ > 1

is sufficiently small (ρ ≈ 1+), the gradients ∇xc(x, y), y ∈ Y , satisfy Halfspace (HS)

Conditions (Def. 3.1.2) throughout X − Aρ.

Proof. The repulsion cost c is defined with respect to an integral α(x) :=
∫
Y
q(x, y)−1dτ(y)

and c(x, y0) = α(x)− 1
2
q(x, y0)−1. Now the key observation is that c(x, y) is asymptotic

to α(x) when ρ > 1 is sufficiently small and x ∈ X −Aρ. In particular we find ∇xc(x, y)

is approximately equal to ∇xα(x). This implies that the gradients ∇xc(x, y) occupy a

common halfspace and even 〈∇xα(x),∇xc(x, y)〉 > 0 for y ∈ Y .

The above lemma implies ηavg(x) is bounded away from zero, uniformly throughout

X −Aρ. In fact we find ηavg(x) diverges to infinity in the limit ρ→ 1+ and x ∈ X −Aρ.
Next we ask the question: do repulsion costs satisfy the hypotheses of Thm. 1.4.2? In

the simplest case j = 1, we have A = Aρ = Z1. The question is to determine whether the

inclusion A ←↩ Z2 is a homotopy-isomorphism. Constructing the homotopy-reductions

of Thm. 1.4.2 requires:

(a) the intersections Z ′(x) ∩ Z2 be nonempty for every x ∈ A; and

(b) the subdifferentials ∂cφ(x) are δ-separated throughout A− Z2; and

(c) (UHS) Conditions are satisfied throughout A− Z2.

First we should recall that c satisfies (A0)–(A5) according to 5.3.3. In particular c is a

proper function, meaning all sublevel sets are compact. This implies every pair of points

y0, y1 have intersecting sublevels {x ∈ X | c(x, yi) ≤ Ti} for sufficiently large parameters

Ti ∈ R, i = 0, 1.

Now consider the case where the target Y is finite, and suppose there exists some y0 for

which the cell Z({y0}) is disjoint from every other cell Z({y}) for y ∈ Y −{y0}. It follows

that Z({y0}) is a sublevel of c(x, y0) in X. If we increase the density τ [{y0}] 7→ τ [{y0}]+ε,
for some ε > 0, then the unique c-optimal semicouplings π′ ∈ SC(σ, τ+ε·δy0 are obtained

from the initial c-optimal semicoupling π ∈ SC(σ, τ) by expanding the sublevels of

c(x, y0) defining Z({y0}). The cost being proper implies there exists ε > 0 for which

the cell intersects some components Z({y}), y 6= y0. Repeating this process for each
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isolated component of the active domain A we can eventually guarantee the hypothesis

Z ′(x) ∩ Z2 6= ∅ is satisfied.

The above procedure is very simplistic and well-defined for Y finite. But we could

also adapt the argument to infinite Y . However it would be more useful to identify

conditions on density functions f(y) such that the cells Z ′(x) ∩ Z2 are nonempty for c-

optimal semicouplings from σ to f(y)HY . Recall Z ′(x) := Z(∂cφ(x)) is a type of “cellular

neighborhood” of x in A. But we also observe the following consequence of Theorem 1.4.1:

if the source X is connected, then Aρ is also connected for ρ > 1 sufficiently small (5.4.1).

In this case there are no isolated components.

Next we consider item (b) and whether c-convex potentials φcc = φ on X have sep-

arated subdifferentials. When Y is finite, then the subdifferentials are separated as we

have previously remarked. However if Y is connected, then separability is not always

satisfied. However there is a truncation procedure, as we now explain. Recall dY is the

distance function on Y .

Definition 5.4.2 (δ-thick part Aδ of the active domain). In the above notation, let

A = Aρ be the active domain of a c-optimal semicoupling for σ, τ satisfying ρ > 1. For

every δ > 0, the δ-thick part Aδ consists of those x ∈ A for which ∂cφ is δ-separated

throughout Z ′(x).

The definition of Aδ shows that Z ′(x) ⊂ Aδ whenever x ∈ Aδ. In otherwords Aδ is a

union of “cells”. This implies Aδ is invariant under the deformation retracts constructed

in Theorems 4.5.3-4.5.4.

The thick part Aδ is a truncation of A. When A is the active domain of a repulsion

cost, then we expect Aδ is homotopic to A whenever δ > 0 is sufficiently small. This is

formalized in the following

Conjecture 5.4.3. In the above notation, if δ > 0 is sufficiently small, then the inclusion

Aδ ↪→ A is a homotopy-isomorphism.

If c is a repulsion cost, and ρ > 1, δ > 0 are both sufficiently small, then Aρδ ↪→ X is

a homotopy-isomorphism.

If Z2 is the subvariety of A = Z1 (as defined in 4.3.1), then the intersection Z2 ∩ Aδ
corresponds to the singularity of a c-optimal transport obtained by restricting the target

measure τ to the image of ∂cφ(x), x ∈ Aδ, in Y . Restricting to the truncated active

domain Aρδ , we find the subdifferentials are δ-separated. Thus by the somewhat ad-hoc

procedure of truncating A, we can assume the subdifferentials are δ-separated. Abusing

notation we redefine A := Aρδ , where ρ > 1, δ > 0 are sufficiently small.
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In the above notation, we next consider whether (UHS) conditions are satisfied

throughout A− Z2. That is, we want to verify whether the averaged vector field ηavg is

uniformly bounded away from zero throughout A− Z2, which is shorthand notation for

Aρδ ∩ Z2 as dfescribed in the previous paragraph.

For x ∈ A − Z2, we can uniquely identify ∂cφ with the image of the Monge map

T : A→ Y , having ∂cφ(x) = {T (x)} and T#(1A · σ) = τ . The (UHS) condition requires

the vector field ηavg(x) be uniformly bounded away from zero throughout A − Z2. The

definition of ηavg requires some notation. Recall c∆(x, y, y′) := c(x, y) − c(x, y′) is the

cross-difference. For every x ∈ A− Z2, abbreviate y0 := T (x). Define

η(x, y) := |ψ(y)− ψ(y0) + c∆(x, y0, y)|−2−β · ∇xc∆(x, y0, y),

for y ∈ Y −{y0}. Observe that ψ(y)−ψ(y0)+c∆(x, y0, y) > 0 is nonvanishing throughout

A− Z2. Next abbreviate

dν̄(y) := (1− e−dY (y,y0)2/δ).dν(y),

where δ > 0 is separation of the c-subdifferentials on the truncated active domain A = Aρδ
as per the previous paragraph. With this notation, we define the averaged Bochner

integral

η(x, avg) := ν̄[A]−1 ·
∫
Y

η(x, y)dν̄(y). (5.2)

Finally item (c) requires that

||η(x, avg)|| ≥ C > 0

uniformly with x ∈ A − Z2 and an exponent β > 0. Typically β = dim(Y ) + 2 is

sufficient. The verification of (5.2) is simplest when the gradients ∇xc∆(x, y0, y) satisfy

(HS) conditions.

5.5 Convex-Excisions

The previous constructions are based on a convex set F . Here we modify our definitions,

and pursue an excision construction which is useful for our applications. Excision is

important in the Eilenberg-Steenrod axioms of singular homology [GJ81], [Bre93], and

formalizes the idea of “scooping out” convex subsets. The idea here is to excise convex

subsets from F . The construction is generally defined for any nonpositively curved metric
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space, and this is convenient setting for applications. So let (X, d) be a finite-dimensional

Cartan-Hadamard space, [BGS85], and let F be a totally-geodesic compact subset of X.

This implies the unique existence of geodesics between pairs of points x, y inX. Antipodal

and focal points are nonexistant. We pursue an analogy between extreme points E [F ]

of F and the visual sphere at infinity X(∞) of X. Such analogies were developed by

Thurston [Thu02] and Gromov [Gro82] in their applications of ideal simplices in X with

vertices supported on X(∞).

Definition 5.5.1 (Convex-Excision Parameter t). Let F be compact geodesically-convex

subset of X. Let I be a discrete subset of E [F ]. An excision-parameter consists of a

function t : I → R and the collection of open subsets {W t
λ} for every λ ∈ I having the

following properties:

(i) the boundaries ∂W t
λ are smooth submanifolds for every λ ∈ I;

(ii) the boundaries ∂W t
λ pairwise intersect transversally;

(iii) if K ⊂ X is compact subset, then W t
λ ∩K = ∅ except for finitely many λ.

(iv) The excision is called strictly-convex if the subsets W t
λ are strictly-convex.

We illustrate the above definition on nonpositively curved Cartan-Hadamard spaces

(X, d). C.f. [BGS85, §I.3], §§6.3, 6.5. For every point-at-infinity λ ∈ X(∞) and basepoint

x0 ∈ X, the horofunction hλ,x0 : X → R is a geodesically-convex function on X. For

every t(λ) ∈ R ∪ {−∞,+∞}, the sublevel

W t
λ := {x ∈ X| hλ(x) < t(λ)}

is a convex subset of X and named the “horoball centred at λ with radius tλ”.

Definition 5.5.2 (Convex-Excision Model). Let t be an excision parameter (5.5.1). Then

the convex-excision model is the complement

F [t] := F − ∪λ∈IW t
λ.

Notice F [t] is a closed subset of F , generally nonconvex with topological boundary

∂F [t] ⊂ F . Our applications are especially concerned with the “excision-boundary”

∂∗F [t] defined as follows:

Definition 5.5.3 (Excision Boundary). Let t be an excision parameter, with excision

model F [t]. The excision boundary ∂∗F [t] is defined

∂∗F [t] := ∪λ∈I(∂F [t] ∩W t
λ).
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Figure 5.7: The left hand figure is a 2-simplex F with extreme points E [F ]. The right
hand figure is obtained by excising horoballs centred over E [F ]. The excision boundary
∂∗F [t] is coloured red.

In otherwords ∂∗F [t] is that subset of F [t] which intersects some boundary component

∂W t
λ. Compare Figure 5.7.

Our applications are based on a problem called “Closing Steinberg” (see Ch. 7). This

involves a finite collection of convex subsets Gi, i ∈ I called “gates” or “panels”, and

where F := conv[{Gi}i∈I ] is their closed convex hull. We further assume Gi ⊂ ∂F for

every i ∈ I. The panels Gi are totally convex subsets, and therefore the construction of

the excision F [t] naturally restricts to an excision Gi[t] for each i ∈ I. One immediately

verifies the relations

∂∗F [t] ∩Gi = ∂Gi[t], F [t] ∩Gi = Gi[t], Gi[t] ⊂ ∂F [t], for every i ∈ I.

5.6 Visibility

The convex-excisions F [t] are not geodesically-convex subsets of F , and this is important

observation. But this nonconvexity is no obstruction and is managed by introducing

the definition of a visibility relation V (Definition 5.6.1). We use the visibility relation

to define a visibility factor k(x, y) which rescales the integrands in the repulsion costs

introduced above. The formal definitions require some auxiliary lemmas.

Definition 5.6.1 (Visibility Relation V ). Let F [t] ⊂ F be a convex excision (Definition

5.5.2). The pair of points (x, x′) ∈ F [t] × F [t] are visible, and in relation xV x′, if the
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unique geodesic segment γ joining x to x′ in F is contained in F [t].

