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The purpose of this announcement is to describe a few recent advances
[12] [23] in our understanding of the long-time behavior of the nonlinear
diffusion equation

∂ρ

∂τ
= ∇ · (ρm−1∇ρ), (1)

which governs the evolution of a density ρ(τ, ·) ≥ 0 on Rn. For m 6= 1
this dynamics generalizes the linear heat equation to the case in which the
thermal conductivity (or diffusion coefficient) is given by a power ρm−1 of the
diffusing density. It can also be viewed as a scalar conservation law

∂ρ

∂τ
= ∇ · (ρ∇(

ρm−1

m− 1
)) (2)

in which the density ρ is advected by the gradient of the pressure 1
m−1

ρm−1.
The ranges m > 1 and m < 1 are known as the porous medium and fast
diffusion regimes respectively, depending on whether the rate of diffusion
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(or pressure) varies directly or inversely with density; their phenomenology,
history and motivating applications are described in the book of Vázquez
[25].

The advances described hereafter involve understanding the long-time
behavior of solutions starting from integrable initial data of sufficiently rapid
decay; to fix ideas we shall call the initial profile

ρ0(·) = lim
τ→0

ρ(τ, ·) (3)

nice if it is integrable, non-negative, and compactly supported; the sense in
which this limit holds needs to be made precise by specifying an appropriate
topology. We are especially interested in the rates at which the dynamics
causes different aspects of the initial profile to be dissipated / suppressed /
forgotten. To understand what is possible in this direction, let us begin by
recalling the familiar situation for the linear heat equation on Rn. There a
well-known conjugacy to the quantum harmonic oscillator yields an expan-
sion (6) to all orders which describes the decay of the various modes, as we
now recall; c.f. Bartier et al [3] and the references there.

1 Long-time asymptotics for the heat equa-

tion on Rn

Fourier transforming the heat equation ∂ρ
∂τ

= ∆ρ on Rn yields an exact

formula ρ̂(τ, k) = ρ̂(0, k)e−|k|
2τ for the rate of decay of the k-th Fourier mode

ρ̂(τ, k) =
1

(2π)n/2

∫
Rn

eik·xρ(τ, x)dx.

Only the zeroth Fourier mode fails to decay — since net mass is invariant
under the heat flow. This description reflects the fact that nice initial data
decay to zero under the heat flow, in any Lp(Rn) norm with p > 1.

However, this description misses many of the salient aspects of the evo-
lution which are apparent either from its description in terms of Brownian
motion, or from its explicit solution, expressed as a convolution of the initial
data with the heat kernel:

ρ(τ, y) =
1

(4πτ)n/2

∫
Rn

ρ0(z)e−|y−z|
2/4τdz.
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Either perspective shows that mass spreads in all directions from its initial
location a distance proportional to τ 1/2 in time τ , and moreover that the
shape of this spreading mass will necessarily become more and more Gaussian
as time evolves, and details of the initial data are averaged away. It is the
rate of this averaging away that we are interested in quantifying.

To do so, let us renormalize the flow by setting

ρ(τ, y) =
1

τn/2
u(log τ,

y

τ 1/2
). (4)

Changing dependent variables from ρ to u corresponds to viewing the evolv-
ing mass distribution from a receding perspective: at each instant in time,
the density u(log τ, ·) has the same L1(Rn) mass as ρ0, and corresponds to
the density ρ(τ, ·) viewed from distance τ 1/2.

A standard computation

∂ρ

∂τ
−∆ρ = τ−

n+2
2

[
−n

2
u+

∂u

∂t
− 1

2
x · ∇u−∆u

]
(t,x)=(log τ,y/τ1/2)

.

shows ρ to be a solution of the heat equation if and only if

∂u

∂t
= ∆u+

1

2
∇ · (xu) =: −Lu.

This evolution fixes the Gaussian u(t, x) = e−x
2/4 =: u∞(x), corresponding

to a self-similar solution of the original dynamics, which is proportional to

the heat kernel: ρ(τ, y) = τ−
n
2 e−

y2

4τ . The variables (t, x) = (log τ, y/τ 1/2) are
sometimes called self-similar coordinates.

