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Abstract

A potential theoretic comparison technique is developed, which yields the conjec-
tured optimal rate of convergence as t → ∞ for solutions of the fast diffusion
equation

ut = ∆(um), (n− 2)+/n < m ≤ n/(n + 2), u, t ≥ 0, x ∈ Rn, n ≥ 1

to a spreading self-similar profile, starting from integrable initial data with suf-
ficiently small tails. This 1/t rate is achieved uniformly in relative error, and in
weaker norms such as L1(Rn). The range of permissible nonlinearities extends up-
wards towards m = 1 if the initial data shares enough of its moments with a specific
self-similar profile. For example, in one space dimension, n = 1, the 1/t rate extends
to the full range m ∈ ]0, 1[ of nonlinearities provided the data is correctly centered.

Résumé Dans les milieux dissipatifs, les perturbations initiales disparaissent pro-
gressivement, et seuls sont preservés leurs traits les plus grossiers, comme leur taille
et leur position. Estimer précisément la vitesse de cette 〈〈 disparition 〉〉 est parfois
une question d’un interêt primordial. Ici, nous donnons cette vitesse pour les dif-
fusions nonlinéaires les plus rapides qui préservent la masse, pour le modèle qui
gouverne la diffusion d’une densité initiale, intégrable et à support compact, vers
un profil autosimilaire. Pour cela, nous établissons une théorie de comparaison des
potentiels, ce qui permet de montrer que la vitesse précise de décroissance est en
1/t pour la norme L1(Rn), et en fait uniforme pour l’erreur relative.
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1 Introduction

In many diffusive settings, initial disturbances will gradually disappear and
all but their crudest features — such as size and location — will eventually
be forgotten. Quantifying the rate at which this information is lost is often a
question of central interest. The present paper is devoted to resolving this issue
for a range of nonlinearities in a model problem known the fast-diffusion equa-
tion (1.1). For other choices of the parameter m, this equation has been used
to represent such diverse phenomena as heat transport, population spreading,
fluid seepage, curvature flow, and avalanches in sandpiles. Although most of
these applications lie outside the range of nonlinearities considered below, the
evolution forms a paradigmatic example in nonlinear parabolic theory, and a
complete understanding of its asymptotic behaviour is therefore desired. After
much recent attention, the 1/t rate derived below for m ∈ ] (n−2)+

n
, n

n+2
] finally

establishes the sharp, conjectured [11] [24] [25] power law rate of decay in this
range, corresponding to the fastest conservative nonlinearities.
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Fix p > (2 − n)+ := max{2 − n, 0}. We consider the asymptotic behavior as
t →∞ of solutions u(x, t) to the nonlinear diffusion equation

∂u

∂t
= ∆(um), (1.1)

u(x, 0) = u0(x),

on the whole space x = (x1, · · ·xn) ∈ Rn, where m := 1 − 2/(n + p). The
initial value u0(x) ≥ 0 is presumed non-negative and integrable. Notice p > 0
corresponds to the conservative range of fast diffusion m ∈ ](n − 2)/n, 1[, in
which the total mass of u is preserved but the diffusivity mum−1(x, t) diverges
at low densities. Our assumption p > 2 − n ensures m > 0, so the equation
is forward- (not backward-) parabolic. It is well known that this problem is
well-posed [33] and the solution u(x, t) > 0 is smooth and strictly positive [2]
for any t > 0 and x ∈ Rn. Such regularity has been demonstrated by Aronson
& Bénilan. Following Herrero & Pierre, we suppose the initial condition u0 ∈
L1(Rn) is attained in the sense that u ∈ C([0,∞[; L1

loc(R
n)). Data u0 ≥ 0

which are Radon [16] [54] or merely Borel [12] measures have been discussed
by Dahlberg & Kenig, Pierre, and Chasseigne & Vázquez.

We impose a stronger localization on the initial data, by assuming the limit

lim
|x|→∞

|x|n+pu0(x) =: L0 < ∞ (1.2)

exists and is finite, which is almost enough to ensure p moments converge
initially:∫

Rn

|x|pu0(x)dx < ∞. (1.3)

Both conditions are satisfied by compactly supported initial data. Further-
more, (1.2) is natural in the sense that Carrillo & Vázquez and Lee & Vázquez
have shown this tail condition to be propagated by the evolution: if L0 is pos-
itive [11] or vanishes [46], the corresponding limit lim|x|→∞ |x|n+pu(x, t) of

the solution at time t > 0 takes the value Lt = (L
2/(n+p)
0 + Bt)(n+p)/2 with

B = 1
2
(1 + n

p
) 1

n+p−2
.