Lemma 5.6.2. [[McC01, Proposition 6]] Let (X, d) be Cartan-Hadamard space and F ↪→
X a compact geodesically convex subset. let x, y be arbitrary points in F and γ the unique

unit-parametrized geodesic γ : [0, T ]→ F having T = dist(x, y), and x = γ(0), y = γ(T ).

Then ∇yd(x, y) = γ′(T ) ∈ TyF , and ∇xd(x, y) = −γ′(0).

If x ∈ F [t] and y ∈ ∂∗F [t] are geodesically visible in F [t], then Lemma 5.6.2 implies

∇yd(x, y) is equal to the direction of impact of the geodesic ray from x to y. Therefore

the cosine of the angle-of-impact at y (relative to an outward unit normal) is represented

by the dot-product 〈∇yd(x, y),ny〉 in TyF [t].

Lemma 5.6.3. Let X := F [t] be a convex excision of F , with excision-boundary Y :=

∂∗F [t]. If (x, y) ∈ X × Y are geodesically visible in F [t], then 〈∇yd(x, y),ny〉 ≥ 0 where

ny is any outward unit normal vector at y ∈ Y in F [t] ⊂ X.

Proof. By hypothesis the initial domain F is convex, so x, y are visible along some

geodesic γ in F . Consider the possible intersections of γ with X and Y . The convexity

of the excised horoballs W t
λ defining X implies the following: we have 〈∇yd(x, y),n〉 < 0

only if the geodesic γ from x impacts y from within the locally convex subdomain F−F [t]

containing y. Or equivalently, we find (x, y) are not visible in X only if the geodesic α

exits F [t] at some secondary point y′ ∈ ∂∗F [t].

Informally, one imagines the cost of transmission from a source point x ∈ F [t] to

a visible target point y ∈ ∂F [t] is measured by the angle-of-impact (and the quadratic

distance) at ∂F [t]. We posit that a directed geodesic ray enters the target point most

efficiently at y0 ∈ ∂F [t] when the angle-of-impact is orthogonal to the tangent space of

the boundary, i.e., when the incoming ray arrives from x at a right angle to Ty0∂F [t] ↪→
Ty0F [t]. Conversely, if the boundary ∂F [t] has outward pointing unit normal vector

n, then we say the cost of transmitting rays which impact ∂F [t] orthogonally to n are

infinitely prohibitive. Thus we augment the data “directed ray from x to y” , measured

by magnitude and direction, with the “angle-of-impact” visibility factor k(x, y).

Definition 5.6.4 (Visibility factor). Let X := F [t] be convex excision, and for ε > 0

let Yε be the ε-regularization of the boundary Y := ∂F [t] defined in 5.7.1. The visibility

factor is the function k : X × Yε → R≥0 ∪ {+∞} defined by the formula

k(x, y) :=

{
〈∇yd(x, y),ny〉−1, if x, y are visible ,

+∞, if x, y not visible .
(5.3)

Evidently the Definition 5.6.4 represents a numerical function valued in [1,+∞], and

diverging to +∞ when y fails to be visible from x within F [t] by Lemma 5.6.3.
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Figure 5.8: Excision domain X = F [t], where (x, y) are visible in X and (x,w) is not
visible in X

5.7 ε-Regularizations

Definition 5.5.1 produces a manifold-with-corners F [t], having an excision-boundary Y :=

∂∗F [t] which is generally not everywhere smooth and not having unique outward normals.

The present section introduces a basic regularization Yε of Y with smoothly varying

outward unit normal vectors. This implies the visibility factor k : X×Yε → R>0∪{+∞}
is continuous throughout its domain.

The excision boundary Y is cellulated (“divided into cells”) by the excision parameter

t and the horoballs W t
λ. The convex horoballs W ′ := W t

λ have well-defined inward normal

vectors ny ∈ TyW ′ for every y ∈ W ′. However a given point y′ ∈ Y can occupy multiple

horoballs W t
λ, and therefore the outward unit normal vector at TyF [t] is not uniquely

defined. We restore uniqueness by replacing Y with Yε as defined in Prop. 5.7.1 below.

Remark that the boundary ∂((F [t]))≤ε of the closed ε-neighborhood of ∂F [t] defines

a C1,1-regularization of Y . There are different techniques for C∞-regularizations, c.f.

[Gro91, §3, pp.53], [Gro14b, §3.4, 5.7], and [BS73, Appendix, §6], but we propose the

following:

Proposition 5.7.1 (Smooth ε-regularization of manifold-with-corners). Let X be Cartan-

Hadamard space and F a closed geodesically-convex subset of X. Let t an excision pa-
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rameter and F [t] a convex excision, (5.5.1, 5.5.2). Define Y = ∂∗F [t]. Then for every

ε > 0, we can replace Y with a smooth submanifold Yε of F such that:

(i) Yε is contained within the open ε-neighborhood of Y ; and

(ii) Yε converges to Y in Gromov-Hausdorff topology to Y as ε→ 0+; and

(iii) there exists a degree-one 1-Lipschitz map p : Yε → Y.

Sketch of Proof 5.7.1. The following approach was suggested by Professor R.J. McCann.

Recall the Definition 5.5.1 includes three hypotheses: boundaries ∂Wi are smooth, bound-

aries are pairwise transverse, and intersect local-finitely on compacta. This implies the

excision boundaries Y, Yε are locally modelled on “standard orthogonal sectors” in Rn.

Let ((∂F [t]))ε be the open ε-neighborhood of ∂∗F [t] in X. Next let u : X → R be a

harmonic function satisfying u|F [t] ≡ 0 and u|X−((∂F [t]))ε ≡ 1. Now define

Yε := u−1(ε), Xε := {u ≤ ε}. (5.4)

Then Yε is indeed a smooth submanifold satisfying conditions (i)–(iii). For instance, the

harmonic function u will have nonvanishing gradient∇xu 6= 0 on the open ε-neighborhood

((F [t]))<ε, and therefore the standard “gradient-flow” argument constructs a deformation

retract from the sublevels {u ≤ 1/2} onto u = 0.

For example, consider the unit square X = [0, 1]× [0, 1] in R2. Then X is a manifold-

with-corners, and having “sharp” corners at the four extreme points. For every ε > 0, the

closed ε-neighborhood ((X))ε in R2 is a C1,1-manifold-with-boundary. Constructing the

harmonic function u as in the proof of Proposition 5.7.1, we find u−1(1/2) is smooth reg-

ularization of the boundary ∂((X))ε. The gradient flow produces a degree-one continuous

covering map Yε → Y .

The regularization from Proposition 5.7.1 replaces a pair of manifolds-with-corners

(X, Y ) with a pair of smooth manifolds (Xε, Yε), c.f. (5.4). Visibility between pairs (x, y)

in X × ∂X and pairs (x, y′) ∈ X × Yε ⊂ Xε × Yε are basically equivalent via the map p

from Proposition 5.7.1. Indeed if Vε denotes the visibility relation on X, Yε per Definition

5.6.1, then xVεy
′ if and only if xV p(y). So Yε has unique outward unit normal vectors

ny ∈ TyX varying smoothly with y ∈ Yε. Thus k(x, y) is smooth with respect to visible

pairs (x, y) ∈ Xε × Yε for sufficiently small ε > 0.

5.8 Barycentres and Krein-Milman

The present section describes a useful probabilistic “coordinate system” on the convex

hull of a collection E of extreme points. The references [Phe89, Ch.I ] and [Bar02b,
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Figure 5.9: The outermost boundary is a C1,1-regularization of Y . The inner hypersurface
is a smooth ε-regularization Yε

pp. II.3-4] are useful background on Krein-Milman’s theorem from convex geometry:

if F is a convex compact body, then every point mass δx at a point x ∈ F can be

represented as the centre-of-mass of some mass-distribution supported λ at the extreme-

points E [F ] of F . Thus points on F can be coordinatized by probability measures

on E [F ]. The “centre-of-mass” can be generalized to Riemannian geometry with the

following alternative definition, see [Jös97].

Definition 5.8.1 (Riemannian barycentre). Let (X, d, σ) be a complete finite-dimensional

metric-measure space. Let λ be Radon measure on (X, d) and absolutely-continuous with

respect to σ. Then x0 ∈ X is the barycentre of λ with respect to σ if∫
d2(x0, x)dλ(x) = inf

p∈X

∫
d2(p, x)dλ(x).

We abbreviate x0 = bar(λ|σ). Using the Riemannian geodesic exponential function

expx : TxX → X, we find q ∈ X is a barycentre of λ if the following critical point

condition holds: ∫
X

exp−1
q (x)dλ(x) = 0 in TxX. (5.5)

The following standard result asserts the unique existence of barycentres for complete
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nonpositively curved spaces, c.f. [Jös97, Theorem 3.2.1].

Lemma 5.8.2. Let (X, d, µ) be a complete finite-dimensional metric-measure length space

with nonpositive sectional curvature κ ≤ 0. Let λ be a Radon measure on X and absolutely

continuous with respect to µ, with bounded support and λ[X] < +∞. Then there exists

unique barycentre for λ and unique x0 ∈ X with∫
X

d2(x0, x)dλ(x) = inf
p∈X

∫
X

d2(p, x)dλ(x).

If the background measure µ is Hausdorff-type, e.g. µ = HY , then we abbreviate

bar(−) = bar(−|µ). Now let E ⊂ X be a closed subset of a finite-dimensional com-

plete space X, and let ∆(E) ↪→ M≥0(E) denote the weak-∗ compact subset of Radon

probability measures supported on E. The barycentre map defines a weak-∗ continuous

mapping

bar : ∆(E)→ conv[E],

and this mapping surjects onto the convex compact hull conv[E] of E in X according to

Krein-Milman theorem.

Definition 5.8.3. Let F be closed convex subset. For x ∈ F , let Sx consist of those

probability measures λ in ∆(E [F ]) with barycentre bar(λ) equal to x.

For every x ∈ F the subset Sx is nonempty compact convex subset of ∆(E ). For

general F and x ∈ F , the subset Sx is often not a singleton. Indeed Choquet’s Theorem

[Phe89] says F is a simplex if and only if the barycentre mapping bar : ∆(E [F ])→ F is

injective, i.e. if and only if the barycentre mapping is a weak-∗ isomorphism and Sx is

a singleton for every x ∈ F . Thus we face the problem of selecting a canonical choice of

λ∗x ∈ Sx varying continuously with the point x ∈ F . So let F be a compact convex space

satisfying (IDE) conditions (5.3.1). Let E := E [F ] have canonical measure H can
E .

Definition 5.8.4 ([KP18]). In the above notation, for every x ∈ F define λ∗x to be the

unique probability measure of Sx satisfying

{λ∗x} = argmin{λ 7→ W 2
2 (λ,H can

Y ) | λ ∈ Sx},

where W 2
2 denotes Wasserstein 2-distance with respect to the quadratic transport costs

c = d2/2 (c.f. [Vil09]).

It’s well-known that W 2
2 -minimizers are unique, and especially for subsets of a convex

set F . We refer the reader to [KP18] for further details.
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5.9 Visible Repulsion Costs

Throughout this section we presume F is a compact convex polyhedra such that the

set of extreme points E [F ] is discrete and finite subset. We continue with our convex

excisions of F , but insist that the excised convex horoballs W t
λ, λ ∈ E [F ], defining

the excision F [t] := ∩{λ}(F − W t
λ) are horoballs centred at the extreme points E [F ].