Unlike the generator −∆ of the original dynamics, the operator L is
not self-adjoint on L2(Rn), though it is self-adjoint on the weighted space
L2(Rn, u−1

∞ d
nx). Notice the related quantity vθ(t, x) = u−θ∞ (x)u(t, x) evolves

according to a dynamics generated by Lθ := u−θ∞ Lu
θ
∞, namely

−∂vθ
∂t

= Lθvθ

= −∆vθ + (θ − 1
2
)x · ∇vθ − (1− θ)n

2
vθ + θ(1− θ) |x|

2

4
vθ. (5)

Choosing θ = 1, we see the evolution of the relative density v1 = u/u∞ is
generated by a self-adjoint operator L1 = u−1

∞Hu∞ on the weighted space
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L2(Rn, e−|x|
2/4dx) as in [3]. More remarkably, choosing θ = 1

2
we see the

dynamics of v1/2 is generated by

L1/2v = −∆v − n
4
v + 1

16
|x|2v

which acts self-adjointly on the unweighted L2(Rn). Notice that L1/2 is es-
sentially the Hamiltonian of the quantum harmonic oscillator, whose spec-
trum σ(L1/2) is well-known to consist of the non-negative integers and half-

integers: σ(L1/2) = {0, 1
2
, 1, 3

2
, . . .}. For ~k = (k1, . . . , kn) with non-negative

integer components, the normalized eigenfunction corresponding to eigen-

value λ~k := 1
2

n∑
ki is

ψ~k(x) =
1

(4π)n/4
e−|x|

2/8

n∏
i=1

Hki(xi/2)

where Hk(x) = (−1)k√
2kk!

ex
2 dk

dxk
(e−x

2
) is the k-th Hermite polynomial. Thus we

can expand v1/2(t, x) =
∑
c~k(t)ψ~k(x) in L2(Rn), where c~k(t) = e−λ~ktc(0) and

c~k(0) =

∫
Rn

ψ~k(x)v1/2(0, x)dx

=

∫
Rn

ψ~k(x)u(0, x)e|x|
2/8dx.

Equivalently,∥∥∥∥∥∥∥e|x|
2/8u(t, x)−

∑
{0≤ki∈N| 12

n∑
ki<Λ}

c~k(0)e−t
n∑
ki/2ψ~k(x)

∥∥∥∥∥∥∥
L2(Rn)

≤ Ce−Λt (6)

as t → ∞, where C ≤ (
∑

Λ≤λ~k

c~k(0)2)1/2 ≤ ‖u(0, x)e|x|
2/8‖L2(Rn). The factor

u
−1/2
∞ multiplying the solution u(t, x) is reciprocal to the Gaussian factor in

the eigenfunctions and suggests the convenience of expressing the convergence
in appropriately weighted spaces; also, additional eigenfunctions with known
coefficients lead to faster and faster rates of decay.
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2 Nonlinear diffusion

If one is interested in the effects produced by a density dependent rate ρm−1

of diffusion (1), it is natural to wonder whether there is a description of the
long-time behavior of this nonlinear evolution analogous to the linear case,
in spite of the fact that the available tools for investigating the nonlinear
problem must necessarily be quite different.

Since the behavior depends crucially on the exponent m, let us set mp =
1− 2

n+p
, where p is moment index introduced in [13]. Three distinct ranges of

interest are: the porous medium regime m > m∞ = 1, the extinction regime
m < m0 = 1− 2

n
and the (conservative) fast diffusion regime m ∈ ]m0, 1[.

In each of these three ranges, there is an explicit family of solutions
discovered by Barenblatt [2], Zeldovich, Kompaneetz [27], and Pattle [22]:
the self-similar BPKZ family

ρB(τ, y) =
1

τnβ
uB(

y

τβ
)

with β = 1
2+n(m−1)

= 1
2
(1 + n

p
) and

uB(y) :=

[
B +

1−m
2
|y|2
] 1
m−1

+

=

[
B +

|y|2

n+ p

]−n+p
2

+

where [λ]+ = max{λ, 0}. Here B > 0 is a positive constant used to adjust the
mass of the solution, which is finite for m > m0. The behavior manifested
by these solutions varies across the three regimes mentioned above. In the
porous medium regime it is a classical solution where positive, but because
the rate of diffusion slows down where the density is small, the property of
having compact support is preserved by the flow, and one has to understand
the equation at the free boundary where ρ vanishes as prescribing that the
free boundary move with a velocity given by the gradient of the pressure
ρm−1/(m−1), which is consistent with the conservation law (2) and typically
incorporated into a suitable definition of weak solution. In the fast diffusion
regime on the other hand, the rate of diffusion diverges at low densities,
so that compactly supported initial data instantaneously develop thick tails
whose moments are finite only up to order p; the BPKZ solution is a classical
solution for t > 0, which has finite mass if m > m0, and infinite mass
otherwise.
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Clearly the BPKZ solutions are poor models for the behavior of nice initial
data under the flow in the range m < m0, where the phenomenology of the
equation is quite different. In this range of nonlinearities, finite mass initial
profiles instantaneously develop tails so fat that mass leaks out at infinity,
draining completely in finite time. This extinction phenomenon has to be
modeled using different approach, as in [10] [5]. We shall have nothing to say
about this case.