Let ρ(x, t) be a canonical (Barenblatt) spreading solution [5][52] that solves

∂ρ

∂t
= ∆(ρm), ρ(x, 0) = δ(x), x ∈ Rn, t > 0. (1.4)

Since the work of Friedman & Kamin [30], the L1(Rn) contractivity of the
flow has been known to imply that the orbit ρ(x, t) attracts all non-negative
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solutions that share its mass. From the explicit formula (3.1) we see that the
Barenblatt solution has tails ρ(x, t) = O(1/|x|n+p) as |x| → ∞, precisely con-
sistent with hypothesis (1.2); the fast diffusion produces this exact algebraic
rate of spatial decay. For initial data u0 with tails thicker than O(1/|x|n+p)
however, the asymptotic rate of convergence to ρ(x, t) will reflect a compe-
tition between the initial structure and the fast diffusion, which is not our
present concern. In fact, Vázquez [60] has shown that no L1-contraction rate
can hold uniformly among all L1(Rn) initial data, building on work of Vázquez
& Zuazua [61]. Extra restrictions such as finiteness of moments, entropy, or
relative entropy must be imposed, and are employed throughout the literature
to quantify decay.

The sharp convergence rate ‖u(t)− ρ(t)‖L1(Rn) = O(t−α) of α = 1
2
(1 + n

p
) for

the large time limit was derived for integrable initial data with finite second
moments ∫

Rn

|x|2u0(x)dx < ∞

and nonlinearity p > n by Dolbeault & del Pino [26] and Otto [50]. For the
faster range of diffusions, p ∈ ](2−n)+, n], a bound O(t−1/2) on the convergence
order was found by Carrillo & Vázquez [11]. Note α = 1 in the borderline case
p = n, so these two bounds on the decay rate do not match. In the left end
p ∈](2 − n)+, 2] of this range of nonlinearities, we establish below a rate of
convergence O(t−1) which is sharp in the sense that the exponent cannot be
improved. In the complementary range p ≥ n, a companion paper by McCann
& Slepčev establishes the rate O(t−1+δ) for any δ > 0, assuming the center of
mass (2.5) vanishes [48]. While the same O(t−1) rate is expected, also in the
gap p ∈ ]2, n[, this remains a conjecture.

The results with Slepčev rely crucially on the spectrum of the linearized evo-
lution found by Denzler & McCann [24][25]. However, the spectral calculation
provides little information about the very fast diffusion regime p ≤ 2. Thus
the present challenge requires that a quite different approach be developed
below. It is based on comparison of the Newtonian potential U(x, t) = ∆−1u
of a solution with the Newtonian potential of the evolving Barenblatt profile
R(x, t) = ∆−1ρ; see (4.2) for a definition of ∆−1. Such potential comparisons
were already used by Pierre [53] to show well-posedness of the porous medium
flow starting from measures as initial data, and in a series of works by Dahlberg
& Kenig [14] [15] [17] [16] [18] [19] and Daskalopoulos & del Pino [20] [21] to
explore (among other things) which initial / boundary values yield bounded,
non-vanishing solutions either globally or locally in time. Note the evolution

∂U

∂t
= (∆U)m > 0

of the Newtonian potential is pointwise monotone and enjoys a maximum
principle (§5 Proposition 13). The strategy executed below is to use the con-
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vergence known by other methods [30] [60] to deduce the existence of large
enough times S, T ≥ 0 so that the growing potential becomes trapped

R(x, t− T ) ≤ U(x, t) ≤ R(x, t + S) (1.5)

between the potentials of two Barenblatt profiles when t = T (§8 Theorem
17), and hence for all subsequent times t ≥ T . Once (1.5) is established, the
smoothing properties [44] of the evolution imply convergence of the original so-
lution u(x, t) → ρ(x, t) (and not merely its Newtonian potential, §6 Theorem
14) at the same rate ‖ρ(t− T )− ρ(t + S)‖L1(Rn) = O(t−1) as the two delayed
Barenblatts. Paradoxically, the thick tails of the Barenblatt profile which con-
found other analysis when p ≤ 2 enable the present method, by providing a
large enough gap between the barriers R(x, 0) and R(x, S +T ) to squeeze the
tails of U(x, T ) in between them. When p > 2, this cannot be achieved unless
u0(x) shares higher moments (2.6) with a particular Barenblatt ρ(x, τ), but
for p ≤ 2 it is enough that their total mass and centers of mass coincide.