Recall ∆(∂∗F [t]) consists of all probability measures supported on ∂∗F [t]. The following

definition is convenient:

Definition 5.9.1. Let ∆v(∂∗F [t]) be the set of probability measures λ on ∂∗F [t] such

that:

(i) bar(λ) ∈ F [t]; and

(ii) the support of λ is a subset of ∂∗F [t] which is visible from bar(λ) along geodesics

contained in F [t].

Now the excision F [t] is generally a nonconvex subset of F . Our first step is to identify

a convenient geodesically convex subset Ω of F [t]. We define Ω via the visibility relation

V ⊂ F [t]× F [t] defined in 5.6.1.

Lemma 5.9.2. Let F be a convex compact polyhedra and F [t] a strictly convex excision

centred on the extreme points E [F ]. Then the restricted barycentre map

bar : ∆v(∂∗F [t])→ F [t]

is a continuous surjection.

Proof. Krein-Milman theorem implies ∆(E [F ]) → F is a continuous surjection. If F [t]

is a convex excision of F centred at the extreme points E [F ], suppose λ ∈ ∆(E [F ])

is such that bar(λ) ∈ F [t]. Then we find there exists a measure λ′ ∈ ∆v(∂∗F [t]) with

bar(λ) = bar(λ′). Indeed the geodesics joining the support of λ to x will intersect the

excision horoballs Wt defining F [t] at points {y′}. And a suitable convex combination of

the {y} will define a measure λ′ having barycentre coincident with bar(λ). We observe

here that convexity of the excised Wt’s is necessary hypothesis.

For z ∈ ∂∗F [t], abbreviate Vz := {x ∈ F [t] | xV z}. Then we define

Ω := (∩z∈∂∗F [t]Vz). (5.6)

The subset Ω consists of all x ∈ F [t] which are simultaneously visible to the excision

boundary ∂∗F [t] by geodesics contained in F [t]. See Figure 5.9.
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Figure 5.10: The subdomain Ω is geodesically convex

Lemma 5.9.3. Under the above hypotheses, the subset Ω defined in (5.6) is a geodesically

convex subset of F [t].

Proof. Consider the inclusion F [t] ↪→ F . If y ∈ ∂∗F [t], then the subset V ′z := {x ∈
F [t] | xV ′z} is a geodesically convex subset of F for every z ∈ ∂∗F [t]. But observe

∩z′∈∂∗F [t]V
′
z is a subset of F [t] and coincident with ∩z′∈∂∗F [t]Vz =: Ω. Thus Ω is geodesically

convex subset of F [t].

Next suppose F is a compact convex set with x ∈ F , y ∈ ∂F . Consider the directed

geodesic ray ρ(y, x) issuing from y towards x. If we extend the ray indefinitely, then

ρ(y, x) intersects ∂F at some unique point denoted y′ := proj(y, x). We say proj(y, x) is

the unique point opposite y with respect to x. For y ∈ ∂F this defines a projection-type

map

projy : (F − {y})→ ∂F.

This same construction yields a projection map

projy : Ω→ ∂Ω. (5.7)

Moreover suppose Yε is the ε-regularization of Y = ∂∗F [t] as above. For ε > 0 sufficiently

small, and every y ∈ Yε, the projection map (5.7) is well-defined map.
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Lemma 5.9.4. In the above notation, for every y ∈ Yε, the projection map (5.7) is

continuous.

Proof. We find projy is discontinuous at points x for which the geodesic segment α(s),

s > 0 with α(0) = y, α(dist(y, x)) = x, intersects Yε and makes angle-of-impact exactly

π/2 with respect to the normal vector n at the point of intersection. But such points x

are nonvisible to a nontrivial portion of Y and Yε, and therefore x /∈ Ω.

According to Lemma 5.9.2 every x ∈ projy(Ω) is the barycentre of some probability

measure λx ∈ ∆v(Y ), bar(λy) = y. Before defining the visibility cost below, we need

adapt this observation to Yε.

Lemma 5.9.5. In the above notation, let Yε be the ε-regularization of Y . Let ∆v(Yε)

consist of all probability measures λ on Yε for which

(a) bar(λ) ∈ Ω; and

(b) spt(λ) is a subset of Yε which is simultaneously visible from bar(λ) along geodesics

contained in Xε.

Then:

(i) for every x ∈ Ω, there exists at least one λ ∈ ∆v(Yε) such that bar(λ) = x; and

(ii) there exists a unique W 2
2 -minimizer λ∗x ∈ ∆v(Yε) such that

{λ∗x} = argminλ{W 2
2 (λ, µε)},

where the minimum is taken over all λ satisfying (i) and µε is the renormalized Hausdorff

probability measure on Yε.

Proof. Consequence of the proof of 5.9.2 and 5.7.1. We leave the details to the reader.

Finally with F [t], Y , Yε, Ω, projy, λ
∗
x as defined above, we present the main definition

of this chapter.

Definition 5.9.6 (Visibility Cost). Under the above hypotheses, the visibility cost v :

Ω× Yε → R ∪ {+∞} is defined:

v(x, y0) :=
1

2
k(x, y0).q(x, y0)−1 +

∫
Yε

k(x, y).q(x, y)−1dλ∗projy0 (x)(y). (5.8)

Here k denotes the visibility factor defined in 5.6.4, and q(x, y) := dist(x, y)2+e for a

suitable integer e ≥ 0 (recall Def. 5.3.2 from §5.3). Definition 5.9.6 is our generalization

of equation (5.1) on the simplex to convex-excisions F [t]. Following the above definitions
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Figure 5.11: Evaluating visibility cost v(x, z) for pair (x, z) ∈ Ω× Yε

we see v(x, y) varies continuously with respect to (x, y) ∈ Ω × Yε. We expect further

properties hold, as summarized in the following

Conjecture 5.9.7. Under the above hypotheses, the visibility cost v : Ω×Yε → R∪{+∞}
defined by (5.8) satisfies the hypotheses (D0)–(D5) from Section 5.2.

If F [t] is a strictly-convex excision, then with respect to a basepoint x ∈ F [t], the

excision boundary Y := ∂∗F [t] appears concave, i.e. all the principal curvatures κi of the

excision boundary Y are outward pointing. This implies, for instance, that all outward

equidistant deformations are volume-decreasing, where again “outward” is with respect

to x ∈ F [t]. C.f. [Gro91, pp.15-17]. The effect of the ε-regularization is to produce

“ caps” over the intersections of the excision components. These caps are nonconcave

regions in Yε which admit at least one inward-pointing principal curvatures. The caps

become arbitrarily small as ε→ 0+.

As further illustration, consider a pair of three-dimensional balls B3
1 , B

3
2 in R3. Sup-

pose the balls have nontrivial intersection such that B1 ∩ B2 is a two-dimensional disk.

The excision X := R3− (B1∪B2) has boundary Y := ∂X, with unique outward pointing

normals (as seen from X) almost everywhere. The intersection ∂(B1 ∩B2) = ∂B1 ∩ ∂B2

is a one-dimensional circle, and is the region with nonunique outward normals along
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Figure 5.12: The red subset of the ε-regularized boundary Yε is concave with respect to
F [t], and the green subset is nonconcave. As ε → 0+ the nonconcave region becomes
arbitrarily small.

∂X. The ε-regularization Yε (5.7.1) has the effect of producing “saddles” along the circle

of intersection. Thus Yε − Y concave
ε is a type of tubular neighborhood of the intersection

∂B1∩∂B2. When ε→ 0+ the region Yε−Y concave
ε becomes arbitrarily small (with respect

to both measure and distance). In applications we may forget these regions of noncon-

cavity, in which case the singularity of the restricted transport has the homotopy-type

of Z2.

We conclude this chapter with the question of whether v-convex subdifferentials φ on

the visibility domain Ω ⊂ X are δ-separated for some δ > 0 (recall Def. 4.5.1). Examples

indicate that subdifferentials ∂vφ fail to be separated wherever convexity in the boundary

Yε causes inward pointing normal geodesics to focus to a point.

Definition 5.9.8. Let Yε be the ε-regularization of the excision boundary Y = ∂∗F [t]

of a strictly convex excision. Define Y concave
ε to be the subset of Yε where are principal

curvatures are outward pointing (as seen from Ω ⊂ F [t]).

Conjecture 5.9.9. In the above notation, let φ be a v-convex potential on Ω. Then the

subdifferentials are separated on the subset Ω′ := {x ∈ Ω | ∂vφ(x) ⊂ Y concave
ε } of Ω.

Specifically, the subdifferentials are δ-separated on Ω′ with δ equal to the max-distance

between the connected components of Y concave
ε .

The heuristic motivating the above conjecture 5.9.9 is this: instead of v, consider the

the quadratic cost c = d2/2. Let Y ′ be a connected-component of Y concave
ε . Consider

a point x ∈ X, and balls B(x, r) centered at x with increasing radius 0 < r → +∞.

The minimal radius r′ for which B(x, r′) intersects Y ′ will intersect Y ′ at a unique point.

By contrast suppose Y ′′ is a connected component of Yε − Y concave
ε . Then there will
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exist x ∈ X for which the minimal radius r′′ such that B(x, r′′) intersects Y ′′ actually

intersects Y ′′ in at least two points. As x approaches the component Y ′′, the intersections

B(x, r′′)∩Y ′′ are eventually unique, and this proves the subdifferentials are not uniformly

separated.

So we find inward point principal curvatures on the boundary are obstructions to the

separation of subdifferentials. Again, in the ε-regularization Yε the nonconcave compo-

nents become arbitrarily small as ε → 0+. Compare to discussion of item (b) in §5.4.

In this case we find that truncating the activated domain to the δ-thick part Aδ gives a

subdomain homotopic to the active domain A.



Chapter 6

Excisions and Cohomological

Dimension

This chapter begins the second phase of our thesis with the goal of establishing Theorem

1.5.1 from §1.5, and large codimension homotopy-reductions X ; Z, when X ≈ EΓ is a

geometric classifying space model for infinite discrete groups Γ satisfying Bieri-Eckmann

duality (§1.5.2). Theorem 1.5.1 is a reduction program drawing together the semicoupling

and singularity methods of Chapters 2, 4, 5. We apply these methods to source spaces

X[t] obtained by convex excision, with target Y = ∂X[t] the excision boundary, as defined

in §5.5.

In practice we imagine a user has an infinite discrete group Γ with some standard

geometric EΓ model X×Γ→ X. Given this initial data, the user can follow the excision

construction (§6.3) and obtain a manifold-with-corners X[t] × ∂X[t]. Next, if the user

successfully Closes the Steinberg symbol (§1.5, 7), then we replace the excision X[t] with

the more convenient chain sum F . The summands of the chain sum F are excisions F [t],

and F inherits a proper Γ-action where Γ acts as shift-operator on the chain summands.

Next, the user needs construct the visibility cost v on the visible chain sum Ω on F . The

chain sum Ω is defined in 5.9.3, see Figure 5.10. The homotopy-reductions from Theorems

1.4.1,1.4.2 deformation-retract F onto closed singularities Z. Everything is Γ-equivariant

and the retracts Z are small-dimensional EΓ classifying spaces. The construction of such

small-dimensional Z was indeed the original motivation of this entire thesis.

6.1 Geometric Classifying Spaces EΓ

The purpose of this section is to introduce geometric EΓ models. Useful references

include [Bro82], [Bre93]. Let Γ be a finitely-generated infinite group. Poincaré’s fun-

90
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damental group functor X 7→ π1(X, pt), originally defined in [Poi95, §12], is a bridge

to topology. To display Γ as the fundamental group of a connected topological space

means constructing the so-called proper classifying space EΓ. The EΓ models can be

characterized as universal covering spaces of the Eilenberg-Maclane space K(Γ, 1).