For the range m > m0 on the other hand, it has been known since the
work of Friedman and Kamin [16] that ρB acts as an global attractor in
L1 for the flow starting from nice initial data: ‖ρ(τ, ·)− ρB(τ, ·)‖1 = o(1) as
τ →∞, where B is chosen so the initial mass of the solutions being compared
coincides. For the one-dimensional porous medium equation n = 1 < m,
Angenent [1] was able to provide a complete description of the long time
asymptotic behavior based on a linearization which Bareblatt and Zeldovich
[26] had diagonalized; he noted the possibility of resonances for rational m.
Little was known in the complementary range of (n,m) for some years after
that.

The turn of millenium marked two directions of progress on this question:
Koch’s habilitation established a potential framework for extending the re-
sults of Angenent to higher dimensions, if the linear problem could be diago-
nalized [18]. At the same time, three groups of authors [8] [11] [21] were able
to quantify the L1-convergence rate sharply in the range m ≥ mn = n−1

n
,

showing ‖ρ(τ, ·) − ρB(τ, ·)‖1 = O(τ−β). Otto’s method for doing this has
proved particularly influential. Rescaling the solution

ρ(τ, y) =
1

τnβ
u(log τ,

y

τβ
). (7)

in analogy with the linear case (4), he was able to show the rescaled dynamics

∂u

∂t
=

1

m
∆(um) +

1

2
∇ · (xu) (8)

to be the gradient flow of an entropy

E(u) =
2

m(m− 1)

∫
Rn

um(x)dx+
1

2

∫
Rn

u(x)|x|2dx

with respect to the 2-Wasserstein distance

d2(u, ũ)2 = inf
γ∈Γ

∫
Rn×Rn

|x− y|2dγ(x, y).
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This infimum is taken over all joint measures γ ≥ 0 on Rn × Rn with
marginals u and ũ respectively. Obviously d2 = +∞ unless u has the same
mass of ũ. Note the Barenblatt profile uB minimizes E(u) among densities
u with fixed mass. For m ≥ mn, the entropy was known to be convex along
2-Wasserstein geodesics since McCann [19]; its modulus of convexity trans-
lates into a sharp rate of d2 contraction produced by the flow, which through
suitable analysis can be converted into an L1 rate of convergence [21].

These analyses inspired various developments. On the one hand, Otto’s
gradient flow formulation suggested that the linearization of the rescaled
dynamics around the fixed profile uB would be governed by the Hessian of
E(u) at uB. This Hessian acts self-adjointly on the tangent space to the
set of probability measures, metrized by the weighted Hilbert space norm
W 1,2(Rn, uB). According to Benamou and Brenier, this norm plays the role
of a metric tensor generating the 2-Wasserstein distance [4]. In the fast
diffusion regime m < 1, the spectrum of this Hessian was computed by
Denzler and McCann [13] [14]. It consists of a finite number of eigenvalues

λ`k =
`+ 2k + (m− 1)(2`+ 2k + n− 2)k

2 + n(m− 1)

=
1

2p
[(`+ 2k)p+ n`+ 4k(1− `− k)] (9)

plus a semi-infinite interval of continuous spectrum beginning at

λcts0 =
1

2− n(1−m)

[(1−m)(1− n
2
) + 1]2

2(1−m)
=

1

2p
(
p

2
+ 1)2. (10)

Here `, k ∈ N are non-negative integers the corresponding eigenfunctions are
polynomials of degree `+2k < p

2
+1 — just small enough to lie in the weighted

space W 1,2(Rn, uB). The multiplicity of λ`k coincides with the multiplicity
of the `-th spherical harmonic on Sn−1 except at eigenvalue crossings (where
λ`k = λ`′k′ with (`, k) 6= (`′, k′)). The lowest lying eigenvalues λ01 and λ10

correspond to translations in time and space, which commute with the flow
(1); the next higher eigenvalue λ20 corresponds to affine shears which do not.

Concerning the nonlinear problem, it was shown that the L1 rate of con-
vergence can be improved to O(τ−1) for initial data which is radially sym-
metric [9] (by Carrillo and Vázquez) or at least has its center of mass at the
origin [20] (by McCann and Slepcev); the faster rate turns out to extend all
the way to the threshold of the extinction regime m > m0 in these cases;
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see Carrillo and Vázquez for the radial case [9], Kim and McCann for the
case m ∈ ]m0,m2] [17] and Bonforte, Dolbeault, Grillo and Vázquez [6] or
Denzler, Koch and McCann [12] for the general case. Sharp rates of con-
vergence in entropy and L1 senses were eventually found in the full range
of m by Blanchet, Bonforte, Dolbeault, Grillo and Vazquez [5]. In the fast-
diffusion regime m ∈ ]m0, 1[, Vazquez also observed that convergence occurs
in a stronger topology: the ratio of any two solutions tends to a constant in
L∞(Rn), at a rate which has subsequently quantified by various groups of
the authors above [9] [17] [12] [6].