Our approach is akin to the one-dimensional argument used by Carrillo &
Vázquez to establish O(t−1) convergence for all p > 0 and radial initial data
u0(x) = u0(|x|). However, their technique does not adapt to non-radial data,
because it is based on comparing primitives ũ(r, t) :=

∫
|x|<r u(t,x)dx of the ra-

dial densities [57] [58] instead of Newtonian potentials. Like Carrillo & Vázquez
[11], we establish O(t−1) convergence not only in L1(Rn), but uniformly in rel-
ative error (2.7). Convergence in this weighted L∞ norm

lim
t→0

∥∥∥∥∥u(·, t)− ρ(·, t)
ρ(·, t)

∥∥∥∥∥
L∞(Rn)

= 0 (1.6)

was recently established by Vázquez’ Theorem 21.1 [60] without any rate, and
plays a key role in our reasoning.

Large time asymptotics for the porous medium regime p < −n have been
discussed by a number of authors in one [63] [35] [58] [3] [1] [6] or several
dimensions [2] [30] [4] [17] [36] [37] [62] [43] [10] [7] [23] [50] [26] [46] [60] [9].
Some of these articles address fast-diffusion p > 0 as well, and a more modest
literature is devoted exclusively to that regime [28] [45] [8] [11] [24] [25]. The
long-time behaviour of non-conservative diffusion p ∈]− n, 0[ and the border-
line case p = 0 [32] have also been examined [13] [31] [42] [55] [22]. Contribu-
tions by Alikakos, Angenent, Aronson, Bakry, Barenblatt, Bénilan, Bernoff,
Carrillo, Chayes, Dahlberg, Daskalopoulos, Denzler, DiFrancesco, Dolbeault,
Emery, Esteban, Friedman, Galaktionov, Hamilton, Jüngel, Kamin, Kenig,
King, Koch, Lederman, Lee, Markowich, Newman, Osher, Otto, Peletier, del
Pino, Ralston, Rodŕiguez, Rostamanian, Saez, Toscani, Unterreiter, Vázquez,
Villani, Witelski, and Zel’dovich among others are reviewed in Carrillo &
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Vázquez [11], Vázquez [60], and the references there. The results of the cur-
rent investigation were announced in [39].

The authors are grateful to José Antonio Carrillo, Dejan Slepčev, and Juan
Luis Vázquez for fruitful discussions, and to our University of Toronto col-
leagues for the stimulating milieu which they helped to create. We thank the
Fields Institute for Research in the Mathematical Sciences [YJK & RJM], and
the Universities of California at Los Angeles [RJM] and Riverside [YJK] for
kind hospitality during various stages of this work. Critical comments on an
early draft of the manuscript were provided by Jochen Denzler. We are also
grateful to Panagiota Daskalopoulos and an anonymous referee, who pointed
out the earlier use of Newtonian potentials by Pierre [53] and others in the
study of nonlinear diffusion.

2 Statement of results

To permit L0 > 0 in hypothesis (1.2), we relax (1.3) by assuming there exists
τ ∈ [0,∞[ such that∫

Rn

|x|p|u0(x)− ρ(x, τ)|dx < ∞. (2.1)

In fact, τ = L
2/(n+p)
0 /B without loss of generality. The initial value problem

for fast diffusion can be formulated as

∂u

∂t
= ∆(u

n+p−2
n+p ), 0 ≤ u0(·) = lim

t↓0
u(·, t) in L1

loc(R
n), (2− n)+ < p < ∞,(2.2)

where the limit

lim
|x|→∞

|x|n+pu0(x) =: L0 < ∞ (2.3)

is assumed to converge. We may also assume both the initial value u0 and the
Barenblatt ρ have total mass 1 and center of mass at the origin without losing
generality, i.e.,