Definition 6.1.1. Let Γ be abstract group with discrete topology. An EΓ model is a

topological space X equipped with a continuous map α : X × Γ → X satisfying the

following properties:

(i) the topological space X is homologically-trivial, so all reduced homology groups

vanish H̃i(X;Z) = 0 for i ≥ 0;

(ii) the continuous map α is group action satisfying α(x, γδ) = α(α(x, γ), δ) for all

x ∈ X, γ, δ ∈ Γ, and α(x, 1Γ) = x. We abbreviate α(x, γ) = x.γ;

(iii) the action is proper-discontinuous, so for every x ∈ X and bounded open neigh-

bourhood U of x, there exists only finitely many γ ∈ Γ such that U ∩ U.γ is nonempty;

(iv) the action is free, so for all x ∈ X, γ ∈ Γ, we have x.γ = x if and only if γ = Id.

Examples of EΓ spaces abound, and every pair X,X ′ of EΓ-models are homotopic.

• The universal covering space R → R/Z ≈ S1 is EZ model, where R × Z → R is

defined by additive translation (x, n) 7→ x+ n.

• The n-dimensional torus Rn → T n = (S1)n defines EZn model.

• If K ⊂ S3 is a 1-dimensional knot, then excising the open ε-neighborhoods Nε(K)

from S3 produces a three-dimensional manifold-with-boundary X = S3 − Nε(K). The

universal covering X̃ is known to be an EΓ model for Γ = π1(X, pt).

• The Poincaré disk H2 is an EΓ-model for every torsion-free finite-index subgroup

Γ of PGL(Z2).

• The quotient X = K\Sp(R4) of the group of linear symplectomorphisms of the

standard four-dimensional symplectic space (R4, ω) by a maximal compact subgroup

K ≈ U(2) = SO(4) ∩ Sp(R4) admits a proper discontinuous right-action by the arith-

metic group Sp(Z4). One knows that X is a EΓ-model for every finite-index torsion-free

subgroup Γ of Sp(Z4).

• Teichmueller’s space Tg is an EΓ model for the mapping class group Γ = MCG(Σg)

of a closed orientable genus g surface Σg.

• Further examples include braid groups, right-angled Artin groups, etc., and almost

all the groups that arise from geometric group theory and three-dimensional topology.

Our applications are especially concerned with geometric EΓ models, per the following

definition:
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Definition 6.1.2. An EΓ model X is geometric if X has a complete Cartan-Hadamard

Riemannian metric g for which the action X × Γ → X is isometric, and if the volume

measure volX has finite covolume with respect to X (i.e. the quotient X/Γ has finite

volume with respect to volX).

Constructing EΓ models is basic to practical computations. For instance, effective

EΓ models solve the word problem on the abstract group Γ insofar as a group element

γ ∈ Γ can act by translations on X. The hypotheses of Definition 6.1.1 means we can

distinguish γ from the identity element Id by finding some (any) point x ∈ X which is

displaced some positive (> 0) distance, and then x.γ 6= x implies γ 6= Id in Γ. This

observation is basic to Fricke-Klein’s ping-pong argument (see [Tit72]).

The EΓ models are connected spaces X with action X × Γ → X. Viewing Γ as

discrete topological space, the group action Γ × Γ → Γ defined by (δ, γ) 7→ δ · γ almost

satisfies properties of Definition 6.1.1 with the exception of (i), namely the connectivity

hypothesis that the reduced homology groups H̃∗ simultaneously vanish. But of course

a discrete group Γ is generally disconnected with respect to the discrete topology. So

EΓ models X × Γ → X are maximally-connected interpolations of the principal action

Γ× Γ→ Γ.

The proper-discontinuity hypothesis has important measure-theoretic consequences

regarding so-called Radon measures. Recall that a Radon measure is a Borel measure

which gives finite measure to compact subsets. A given point orbit x.Γ is discrete in X,

and fixed point free. Naturally we interpret the orbit
∑

γ∈Γ δx.γ of the Dirac atomic mass

δx at x as representing a unit Dirac measure on the quotient. The proper discontinuity

hypothesis ensures the correspondance between Radon measures on the topological quo-

tient X/Γ and Γ-equivariant Radon measures on X defines a weak-∗ homeomorphism

M≥0(X)Γ ≈M≥0(X/Γ).

6.2 Background: Group Cohomology

The following section reviews the basic facts of group-cohomology, i.e. the study of

projective and free resolutions of ZΓ-modules. Our treatment follows [Bro82]. These

formalities are necessary for the definition of Bieri-Eckmann duality (§6.4) and Closing

the Steinberg symbol (Ch.7).

Effectively computing the topological invariants of a group Γ is practically impossible

without explicit EΓ models. Recall ZΓ denotes the integral group-ring, consisting of

finitely-supported Z-valued distributions on the discrete group Γ. If X is EΓ model,

then the topologists’ standard projective resolution of ZΓ-modules over Z is obtained via
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the singular chain complex {Cn(X)sing, ∂n}n on X. Here Z denotes the additive abelian

group Z equipped with trivial Γ- action, where n.γ = n for all n ∈ Z, γ ∈ Γ.

More formally, let Γ be a discrete group. The category of linear representations of Γ

is equivalent to the category of ZΓ-modules. When M,N are Γ-modules, then M ⊗ N
inherits Γ-module action via the diagonal action m ⊗ n.γ = m.γ ⊗ n.γ, and we set

M ⊗Γ N := (M ⊗ N)Γ the coinvariant module, or quotient of M ⊗ N (tensor product

as Z-modules) by the Γ-action. If M,N are ZΓ-modules, then Hom(M,N) (which is

' N ⊗M∗) inherits ZΓ-module structure via (f.γ) : m 7→ f(m.γ−1).γ. Thus we identify

Hom(M,N)ZΓ with HomZΓ(M,N), i.e. the Γ-invariant homomorphisms correspond ex-

actly to the ZΓ-module morphisms M → N . If F,C are two chain-complexes, then we

declare their tensor product F ⊗ C to be a chain complex with dimension n part equal

to

(F ⊗ C)n = ⊕p+q=nFp ⊗ Cq,

and having a differential D(f ⊗ c) = df ⊗ c + (−1)deg(f)f ⊗ d′c. When we reduce our

coefficients to Z/2, then we forget signs and have D(F ⊗ c) = df ⊗ c+ f ⊗ d′c.
For a ZΓ-module M , the homology groups {Hn(Γ;M)}n geq0 with coefficients in M

are defined as homology of the chain complex Hn(F ⊗ZΓ M), where F = {Fn, ∂}n is a

projective resolution of the ZΓ-module Z over ZΓ. Here we see Z as the additive integer

group with trivial Γ-action, γ.n = n for all n ∈ Z, γ ∈ Γ. The topologists favourite

coefficient group Z or Z/2 are formally defined as trivial ZΓ-modules, and denoted Z or

Z/2 when we wish emphasize the trivial ZΓ-structure.

To define cohomology-with-coefficients, let {Fn, ∂n} be a projective resolution of Z
over ZΓ, andM the coefficient ZΓ-module. There is a cochain-complex {HomZΓ(Fn,M)}n,

with coboundary δ = {δn} defined adjointly by δn : Hom(Fn,M) → Hom(Fn+1,M),

f 7→ δz, where δz(f) = z(∂nf) for all homomorphisms z : Fn → M and f ∈ Fn.

The cohomology of this cochain complex defines H∗(ZΓ;M). The cohomology modules

Hm(Γ;ZΓ) have the following definition. Let {Pn, ∂n}n be a projective resolution of Z
over ZΓ. The cochain complex HomZΓ(Pn,ZΓ) with coboundary defined adjointly has

cohomology describing H∗(Γ;ZΓ).

Now we define homology groups with coefficients in a chain-complex. If {Cn, ∂n}n
is a chain complex, then we set Hn(Γ;C) = Hn(F ⊗Γ C), where F ⊗Γ C is the tensor

product of the chain complexes F,C, graded appropriately. The homology groups with

coefficients in the chain complex C is a chain-homotopy invariant, and hence determined

by the homology groups of the chain complex C. If the homology of C concentrates to a

single dimension H∗(C) ' Hq(C) =: D for some integer q ≥ 0, then the homology groups

Hn(Γ;C) reduce to Hn(Γ;D).
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When X is aspherical topological space supporting a continuous free properly discon-

tinuous action X × Γ → X, then the singular chain groups {Csing
n (X;Z)}n are abelian

groups possessing a ZΓ-module structure Csing
n (X;Z)×Γ→ Csing

n (X;Z) arising from the

geometric action. When Γ acts proper discontinuously on X with quotient X/Γ support-

ing a finite-equivariant measure, then the action of ZΓ on Csing
n turns the chain groups

into finitely-generated ZΓ-modules.

An augmentation map ε : C0(X)→ Z is defined ε(v) = +1 for every 0-cell on X. If we

augment the complex by the above augmentation mapping, then we obtain a projective

resolution (actually free resolution) of Z over ZΓ. That is, the sequence

· · · → Csing
q (X)→ Csing

q−1 (X)→ · · · → Csing
0 (X)→ Z→ 0

is exact. The resolution is homologically trivial if we ignore the Γ-action. But Γ acts

naturally on everything Csing
∗ (X)×Γ→ Csing

∗ (X), and the homology of the ZΓ-modules

become topological invariants of Γ. The comparison to the singular homology with

coefficients in Z arises from another augmentation mapping ε0 := ZΓ→ Z defined by

ε0(
∑
γ

nγγ) =
∑
γ

nγ.

IfM is a ZΓ-module, then we define the ZΓ-moduleHomc(M,Z), whereHomc(M,Z) ⊂
Hom(M,Z) consists of Z-linear homomorphisms f : M → Z satisfying: for every m ∈M ,

there exist only finitely many γ ∈ Γ for which f(m.γ) 6= 0. We call Homc(M,Z) the mod-

ule of Γ-compactly-supported homomorphisms. The following lemma is key to relating

the above homology groups to topology, c.f. [Bro82, VIII.7.4, pp.208].

Lemma 6.2.1. Let M be a ZΓ-module. There is natural ZΓ-module isomorphism between

HomZΓ(M,ZΓ) and Homc(M,Z).

Proof. Let F : M → ZΓ be a ZΓ-linear morphism. Then F has the form F (m) =

Σγ∈Γfγ(m).γ, where fγ : M → Z is a Z-linear morphism for every γ. For fixed m, we

see that only finitely many terms fγ(m) are nonzero, since the group ring ZΓ consists of

finitely supported Z-distributions over Γ.

As F is ZΓ-linear, we have F (m.δ) = δ−1F (m), and so Σfγ(m.δ).γ = Σfδγ(m)γ for

all m. Thus fγ(m) = fId(m.γ
−1) for all m, γ, and we conclude that the coefficients fγ

determining F = Σγfγ are uniquely determined by a particular γ, say, γ = Id ∈ Γ.

The assignment F 7→ fId yields the correspondance HomZΓ(M,ZΓ) → Homc(M,Z),

which can immediately seen to be natural equivariant isomorphism with inverse fId 7→
ΣγfId(−.γ−1).
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The lemma gives natural equivalence between the cohomology of the cochain com-

plexes

{HomZΓ(Csing
n (X),ZΓ)}n and {Homc(C

sing
n (X),Z)}n for n ≥ 0.