Although a further improvement becomes possible by centering the data
in time as well as in space [15], what has remained elusive is a statement
analogous to (6). Very recently, Christian Seis diagonalized the Hessian
D2E(u) in the porous medium regime m > 1. In contrast to the fast diffusion
setting [14], which is plagued by the presence of continuous spectrum (9)–
(10), he obtains a complete basis of eigenfunctions. However, it remains to
be seen whether his diagonalization can be married to Koch’s framework [18]
to produce a description of porous medium asymptotics in higher dimensions
analogous to Angenents results on the line [1]. In the present manuscript we
describe how such a marriage has been accomplished in the the fast diffusion
regime m ∈]m0, 1[ by Denzler, Koch and McCann [12].

3 A dynamical systems approach

Departing for a moment from the (infinite-dimensional) PDE setting, let us
review what we are trying to achieve in the context of a (finite-dimensional)
ODE setting. If we are interested in the long-time behavior of the initial
value problem

x′(t) = −V (x(t)) ∈ Rn with x(0) = x0,

we can linearize the flow near near each fixed point V (x∞) = 0:

(x(t)− x∞)′ = −DV (x∞)(x(t)− x∞)′ +O(x(t)− x∞)2; (11)

the eigenvalues of DV (x∞) then determine the flow behavior nearby. If,
in addition, the vector field V (x) = DE(x) has a gradient structure, then
DV (x) = D2E(x) is a symmetric matrix and its eigenvalues are real; denote
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them by σ(DE2(x∞)) = {λ1 ≤ λ2 ≤ . . . λn}. Then it is natural to expect

x(t)− x∞ =
n∑
i=1

cie
−λit +O(e2λ1t),

which is in fact what happens unless the resonance 2λ1 ∈ σ(D2E(x∞)) oc-
curs between the linear and quadratic terms in (11), in which case the error
term might be larger by a polynomial factor in t. Notice however, that this
heuristic requires differentiable dependence of the vector field V (x) or equiv-
alently of the flow X(t;x0) on its initial condition x0, at least near x∞. In
the PDE context, this will mean we will need a well-posedness result which
guarantees differentiable (as opposed to continuous) dependence on initial
conditions.

4 The result

The strategy of [12] is to adapt the finite-dimensional procedure caricatured
above to the infinite-dimensional evolution of interest. The first challenge is
to identify functional spaces in which the nonlinearity of the problem can be
controlled, to yield a well-posedness result which includes differentiable de-
pendence of the flow on initial conditions. This requires confronting — among
other things — the degenerate parabolicity of the equation (8). Moreover,
it turns out that the spaces in which this can be achieved are quite different
from the spaces in which the linearized problem diagonalizes, a mismatch
which must be reconciled. Finally, the possibilities of eigenvalue resonances
and continuous spectrum must be addressed.

As a sample of the results obtained: let us restrict our attention to initial
conditions with center of mass at the origin so the low lying mode λ10 is
not excited; the lowest remaining mode is then λ01. Fix a desired rate Λ of
expontential decay as in (6). To avoid resonances and continuous spectra,
assume Λ lies in the interval 2λ01 > Λ ∈ [λ01, λ

cts
0 ].

Theorem 4.1 (Fast diffusion asymptotics in weighted spaces) Fix p =
2(1−m)−1−n > 2 and 2λ01 > Λ ∈ [λ01, λ

cts
0 ]. There is a sequence of polyno-

mials {φ`k(x)} — with φ`k(x) having degree ` + 2k ∈]1, p
2

+ 1[ — such that:
For each solution u(t, x) with integrable, compactly supported initial data u0
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and center of mass at the origin, there are coefficients c`k such that∥∥∥∥∥∥∥∥
[ u(t,x)
uB(x)

− 1]− 1

B+
|x|2
n+p

∑
0<λ`k<Λ

c`kφ`k(x)e−λ`kt

(B + |x|2
n+p

)

(
p−2−
√

(p+2)2−4Λ
)
/4

∥∥∥∥∥∥∥∥
∞

= O(e−Λt) (12)

as t → ∞, where the sum is over non-negative integers k, ` ∈ N for which
λ`k = (1 + n

p
)`/2 + k + 2(1 − ` − k)k/p lies in the interval ]0,Λ[ (and for

which ` ≤ 1 if n = 1).