1 =
∫

Rn

u0(x)dx when p > 0, and (2.4)

0 =
∫

Rn

xiu0(x)dx, i = 1, · · · , n, assuming p > 1. (2.5)
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If τ > 0 in (2.1), the range of nonlinearities p can be expanded in the rare case
that the initial data happens to share further moments with the Barenblatt
ρ(x, τ); that is, if for each multi-index β ∈ Nn of order |β| = ∑n

i=1 βi,

0 =
∫

Rn

xβ1
1 · · ·xβn

n [u0(x)− ρ(x, τ)]dx, whenever |β| < p. (2.6)

The goal of this paper is to show that there exists C = C(u0) such that

∥∥∥u(·, t)− ρ(·, t)
ρ(·, t)

∥∥∥
L∞(Rn)

≤ C

t
for t � 1, (2.7)

as conjectured by Carrillo & Vázquez [11] and Denzler & McCann [25]. It was
already known that the relative uniform norm tends to zero (1.6) from the
work of Vázquez. For radially symmetric solutions the convergence order (2.7)
was established by Carrillo & Vázquez, but was not known to be better than
O(t−1/2) in the nonradial case.

We immediately obtain an L1 convergence rate from (2.7), namely

‖u(·, t)− ρ(·, t)‖L1(Rn) = O(t−1) as t →∞. (2.8)

Since this convergence order is attained by the two Barenblatt solutions ρ(x, t)
and ρ(x, t + t0) in Lemma 3, these rates are optimal. Because these two solu-
tions are dilations of each other at each instant in time, Denzler & McCann
referred to (2.8) as the dilation-persistence conjecture.

In this paper we develop a technique based on the Newtonian potential. We
apply the technique to the fast diffusion using simple comparison and obtain
following results:

Theorem 1 (Relative L∞ convergence rate) Let u(x, t) solve (2.2)–(2.4)
for x ∈ Rn, t > 0, while ρ denotes the Barenblatt solution (1.4).

(i) If 0 < p ≤ 2 ≤ n and (2.1) holds then

C(p, u0) := lim sup
t→∞

t
∥∥∥u(·, t)− ρ(·, t)

ρ(·, t)
∥∥∥

L∞(Rn)
< +∞. (2.9)

(ii) If p > 2, n ≥ 2, and (2.1)–(2.6) hold, then again (2.9) is finite.

(iii) If the initial value u0(x) = u0(|x|) is radially symmetric and n ≥ 3, then
(2.9) holds for all p > 0 (or equivalently (n− 2)/n < m < 1).
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(iv) If n = 1 but (2.5) holds, then (2.9) is true for all p > 1 (or 0 < m < 1).

Here (iii) is primarily a new proof of Carrillo & Vázquez’ rate [11], whereas
results (i), (ii) and (iv) were unknown. The sharp rate of convergence in
L1(Rn) norm is an immediate corollary:

Corollary 2 (L1 convergence rate) With the hypotheses and notation of
Theorem 1,

C1(p, u0) := lim sup
t→∞

t ‖u(·, t)− ρ(·, t)‖L1(Rn) (2.10)

satisfies C1(p, u0) ≤ C(p, u0), hence is finite in cases (i)–(iv).

PROOF. Given ε > 0, taking t sufficiently large yields

t|u(x, t)− ρ(x, t)| ≤ (C(p, u0) + ε)ρ(x, t)

from (2.9). Since the Barenblatt solution ρ(x, t) is normalized to have unit
mass at each time, integrating this bound over x ∈ Rn yields C1(p, u0) ≤
C(p, u0) + ε. Arbitrariness of ε > 0 concludes the corollary.