The latter cochain complex describes the compactly-supported cohomology on X, and

consists of cochains z : Csing(X)→ Z for which z(σ) = 0 for almost all cells σ in X and

with only finitely many exceptions. When Γ acts cocompactly on the contractible space

X, then compactly-supported cohomology on X can be identified by a Poincaré-Lefschetz

duality

Hm
c (X) ' Hd−m(X, ∂X;Z)⊗O ' Hd−m−1(∂X;Z)⊗O,

where O is the orientation module on X, i.e. the ZΓ-module supported on the abelian

group {−1,+1} and which measures whether a given element γ ∈ Γ preserves the orien-

tation of X or not. See [BS73][§11]. This duality is generalized to finite-volume quotients

(usually noncompact) in Bieri-Eckmann’s duality. See Section 6.4 below.

6.3 Excision versus Compactification

In the previous Chapter 5, we emphasized excisions F [t] of convex bodies F where the

excision parameters were supported on the extreme points E [F ]. We generalize this idea

further to excisions supported on Γ-rational points at-infinity in the present section. Thus

the convex excisions and visibility costs defined earlier have applications to the geometric

EΓ models.

In applications we find EΓ models X arising from nonpositive curvature, namely from

Cartan-Hadamard spaces, i.e. finite-dimensional complete nonpositively-curved spaces

satisfying the triangle comparison inequalities of Alexandrov, Toponogov, and Cartan.

See [BGS85] for basic definitions and compare Definition 6.1.2 from Section 6.1.

For general complete metric spaces Gromov defined a universal compactification, c.f.

[BJ06], [BGS85]. In the nonpositive curvature, the compactification has direct geometric

interpretation. For every point x ∈ X in a d-dimensional space, the exponential map

expx : TxX → X determines a homeomorphism from the unit tangent sphere Sd−1 ⊂ TxX

to the visual boundary at-infinity X(∞) of X. Adjoining the visual boundary provides

a topological compactification X = X ∪X(∞). The compactification X is topologically

a large-dimensional closed disk. The visual boundary X(∞) inherits a natural metric

(so-called spherical Tits metric) and supports a uniform Lebesgue measure.

If X is a geometric EΓ model, then the isometric action X × Γ → X extends to a
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continuous action by homeomorphisms X × Γ→ X. However there is some difficulty: Γ

acts by homeomorphisms on X(∞), and this action is neither free nor proper discontin-

uous. In fact, following the argument of Thurston [Thu+88], we observe that Brouwer’s

fixed point theorem implies every such continuous homeomorphism has at least one fixed

point in X. Therefore Radon measures on X(∞) do not descend to Radon measures on

the topological quotient X(∞)/Γ.

For example, the standard action of PGL(Z2) on the Poincaré disk H2 is proper-

discontinuous and virtually free. The boundary-at-infinity of H2 is a topological circle

H2(∞) ≈ S1, and it’s well-known that PGL(Z2) acts ergodically on this circle at-infinity

with respect to the uniform Haar measure θ on S1. Therefore every PGL(Z2)-equivariant

θ measurable function on H2(∞) is constant. This says all equivariant Radon measures

on the boundary circle are trivial.

The previous discussion indicates that conventional compactifications are not suitable

for our semicoupling method, which is based on transporting Radon measures. Instead

we pursue a general excision procedure, implicit in the literature and defined for arbitrary

geometric EΓ models. The basic idea is this: in a Cartan-Hadamard space X × Γ→ X,

there are “deep dark zones” which a given orbit x.Γ will strongly avoid. These dark zones

are Γ-equivariant collections {Wλ | λ ∈ I} of convex horoballs with centres at-infinity

and small radii. The dark zones Wλ are disjoint from all Γ-accumulation points at visual

infinity. Now we excise, or “scoop-out”, these halfspaces, and obtain a manifold-with-

corners X0 := X − ∪λWλ. The excision X0 has topological boundary ∂X0 ⊂ X. The

boundary ∂X0 is naturally cellulated by the boundaries ∂Wλ for λ ∈ I. If Γ furthermore

translates the halfspaces {Wλ}λ∈I such that Wλ.γ ⊂ Wλ only if Wλ.γ = Wλ, then the

excision boundary ∂X0 is set-theoretically Γ-invariant. In these cases we obtain free and

proper-discontinuous actions

∂X0 × Γ→ ∂X0, X0 × ∂X0 × Γ→ X0 × ∂X0,

where the action is diagonal (x, y).γ = (x.γ, y.γ). Proper-discontinuity ensures ∂X0

supports nontrivial Γ-equivariant Radon measures.

The excision procedure is summarized in the Figure 6.1. Below we give formal con-

struction, and to be applied to arithmetic groups in §6.5.

Recall that a point λ on the visual sphere X(∞) can be characterized as the “asymp-

totic class” of a geodesic ray s : [0,∞] → X diverging to some “point” s(∞) at visual-

infinity. Let λ ∈ X(∞) be point at-infinity. For every choice of x0 ∈ X, we define the

horofunction hλ,x0 : X → R by the usual formula (c.f. [BGS85, §3]).
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Figure 6.1: (a) Deep Zones are disjoint from Γ-orbit. (b) Excise the Deep Zones from
X. (c) Optimal Semicoupling, with respect to repulsion cost, between target excision
boundary (in blue) and activated source measure (in red). (d) Singularity structure (in
yellow) of an optimal semicoupling between source and target with respect to repulsion
cost.
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Definition 6.3.1 (Horofunctions). Let s : [0,+∞] → X be geodesic ray diverging to

s(+∞) = λ with s(0) = x0. Then the horofunction centred at λ is defined

hλ,x0(x) := lim
t→+∞

d(x, s(t))− t.

There are several equivalent characterizations of horofunctions on complete Cartan-

Hadamard spaces. A continuous function h : X → R is a horofunction if and only if

h is geodesically convex, h is 1-Lipschitz |h(x) − h(y)| ≤ |x − y|, and for every x ∈ X
and r > 0, there exists two points x1, x2 with d(x, x1) = d(x, x2) = 2r. Equivalently,

h is a horofunction on a complete Cartan-Hadamard space (X, d) if and only if h is a

geodesically convex C1 function with |∇xh| = 1, c.f. [BGS85, Lemma 3.4].

For any λ ∈ X(∞), let

Γλ := {γ ∈ Γ | λ.γ = λ}

be the isotropy-group (i.e. stabilizer group) of the point at infinity. The hypothesis

that Γ acts proper discontinuously on X implies every fixed point is necessarily a point

at-infinity λ ∈ X(∞). Notice when γ acts isometrically, then any accumulation point in

X(∞) of the orbit {x.γn | n ∈ Z} is a fixed point of γ. If γ is isometry fixing λ ∈ X(∞),

then γ maps horoballs centred at λ to horoballs centred at λ. And since γ is distance-

preserving between pairs of points, γ also preserves signed-distance between any two

horospheres. This suggests the following definition.

Definition 6.3.2. For every λ ∈ X(∞), let Tλ : Γλ → R be the group homomorphism

defined by the signed-distance between successive γ-translates of the horospheres centred

at λ.

So Tλ is defined by the identity {hλ,x ≤ t}.γ = {hλ,x ≤ t + Tλ(γ)} for every t ∈ R,

and where x is an arbitrary basepoint in X. We find Tλ = 0 is trivial if and only if Γλ

preserves the horospheres centred at λ setwise, i.e.

{hλ,x = t}.γ ⊂ {hλ,x = t}.γ

for every t ∈ R, x ∈ X. Equivalently Γλ preserves the level sets of every horofunction

hλ,x centred at λ with respect to any x ∈ X.

Definition 6.3.3 (Γ-rationality). A Γ-invariant subset J ⊂ X(∞) is Γ-rational if the

group homomorphisms {Tλ : Γλ → R | λ ∈ J} are simultaneously trivial.

For example, if λ ∈ X(∞) is an accumulation point of an orbit x.Γ in X, then γ

(and its powers γ2, γ3 etc.) will not preserve horoballs centred at λ, i.e. the group
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homomorphism Tλ : Γλ → R will be nontrivial.

The hypothesis that the homomorphisms Tλ : Γλ → R are trivial for the collection {λ}
of X(∞) is necessary to ensure the excision boundary is Γ-invariant. In our applications

below, this hypothesis is satisfied for every Q-reductive group G whose derived group 0G

admits no nontrivial Q-rational multiplicative homomorphisms

Hom/Q(0G,Gm) = {1}.

This implies that horospheres centred at the ends of Q-split tori in the symmetric-space

model will be invariant under G(Z) translates.

There is another hypothesis in addition to the triviality of the homomorphisms

{Tλ | λ ∈ J} necessary for the topological applications to small-dimensional EΓ-models.

Namely the reduced singular homology of the excision boundary ∂X0 must be concen-

trated in a unique dimension and be torsion-free. However because we are excising convex

horoballs W (contractible connected subsets of X) the boundary ∂X0 is homotopic to

∪λ∈JWλ, which is a union of contractible convex sets. According to Weil’s nerve covering

theorem the homotopy-type of this union is equal to the nerve of the aspherical covering

{Wλ | λ ∈ J}. See [BS73, Theorem 8.2.1] for details.

For arithmetic groups Γ := G(Z), the excision is defined by convex horoballs cor-

responding to Q-rational parabolic subgroups of G, and the nerve of the covering is

well-known to be identical to the rational Tits complex, so ∪λ∈JWλ will be homotopic

to simplicial complex B(G, T ) constructed in Section 6.5. The Solomon-Tits theorem

identifies the simplicial complex B(G, T ) as homotopic to a countable wedge of spheres

∨i∈ISqi of some dimension q. Evidently the reduced singular homology of ∂X0 is concen-

trated in a single dimension and torsion-free, as desired. We elaborate these hypotheses

in the §6.4 with Bieri-Eckmann homological duality.

6.4 Bieri-Eckmann Duality

Let the user produce a discrete matrix group Γ. Then by standard constructions we

find EΓ models X often having an isometric action X × Γ → X, where X is equipped

with a complete proper nonpositively curved distance d. But there is further problem

obstructing the user’s computation of homological invariants of Γ. Namely the apparent

space dimension dim(X) may fail to coincide with the virtual cohomological dimension

ν := vcd(Γ) of Γ. Informally, the “vcd” is the essential dimension at which nontrivial

topological invariants of Γ are supported. For instance, a three-dimensional ball appears



Chapter 6. Excisions and Cohomological Dimension 100

to have three-space dimensions, but the cohomology of the ball is zero-dimensional since

the ball is homotopic to a point. We recommend [Bro82] or [Ser, Proposition 3] for

background. By formal arguments, several equivalent characterizations are possible, e.g.

vcd(Γ) = max{ n | Hn(Γ′;M) 6= 0},

for a ZΓ′-module M , and where Γ′ ≤ Γ is a finite index torsion free subgroup, which

exist abundantly acording to Selberg’s lemma [Alp87].

One optimistically expects vcd(Γ) to coincide with the minimal geometric dimension

of an EΓ′ model X. From the definitions, it is clear vcd(Γ) is no greater than any dim(X).