Let us remark on several aspects of this result beyond its resemblance
to (6). Here the space L∞(Rn) satisfies the algebra property ‖fg‖∞ ≤
‖f‖∞‖g‖∞ which is relevant for controlling nonlinear corrections. The de-
gree `+ 2k polynomials φ`k(x) are the eigenfunctions of D2E(uB); even after

division by B + |x|2
n+p

they cannot lie in unweighted L∞ unless ` + 2k < 2.

Thus the more terms which appear in the sum approximating u/uB, the more
severely the weighted norm must discount growth at infinity to ensure the
sum remains in the space. The c`k represent the amplitudes of each excited
mode in the range ]0,Λ[. One may naturally wonder how many distinct
modes fall into this range? For appropriate choices of m and λ the answer
can be as many as eight; it is possible to access even more modes by trans-
lating u in time to ensure the mode λ01 is not excited [12]. In contrast to the
linear case, it is not possible to read the amplitudes c`k off the initial data
in any obvious way except when k = 0; in this case the eigenfunction φ`0(x)
is a harmonic polynomial, whose integral against the solution is therefore a
conserved quantity of the original flow mρτ = ∆ρm.

5 A few ideas from the proof

While we do not attempt even to sketch a proof here, we can never the less
mention a few of its key ingredients.

Since the solution u(t, x) decays to zero at spatial infinity, it does not stay
a uniform distance from the singularity at zero of the nonlinearity u 7→ um.
To overcome this lack of smoothness, we reexpress the dynamics in terms of
the relative density v(t, x) := u(t, x)/uB(x); unlike the density, the relative
density stays bounded above and below according to maximum principle type

10



arguments of Vázquez; it tends uniformly to the constant 1 for an appropriate
choice of B [24].

The relative density satisfies an evolution equation whose second-order
term

vt =
1

m
∇ · [(B +

|x|2

n+ p
)∇vm] + l.o.t.(Dv, v, |x|, B). (13)

appears degenerate parabolic as |x| → ∞. To cure this degenerate parabol-
icity of the dynamics linearized at v(t, x) = 1, we view Rn as a (conformally
flat) Riemannian manifold (M, g) with the so-called cigar metric

ds2 =
1

B + |x|2
n+p

n∑
i=1

(dxi)
2,

introduced to this context independently by [7] and [12]. The second-order
term in the dynamics (13) is then given by the Laplace-Beltrami operator
∆(M,g)v

m/m. This allows us to combine DeGiorgi-Nash-Moser regularity
with the implicit function theorem to get differentiability of the flow v0 ∈
Ck,α(M) ∩ BL∞

ε (1) 7−→ v ∈ Ck,α([0,∞[×M) with respect to appropriate
Hölder norms on the cigar — at least in a small uniform neighborhood of the
fixed point v∞ = 1.

The linearized dynamics (v−1)t = −L(v−1) + o(v−1) are generated by
an operator L : Ck,α(M) −→ Ck,α(M) given in the coordinates ds = dr√

B+ r2

n+p

where r = |x| by an expression like

Lθ = (cosh s)−θ ◦ L ◦ (cosh s)θ

= −∆(M,ds2) + 2(p
2
− 1− θ) tanh s

∂

∂s
+ (p

2
+ 1)2

−(p
2
− 1− θ)2 − ((n

2
+ p

2
+ 1)2 − (n

2
+ p

2
− 1− θ)2) 1

cosh2 s
.

Here θ is selecting the strength of the weight, as in (5). Choosing θ = θcr :=
p
2
− 1 suppresses the drift term, reducing Lθ to a Schrödinger operator on

the cigar manifold with a universal potential. This operator is related to
H = D2E|uB : W 1,2(Rn, uB) −→ W 1,2(Rn, uB) through conjugation Lθcr ◦
Λ = Λ ◦H by the differential operator Λφ = 1

uB
∇· (uB∇φ) = 1

B+
|x|2
n+p

◦H and

also by the multiplication operator Lθcr ◦ 1

B+
|x|2
n+p

= 1

B+
|x|2
n+p

◦H. Here

Hφ = −(B +
|x|2

n+ p
)∆Rn + (p+ n)x · ∇φ

11



is the operator diagonalized by Denzler and McCann [13] [14] and s is geodesic
distance along the cigar.

The decay rate Λ of the error term in (12) determines the relevant choice
of θ 6= θcr. Thus we actually work in weighted Hölder spaces on the cigar,
but the weighted Hölder norms also control weighted L∞.
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