There is famous theorem of Eilenberg-Ganea which proves: if 3 ≤ vcd(Γ) ≤ n, then there

exists an n-dimensional EΓ′ model with the structure of a simplicial complex. Numerous

references are available, e.g. [Bro82, p. VIII.7], [Ser, Proposition 10]. However the proofs

of Eilenberg-Ganea’s theorem are non-constructive, and abstract cellular inductive pro-

cesses. Firstly, the proof requires the precise presentation of the group Γ′ from which one

builds the 2-complex of generators (1-cells) and relations (2-cells attached for every rela-

tor). This produces an abstract two-dimensional complex Y 2. Taking the universal cover

X2 = Ỹ 2, one finds a simplicial complex whose homology groups vanish in dimensions

≤ 2. If one can identify the nontrivial H3(X2) groups, then one may attach 3-cells (using

Hurewicz theorem) to systematically annul all the nontrivial three-dimenionsal homol-

ogy. Thus one obtains a 3-complex Y 3 obtained from X2 by attaching 3-cells. Taking

the universal cover X3 := Ỹ 3, the induction process continues where possibly some four-

dimensional homology has arised from the attached 3-cells, which must be annulled by

attaching 4-cells, etc.

The construction (as sketched above) is practically impossible to implement. Our

thesis provides new general method for displaying the small-dimensional models according

to the Reduction-to-Singularity principles of the previous chapters. The above “external”

construction is replaced by the explicit reduction of an initial EΓ model X to a closed

subvariety Z ⊂ X.

Numerous large-dimensional EΓ models are available. These models have space di-

mension much greater than the cohomological dimension. A precise determination of the

dimension-gap is achieved in Borel-Serre’s formula

vcd(G(Z)) = dim(K/0G(R))− rankQ(0G),

c.f. [BS73, §8.6], whenever G is a Q-reductive linear algebraic group. Their method is

very general, c.f. Theorem 6.4.4 below. The argument of Borel-Serre is based on the



Chapter 6. Excisions and Cohomological Dimension 101

construction of rational bordification models denoted X
BS,/Q

, and the fact that Γ =

G(Z) satisfies a homological duality generalizing Poincaré duality as discovered by Bieri-

Eckmann [BE73].

Definition 6.4.1. A finitely generated group Γ is a duality group of dimension ν ≥
0 with respect to a ZΓ-module D, if there exists an element e ∈ Hν(Γ; D) with the

following property: for every ZΓ-module A, the “cap-product with e” defines ZΓ-module

isomorphisms Hd(Γ;A) ≈ Hν−d(Γ;A⊗D), f 7→ f ∩ [e].

The basic properties of duality groups are summarized in the following

Proposition 6.4.2 (Bieri-Eckmann duality, [BE73]). Let Γ be duality group of dimension

ν, with dualizing module D. Then

(i) we have ZΓ-isomorphism D ≈ Hν(Γ;ZΓ) 6= 0, so D is a torsion-free additive

abelian group;

(ii) the homology group Hν(Γ; D) is infinite cyclic generated by [e] as additive abelian

group;

(iii) the group Γ has cohomological dimension cd(Γ) equal to ν.

Proof. The statements are direct consequences of duality. (i) We see Hν(Γ;ZΓ) ≈
H0(Γ; D) ≈ D. (ii) Duality implies H0(Γ;Z) is isomorphic to Hν(Γ;Z⊗ZΓ D), which in

turn is canonically isomorphic to Hν(Γ; D) since Z⊗ZΓ ZΓ ≈ D. But H0(Γ,Z) is canoni-

cally isomorphic to Z. (iii) The duality isomorphism implies for every ZΓ-module A that

H∗(Γ;A) is isomorphic to Hν−∗(Γ;A⊗D) which reduces to 0 whenever ν − ∗ < 0.

Dualizing modules D, which are unique up to ZΓ-isomorphism, can be constructed for

various groups Γ arising in practice. Whereas the Bieri-Eckmann duality produces canon-

ical ZΓ-isomorphism between D and the cohomology group Hν(Γ;ZΓ) supported at the

cohomological dimension ν, this cohomological presentation of D is generally insufficient.

We emphasize excisions X0 whose topological boundary ∂X0 produces homological (i.e.

projective) resolutions of the dualizing module D. This is better suited for constructing

homology with coefficients in the dualizing module D, as arising in the statement of

Bieri-Eckmann duality above. In our chapter on Closing the Steinberg symbol, we effec-

tively construct nontrivial cycles ξ ∈ H0(Γ;Z2Γ ⊗ D) using the homological resolution

above.

Theorem 6.4.3 ([BE73], [BS73]). Let (X[t], ∂X[t]) be a Γ-equivariant rational excision

model, where X[t], ∂X[t] support invariant Radon measures σ, τ having finite Γ-covolume.
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Suppose there exists an integer q ≥ 0 such that the reduced homology H̃∗(∂X;Z) of the

topological boundary is concentrated at dimension ∗ = q,

H̃∗(∂X
BS/Q

;Z) =

{
0, if ∗ 6= q,

D, if ∗ = q.
(6.1)

where D is a nonzero torsion-free additive abelian group. Then for every finite-index

torsion-free subgroup Γ′ < Γ, the associated ZΓ′-module D′ := D ⊗Z ZΓ′ is a dualizing-

module for Γ′ of dimension ν := dim(X[t])− q + 1. So

Hν(Γ′;ZΓ′) ' H0(Γ′; D′) ≈ D′

is nonzero and vcd[Γ] = cd[Γ′] = ν.

Proof. We refer the reader to [BE73, §6.2] and [BS73, §8.4, §11] for details.

Consequently Borel-Serre’s formula can be restated as follows:

Theorem 6.4.4 (Borel-Serre). Let Γ be a discrete infinite group with finite virtual co-

homological dimension vcd(Γ) < +∞ and satisfying Bieri-Eckmann homological duality.

Suppose X is a Cartan-Hadamard manifold and EΓ model such that X has finite covol-

ume modulo Γ. Let q equal the spherical-dimension of Bieri-Eckmann’s dualizing module.

Then we have

vcd(Γ) = dim(X)− (q + 1).

6.5 Arithmetic Groups: Excision

The subject of linear algebraic matrix groups and their arithmetic groups is extensive

topic. In this section we describe the basic excision construction which enables the

applications of our semicoupling methods to small-dimensional EΓ classifying spaces, for

Γ := G(Z) an arithmetic group. The basic examples are the arithmetic subgroups of

the standard higher-rank Q-reductive groups G = GL(V ), e.g. the symplectic groups

Sp(R4, ω), Sp(R6, ω), . . ., and the split-orthogonal groups O(V p,q) for p, q ≥ 2.

Constructing small-dimensional classifying spaces is an old topic, originating in Minkowski’s

“geometry of numbers”. The classic example is the reduction of the hyperbolic disk

onto the so-called Farey tree, c.f. [Bro82, VIII.9, pp.215]. The discrepancy between

space- and algebraic-dimensions was made precise in Borel-Serre’s investigations [BS73],

wherein the relation to Bieri-Eckmann duality was first discovered (summarized in 6.4.4
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from §6.4). A general method for reducing the general linear group GL(ZN) was discov-

ered by the so-called “systolic well-rounded retract” introduced in [Sou78] and extended

in [Ash84]. For instance, Soulé’s method produces an interesting three-dimensional

cube model for the codimension-two reduction of the five-dimensional symmetric space

≈ SO(3)\PGL(R3)/PGL(Z3). But no general principle for constructing large codimen-

sion (≥ 2) deformation retracts was available, with the exception of PGL(ZN). We

propose the homotopy-reductions constructed in this thesis are effective generalizations

of Ash-Soulé ’s well-rounded retract.

So let the user choose an arithmetic group Γ = G(Z). With respect to our Reduction

Program 1.5.1, first we construct excision models from an initial geometric EΓ model.

This key first step originates with [BS73]. The excision is obtained from the initial EΓ

model X = K\0G(R)0, and defined with respect to a choice of basepoint [K] on X and

equivariant excision parameters t : ΦΓ
co → R defined below. The equivariant excision

model X[t]×∂X[t] has Γ-finite invariant Radon measure σ⊗ τ = volX[t]⊗vol∂X[t], where

Γ acts diagonally

X[t]× ∂X[t]× Γ→ X[t]× ∂X[t], (x, y).γ = (xγ, y.γ).

The main topological properties of the excision are summarized in Theorem 6.5.2, and

surely well-known to the experts.

Our presentation of the excision models is generally described for discrete subgroups Γ

of Q-reductive linear algebraic matrix groups G. The generality of the construction forces

us to speak in terms of the Bruhat-Tits structure theory of G. We assume G is totally split

over Q, and so maximal Q-algebraic tori T in G are totally Q-split and admit Q-rational

isomorphisms T ≈
∏

rankQGGm onto a product of multiplicative groups. The excision

construction involves the Γ-orbit of the set of Q-coroots Φco, where Φ = Φ(G, T ) ⊂
Hom/Q(T,Gm) is the root system of G with respect to a maximally Q-split algebraic

torus. C.f. [BJ06] or [BT65] for terminology. The root system Φ is the conventional

Bruhat-Tits-type Lie algebraic root system, and consists of the “eigenvalues” of the

linear representation T → GL(gR) where g is the Lie algebra of G.

If we fix a maximal connected compact subgroup K0 in 0G(R)0, then Matsuomoto

lemma ([BT65, §14]) allows us to represent elements of QW as orientation-preserving

isometries of K0. The choice of K0 determines a QW -invariant inner product on the Lie

algebra of T , which is canonically diffeomorphic to a rankQ(0G)-dimensional Euclidean

space. If Φ = Φ(G, T ) ⊂ Hom/Q(T,Gm) denotes the set of roots of the adjoint action

of T on the lie algebra of G, then the choice of QW -invariant inner product allows us to
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represent the dual collection of so-called coroots. The coroots are a finite set of nonzero

cocharacters

Φco ⊂ Hom/Q(Gm, T ) ⊂ Hom/Q(Gm, G).

Here P (kγ) corresponds to the maximal parabolic subgroup defined by the cocharacter

kγ, and q.γ corresponds to the conjugate Kγ of the maximal compact, and AP (kγ),q.γ

corresponds to the split-central torus in (P (kγ), Kγ) Levi-Langlands coordinates.

Definition 6.5.1. Fix a basepoint q = K in K\0G(R)0, and let Φco ⊂ Hom/Q(Gm, T )

be the coroots with respect to a maximal Q-split selfadjoint torus T .

(i) An excision parameter is a Γ-equivariant function t : ΦΓ
co → R>0.

(ii) For kγ ∈ ΦΓ
co, let W t

kγ be the convex horosphere consisting of all matrix elements

g ∈ G(R)0 for which the AP (kγ),q.γ-coordinate is less than or equal to the scalar exp(t(kγ)).

The excision model with respect to the basepoint q and excision parameter t : ΦΓ
co →

R>0 is then defined X[t] := X − ∪ΦΓ
co
W t
kγ .

Theorem 6.5.2. Let G be the Q-split form of a semisimple Q-linear algebraic group for

which Hom/Q(G,Gm) is trivial. Let Γ := G(Z) be arithmetic group. Suppose t : ΦΓ
co →

R>0 is Γ-equivariant excision parameter. Then

(i) the excision boundary ∂X[t] is Γ-equivariant;

(ii) the uniform homogeneous measures σ, τ defined on X[t], ∂X[t] have finite volume

Γ-quotients (actually the quotients are compact).

(iii) the excision (X[t], ∂X[t]) is diffeomorphic as manifold-with-corners to Borel-

Serre’s bordification

X[t]× ∂X[t] ≈ X
BS/Q × ∂XBS/Q

.

(iv) the boundary ∂X[t] has concentrated reduced homology nontrivial at dimension

q := rankQ(G) − 1, and H̃q(∂X[t];Z) considered as a ZΓ-module is the Bieri-Eckmann

dualizing module for Γ.

Proof. The hypothesis that Hom/Q(G,Gm) is trivial descends by induction to all the

semisimple parts 0L of the various Levi factors L = LP,q.γ of Q-parabolic subgroups P

with respect to the Γ-orbits of the basepoint q. Together with the principle of “no acciden-

tal parabolics”, we find the excision boundary is necessarily Γ-invariant subset of X. This

proves (i). Item (ii) follows from standard argument of Borel-Harish-Chandra, see [BS73].

Rescaling the excision parameter t to 0+ produces desired diffeomorphism X[t] ≈ X[0+]

= X
BS/Q

. This proves (iii). The collection of convex horospheres {W t
k}k produces a

covering of ∂X[t] by contractible open sets whose nerve is isotopic to the spherical Tits
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building B(G,Q). By Weil’s nerve theorem, there is natural homotopy-isomorphism be-

tween ∂X[t] and B(G,Q). But the well-known Solomon-Tits theorem proves B(G,Q)

has the homotopy-type of a countable wedge of (rankQ(G)−1)-dimensional spheres. This

proves (iv).

Remark. The equivariant excision parameter t : ΦΓ
co → R>0 is determined by its restric-

tion to the initial coroot set Ψco. In practice we look to define t as symmetrically as

possible, especially with respect to the natural action of the Weyl group QW . However

the roots of Ψ are not pairwise symmetric, since indeed QW does not act transitively on

Ψ. E.g., the root system C2 corresponding to the real split symplectic group Sp(R4, ω) is

not totally regular, having roots of different lengths. We can either appeal to Minkowski’s

theorem [Ale06] to prescribe an excision parameter (unique modulo homothety) for which

the codimension-one faces of B ∩X[t] have given measures, or we can be satisfied with

QW -symmetry of the restricted excision parameter t| : Φco → R>0.



Chapter 7

Closing the Steinberg symbol

7.1 Stitching Footballs from Regular Panels: Moti-

vation

This chapter introduces a subprogram we call ‘Closing the Steinberg symbol’. But before

developing the formal definitions in Section 7.2 below, we offer some informal motivations.

In low dimensions, our ideas relate to the problem of stitching footballs from uniform

hexagonal panels, or uniform pentagonal panels, or combinations of both as in the Figures

below. To stitch a football from panels {Pi | i ∈ I} means finding a finite subset I ′ ⊂ I

for which the singular chain sum
∑

i∈I′ Pi has singular chain boundary which vanishes

mod 2, so

∂(
∑
i∈I′

Pi) =
∑
i∈I′

∂Pi = 0

over Z/2-coefficients. When P is two-dimensional hexagon or pentagon, the panels have

singular boundary

∂P =
∑

e edge of P

e.

We denote the closed convex hull of the football F := conv{P | panels}. The panels

then become closed subsets of the boundary ∂F .

For instance, since the 1960’s the standard football is stitched after Adidas’ “Telstar”

design, having twenty white hexagon panels and twelve black pentagon panels. But in

our applications we assume the patches {Pi}i∈I are pairwise isometric to some regular

geodesically-flat polygon P . In its most elementary form, Closing the Steinberg symbol

is the problem of assembling isometric translates of a fixed two-dimensional equilateral

triangle into some two-dimensional sphere. Or, assembling isometric copies of some right-

106
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Figure 7.1: Stitching a football F from identical regular hexagons or pentagons Pi

Figure 7.2: Adidas’ “Telstar” design is football stitched from white hexagon and black
pentagon panels. A football can also be stitched from black triangular and white pen-
tagonal panels.

angled cube into a three-dimensional sphere. Compare Figures 7.1–7.2.

We furthermore assume there is an isometric action by a discrete symmetry group Γ

translating the polygon patches P.γ for γ ∈ Γ. The Γ-symmetries lead to chain sums

F :=
∑

γ∈Γ F.γ of “footballs through space”. We say the chain sum has “well-separated

gates” if a pair of footballs F.γ, F.γ′ are either disjoint, identical, or intersect along

a single panel P ′. The support of a convex chain sum can have nontrivial topology,

i.e. depending on the homotopy-type of the chain sum combinatorics. Since panels are

contractible, a standard Mayer-Vietoris covering argument identifies the homotopy-type

of the support of F with the nerve of the covering defined by the chain summands. We

detail these ideas further in the sections below.
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7.2 Closing Steinberg: Definition and Consequence

Let X × Γ → X be a geometric EΓ model (Definition 6.1.2). Suppose we define a

Γ-equivariant family of convex horospheres {W t
λ}λ, producing an excision model

X[t] := X − ∪λW t
λ

whose topological boundary ∂X[t] is Γ-invariant and has reduced singular homology

concentrated at some unique dimension q ≥ 0, satisfying

H̃q(∂X[t];Z) = D 6= 0, and H̃∗(∂X[t];Z) = 0 when ∗ 6= q. (7.1)

In applications, the nonzero Z-module D will be torsion-free. The symmetry action of Γ

on X induces a natural ZΓ-module structure on D, and we view D as ZΓ-module in the

following.

The boundary operator defines a linear map between chain groups

∂ : Cq+1(X[t], ∂X[t];Z/2)→ Cq(∂X[t];Z/2). (7.2)

Consider a relative cycle [P ] ∈ Hq+1(X[t], ∂X[t];Z), with [P ] 6= 0. The long exact

sequence of relative homology produces an isomorphism

H(∂) : Hq+1(X[t], ∂X[t];Z) ' Hq(∂X[t];Z), (7.3)

so the boundary ∂[P ] represents a nontrivial cycle in Hq(∂X[t];Z). The group Γ of

symmetries flips, rotates, and translates the base cycle [P ] throughout the space, and

every finite subset I of Γ produces a finite chain sum∑
γ∈I

[P ].γ,

with total chain boundary

∂(
∑
γ∈I

[P ].γ) =
∑
γ∈I

∂[P ].γ.

The basic problem of Closing Steinberg is to produce a finite subset I ⊂ Γ for which the

boundary of the nontrivial chain sum vanishes in the mod 2 homology group. Basically

we seek nontrivial vectors in the kernel of the boundary operator H(∂). Formally we
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seek I ⊂ Γ which defines nonzero elements

ξ =
∑
γ∈I

P.γ ∈ Cq+1(X[t], ∂X[t];Z/2)

which are solutions to the following equation:

H(∂)(
∑
γ∈I

P.γ) =
∑
γ∈I

H(∂)(P ).γ = 0 (mod 2)

in the homology group Hq(∂X[t];Z/2), where H(∂) is defined as (7.3).

The complete definition of Closing Steinberg includes further geometric conditions on

the Γ-translates F.Γ of the the closed convex hull F = conv[P.I] of the translates B.I.

Let X[t], ∂X[t] be a Γ-invariant excision model. Let [P ] be a flat-filled relative cycle

representing a nonzero generator of Hq+1(X[t], ∂X[t];Z).

Definition: Closing Steinberg 7.2.1. A finite subset I of Γ successfully Closes Stein-

berg if:

(nontrivial mod 2) the chain ξ =
∑

γ∈I P.γ is nonvanishing over Z/2 coefficients

in the chain group Cq+1(X[t], ∂X[t];Z/2);

(vanishing boundary mod 2) the boundary ∂ξ =
∑

γ∈I ∂[P ].γ vanishes over Z/2-

coefficients in the homology group [∂ξ] = 0 in Hq(∂X[t];Z);

(well-defined convex hull) the boundary-chain representing ∂ξ is simultaneously

visible from an interior point x in X[t];

(well-separated gates) there exists a finite-index subgroup Γ′ < Γ such that the

chain sum F =
∑

γ∈Γ′ F.γ has nonempty well-separated gates structure precisely equal to

the principal orbit {P.γ | γ ∈ Γ′}.

In the above setting ∂P is coincident to P ∩ ∂X[t]. The last hypothesis on well-

separated gates means a pair of translates F, F.γ are either disjoint or the gate F ∩ F.γ
coincides with some translate P.γ′.

Our presentation (7.1) of D as the reduced homology of the boundary with ZΓ-module

structure means we can naturally view D as a chain complex. This chain complex is

afforded by the singular chain groups on ∂X[t]. Homology groups with coefficients in a

chain complex means we can interpret the 0th chain group C0(∂X[t];Z/2)⊗D with qth

chain group Cq(∂X[t];Z/2), and this interpretation has important consequences. Indeed

the existence of chain sums ξ satisfying the first two hypotheses in Closing Steinberg is

a consequence of homology.
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Proposition 7.2.2. Let Γ be a Bieri-Eckmann duality group, with dualizing module D.

Then there exists finite subsets I in Γ for which ξ =
∑

γ∈I P.γ lies in the kernel of ∂0

over Z/2.

Proof. The argument is homological. We interpret ξ as a chain sum representing a 0-

cycle in H0(Γ;Z/2Γ⊗ZΓD). The hypotheses of Closing Steinberg imply ξ is homologically

nontrivial cycle. Bieri-Eckmann duality (Proposition 6.4.2) implies the kernel ker ∂0 is

naturally isomorphic to the induced ZΓ-module Z/2⊗Z D which is nonzero.

Our definition of Closing Steinberg was inspired by the author’s study of [Cre84]. Cre-

mona successfully Closes Steinberg in several cases for Γ = GL(O√−d), where O√−d is the

ring of integers of some Euclidean complex quadratic fields. In Cremona’s terminology,

the problem is to determine a “relation ideal R” and construct a “basic polyhedron P

whose transforms fill the space”, c.f.[Cre84, pp.290]. We present some further examples

in §§7.3–7.4 below.

Now suppose we find a finite subset I in Γ with ∂0[
∑

γ∈I P.γ] = 0. Such subsets exist

by Proposition 7.2.2. These subsets partially close the Steinberg symbol, except the orbit

P.I may not admit a simultaneously visible interior point and the gates of the chain sum

F = SUM [F.Γ] may not be well-separated.

Our hypotheses regarding Closing Steinberg have useful consequences, which we sum-

marize in the following theorem.

Theorem 7.2.3. Suppose I ⊂ Γ successfully Closes Steinberg (Definition 7.2.1). Define

F := conv[P.I] and F =
∑

γ∈Γ F.γ. Then

(i) the Γ-translates F.γ, γ ∈ Γ, form a chain sum

F := · · · [F ]γ + [F ]γ′ + [F ]γ′′ + · · · ,

and there exists finite-index subgroup Γ′ < Γ which acts as additive shift-operator on the

summands of F ; and

(ii) the support of the chain sum F is a simply-connected subset of X, and F is a

cubical EΓ′ model.

Proof. We can replace Γ with a finite-index torsion-free subgroup Γ′ to ensure Γ′ acts

freely on X, and therefore X[t], ∂X[t]. Moreover we can ensure Γ′ translates the flat-filled

relative cycle [P ].γ, for γ ∈ Γ′ freely. Then [P ].γ 6= [P ] when γ 6= id. The definition of

Closing Steinberg implies distinct translates F, F ′ are disjoint unless they intersect in a

gate G′ = P.γ′ for some γ′ ∈ Γ′. So F.γ equals F only if γ = Id is trivial. This proves the

summands {F.γ | γ ∈ Γ′} of F form a principal Γ′-set, and establishes (i). The existence
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of an interior point x ∈ F which is simultaneously visible to the translates P.I in X[t]

proves F = conv[P.I] is a compact convex set, and homeomorphic to some cube. Thus

F is a chain sum of cubes, hence a cubical chain sum and therefore (ii).

7.3 Closing Steinberg on PGL(Z2) : First Example

Here we provide basic “proof-of-concept” by successfully Closing Steinberg with the finite

subset I0 defined below.

(Step 1: Construct Excision Model) Consider the Voronoi state model of 2-dimensional

real states Q× PGL(Z2)→ Q. The standard self-adjoint torus

A(s) := {

(
e−s 0

0 es

)
}

produces an orbit q.A in q.PGL(R2) ↪→ Q. The orbit q.A has projective ends at

A(−∞) =

[
1

0

]
, and A(+∞) =

[
0

1

]
on Proj[R2]. Within the excision model Q[t] these

orbits are truncated at

A[t] := A ∩Q[t] = {

(
e−s 0

0 es

)
| − t ≤ s ≤ t}.

Then

∂A[t] = A ∩ ∂Q[t] =

[
e−t

0

]
+

[
0

e+t

]
.

In the renormalized limits ([Fur76]) we get

[
e−s

0

]
→

[
1

0

]
and

[
0

e+s

]
→

[
0

1

]
. Compare

with Figures 7.3, 7.4.

(Step 2: Close Steinberg. Obtain Cubical Model) Next we view

[
1

0

]
⊗

[
0

1

]
as formal

tensor element. And define a Z/2-boundary operator

∂0([u]⊗ [v]) := [u] + [v],

which we view as valued in a boundary chain group C0(∂Q[t];Z/2). The following subset
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I0 successfully closes the PGL(Z2) Steinberg symbol

[
1

0

]
⊗

[
0

1

]
:

I0 = {Id,

(
1 1

0 1

)
,

(
0 1

−1 2

)
}.

Observe that

(
0 1

−1 2

)
∈ U1

1


.

Thus the chain sum

ξ := (

[
1

0

]
⊗

[
0

1

]
) + (

[
0

1

]
⊗

[
1

1

]
) + (

[
1

1

]
⊗

[
1

0

]
)

represents a nontrivial 0-cycle ξ ∈ H0(PGL(Z2),Z2 ⊗ D), where D is the dualizing

ZPGL(Z2)-module ≈ H1(Proj[∂Q[t]];Z). Then ∂0ξ = 0. Compare Figure 7.5.

Observe that ξ corresponds to the image of

[
1 0 1

0 1 1

]
under the boundary mapping

∂1(

[
1 0 1

0 1 1

]
) =

[
0 1

1 1

]
+

[
1 1

0 1

]
+

[
1 0

0 1

]
.

Here ∂1 is the right-most differential ∂ in the resolution of [LS76, Theorem 3.1, pp.21].

Notice the symbol

[
1 0 1

0 1 1

]
has all nonvanishing 2 × 2-minors, and thus represents

nonzero element in the standard resolutions of the Steinberg module, e.g. [LS76, §4].

Thus

∂0ξ = ∂0 ◦ ∂1(

[
1 0 1

0 1 1

]
) = 0.

C.f. [Ste07, §A.5.2, pp.233], [AR79, §§2-5]. The convex hull in Q

{α〈−, e〉2 + β〈−, f〉2 + γ〈−, e+ f〉2|α, β, γ ≥ 0, α + β + γ = 1}

of the rank-one states associated to e, f, e + f has barycentre at the hexagonal lattice

x2 + xy + y2. Every quadratic state p : R2 → R admits a PGL(Z2)-translate p.γ

which occupies F 0. Taking the convex hull F (I0), and the global chain sum F 0 =∑
γ∈(Z2) F (I0).γ, we recover the cubical model F 0 × PGL(Z2)→ F 0.

(Step 3: Install repulsion costs. Construct Kantorovich Singularity) So we replace Q
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Figure 7.3: Convex excision X[t] relative a Γ-equivariant excision parameter t : QP 1 → R

with an excision model Q[t], and then a cubical chain sum F 0. The boundary ∂[F ] of

the chain summands F of F 0 now coincide with the topological boundary ∂[F 0]. Having

constructed this chain sum, we are now ready to install v : F 0 × ∂[F 0] → R ∪ {+∞},
and can proceed to studying the v-optimal semicoupling program between source σ on

X = F 0 and target τ on Y = ∂F 0. Compare Figure 7.6

Suppose we compute the dual v-concave potential ψ : ∂[F 0] → R ∪ {−∞}. Then

we need verify Halfspace conditions to ensure the activated source is deformation retract

of the initial excision X[t], and finally we need ensure Halfspace conditions satisfied

throughout the activated source to deformation retract X[t] ; Z1 ; Z2. These are the

remaining Steps of Theorem 1.5.1 from Section 1.5. See Figure 7.7, 7.8

7.4 Closing Steinberg on GL(Z3) : Example

Recall [LS76] and [AGM]: to Close Steinberg means constructing a syzygy of the ZGL(Z3)-

module resolution:

· · · → C1 → C0 → D→ 0,

of the Steinberg module D ≈ St3(Q) in (any) of the available resolutions in [LS76, §3],

or [AGM, §§2-5]. In otherwords the Steinberg symbol [B] is an element of C0 which

maps to a generator of D. To Close Steinberg means finding Γ-translates [B′] = [B].γ
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Figure 7.4: Steinberg symbol in X[t] × ∂X[t] is represented as relative 1-cycle P with
boundary ∂P equal to 0-sphere.

Figure 7.5: The translates by I0 = {Id, γ, γ′} successfully Close the Steinberg symbol.
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Figure 7.6: Evaluating the repulsion cost relative to the repulsion-cost c2 at various
source points x, x′, x′′, . . . etc. in X[t]

Figure 7.7: Active Domain for optimal semicoupling with respect to repulsion cost is
homotopy-equivalent to the source, c.f. Theorem 1.4.1
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Figure 7.8: Singularity Structure of optimal semicoupling. The active domain is
homotopy-equivalent to one-dimensional tree, c.f. Theorem 4.5.4

for which the chain sum
∑

iBi occupies the submodule

ker(ϕ : C0 → D) = image(∂1 : C1 → C0)

in C0. Strictly speaking we work over Z/2 with trivial ZΓ-module structure, and replace

ZΓ with the induced module Z2Γ = Z/2⊗Z ZΓ.

Now Closing Steinberg in GL(Z3) means printing a nonzero element of C1, e.g. some-

thing like

ξ := [a, b, c, d] + [c, d, e, f ] + [e, f, a, b],

where a, b, . . . , f are all primitive integral vectors in Proj[Q3]. More concretely, consider

ξ′ :=

1 0 0 1

0 1 0 1

0 0 1 1

+

0 1 1 0

0 1 0 1

1 1 1 1

+

1 0 1 0

0 1 0 1

1 1 0 0

 .
Lemma 7.4.1. Define ∂0[a, b, c] = [a] + [b] + [c]. Then the image ∂0[∂1(ξ′)] vanishes in

D over Z/2-coefficients.

Proof. Compute according to the formulas. The columns of ξ′ occur in ∂0[∂1(ξ′)] with

even multiplicity, and therefore vanish over Z/2-coefficients.

We observe that the set of 3×3 minors of the summands of ξ′ defines the finite subset
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I ′ of PGL(Z2) which Closes Steinberg.

As consequence of Theorem 7.2.3 we find

Proposition 7.4.2. The convex hull of the rank-one states spanned by the columns of

ξ′, i.e.

F := conv[{x2, y2, z2, (x+ z)2, (y + z)2, (x+ y + z)2}] ⊂ Q

forms a convex set F , whose translates F.GL(Z3) tessalate Voronoi’s cone Q of three-

dimensional positive-semidefinite real states.

N.B. The above proposition is at least consistent with respect to dimensions, since

dim[F ] = 5 coincides with dimProj[Q] = dimK\0GL(R3), where of course 0GL(R3) is

more commonly known as SL(R3). Moreover it is not necessary that the orbit of F “fill”

Q; in general the translates of F will tessalate a proper simply-connected subset of Q.

There are further hypotheses in Closing Steinberg, namely the boundary summands

∂1[a, b, c, d] = [b, c, d] + [a, c, d] + [a, b, c]

must be Γ-translates of [a, b, c]. I.e., ∂1[a, b, c] is supported on the orbit [a, b, c].Z2Γ in C0.

Next the translates F.GL(Z3) assemble to chain sum F :=
∑

γ∈PGL(Z3) F.γ. Assembling

all the constructions of our previous Chapters, we consider the visible repulsion cost

v : F × ∂[F ]→ R, and the v-optimal semicouplings from volume source measure σ on F

to volume target measure τ on the excision boundary. We propose Kantorovich’s functor

Z = Z(c2, σ, τ) : 2∂[F ] → 2F realizes a spine for GL(Z3).

Conjecture 7.4.3. In the above notation with visibility cost c = v, the Kantorovich

singularities produce codimension two deformation retracts Q ≈ F → Z3 onto those

points x′ ∈ F where ∂cψc(x′) has dimension ≥ 3.

To practically construct the spine Z3 requires the v-concave potentials (ψv)v = ψ

arising from Kantorovich duality. The hypotheses of Closing Steinberg and the definition

of v implies the (UHS) conditions are controlled by the gates. In this case, restricting

the cost to a gate v|G, symmetry implies the two-dimensional gates deformation retract

to a point. Thus we find Q ≈ F retracts onto the codimension two subvariety Z3 ↪→ Q.

It would be interesting to compare the above spine Z3 with Soulé’s cube [Sou78], [Ste07,

Appendix], and the construction of [Gjo12]. We leave that to future investigations.
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Conclusion

So our thesis is concluded. Have we achieved our aims? Firstly we have developed a

general method of Reduction-to-Singularity by which we construct continuous homotopy-

reductions via the singularity structures of c-optimal semicouplings. Secondly we investi-

gate concrete costs and settings which we propose as effective for applications. Our main

results are Theorems 3.1.1, 4.5.4. For applications, our main result is Theorem 1.5.1. But

admittedly our initial ambitions, namely Conjecture 1.5.2 remains partially unresolved

and especially items (C1)–(C3). Moreover the problem of verifying that our visibility

costs v satisfy (Twist) and sufficient (UHS) conditions remains open, c.f. Conjecture

5.9.7.

The present thesis is based on the keystone fact that ”the disk X = D admits no

continuous retraction onto its boundary Y = ∂D” (recall Section 1.2), and attempts

to reveal a new path forward. The algebraic-topology of Kantorovich’s contravariant

singularity functor Z : 2Y → 2X , for Z = Z(c, σ, τ), has been developed §4.1.1. We use

the functor Z to contravariantly parameterize closed subsets Z(YI) ↪→ X according to

closed subsets YI ↪→ Y . Assembling these inclusions, we find new cellular decompositions

of a source space X, contravariantly parameterized by the target space Y . Given uniform

Halfspace (UHS) conditions (Definition 4.5.2), our main Theorems 3.1.1, 4.5.4 identify

an index J ≥ 1 for which the source space X can be continously reduced via strong

deformation retracts onto a codimension-J subvariety ZJ+1 ↪→ X. Our Theorem C

expresses a general homotopy-reduction procedure based mainly on our Closing Steinberg

symbol construction (Definition 7.2.1) and Theorem 7.2.3). Many new applications are

possible, and to be developed in future investigations.
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