The proof of the main result (Theorem 1) consists of several steps. §6 Theorem
14 exploits the smoothing properties of the equation to show the conjectured
rate of convergence in relative error follows from the ordering (1.5). Since the
Newtonian potentials satisfy a comparison principle (§5 Proposition 13), it
suffices to establish this ordering at a single instant in time. This is accom-
plished in §8 Theorem 17, but requires a decay estimate |U(x, 0)−R(x, τ)| =
O(1/|x|n+p−2) as |x| → ∞ relating the Newtonian potential of our solution to
that of a Barenblatt profile. For each separate case (i)–(iv) of Theorem 1, the
desired decay is established in §4 Theorem 6, or §7, Propositions 15–16, us-
ing the appropriate moment conditions (2.4)–(2.6). The crucial ordering (1.5)
amounts to showing that the Newtonian potential of an evolving solution will
eventually be sandwiched between the Newtonian potentials of a concentrated
and a diffuse Barenblatt. The rate of convergence of the evolving solution is
therefore the same as the rate of convergence of the two Barenblatts. It is
here that the small values p ≤ 2 difficult to handle by other methods facil-
itate use of this comparison argument, because long tailed Barenblatts have
sufficiently separated Newtonian potentials to fit the tails of an evolving so-
lution’s potential between them. In the porous medium case p < −n such
an approach would be doomed by Newton’s theorem, which allows no room
between the potentials of concentric equal mass Barenblatts outside of their
compact support.
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It is perhaps surprising that the optimal convergence order is independent of
the nonlinearity p > 0. The same convergence order is also optimal in several
different problems such as the inviscid conservation laws studied by Dolbeault
& Escobedo [27] and Kim [38], and the Burgers equation studied by Kim &
Ni [40]. It seems there may be a common contraction and scaling structure at
work which produces this convergence rate.

3 Translated versus delayed Barenblatt asymptotics

The Barenblatt solution ρ(x, t) is given explicitly by

ρ(x, t) =

(
t

At2α + B|x|2

)n+p
2

=
(
Atn/p + B|x|2t−1

)−pα
, (3.1)

where α = 1/(n(m − 1) + 2) = (n + p)/(2p) > 0 and B = (1 − m)α/2m =
α/(n + p − 2). The other constant A > 0 is decided by the total mass of the

Barenblatt solution and we normalize it so that
∫

ρ(x, t)dx = 1. For a fixed

t > 0 or x ∈ Rn, we can easily check that

ρ(x, t)∼ (B|x|2/t)−(n+p)/2 = O
(
1/|x|n+p

)
as |x| → ∞, (3.2)

ρ(x, t)∼ (Aptn)−α = O
(
t−nα

)
as t →∞. (3.3)

The pressure q(u) of a density u(x, t) is defined by q(u) = mum−1/(m− 1), so

q(ρ) = −
[
(p + n− 1)Atn/p + (1 +

n

p
)
|x|2

4t

]
. (3.4)

The case A ≤ 0 also leads to a family of infinite mass Barenblatt profiles
%(x, t) which will eventually prove to be convenient comparison solutions:

%(x, t) =


(

t

B|x|2 − |A|t(n+p)/p

)(n+p)/2

if |x|2 > t(n+p)/p|A|/B

+∞ otherwise.

(3.5)
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Barenblatt versus Barenblatt

It is sometimes useful to change to the so-called similarity variables,

tnαρ(x, t) = ρ̂(y), y =
x

tα
, (3.6)

where ρ̂ is given by

ρ̂(y)m−1 = A + B|y|2,
∫

ρ̂(y)dy = 1. (3.7)

Using these variables we may easily compare two Barenblatt solutions.

The next lemma shows the 1/t convergence order of ‖u(t)−ρ(t)‖L1(Rn) asserted
by Theorem 1 and its corollary cannot be improved — neither in L1(Rn) nor
uniformly in relative error — without restrictions beyond (2.1)–(2.5). Indeed,
(3.8) gives the precise coefficient of 1/t bounding the relative error between two
time-delayed Barenblatts. This bound is achieved in the near- or the far-field
limit depending on the sign of n− p.

Lemma 3 (Ratio of delayed Barenblatts converges like 1/t) For t0 >
0,

lim
t→∞

t

∥∥∥∥∥ρ(x, t + t0)

ρ(x, t)
− 1

∥∥∥∥∥
L∞(Rn)

= (t0/2)(n + p) max{1, n/p} (3.8)

and

0 < lim
t→∞

t
∫
|ρ(x, t)− ρ(x, t + t0)|dx < +∞. (3.9)

PROOF. Treating t0 > 0 as fixed, the binomial expansion of

ρ(x, t + t0)

ρ(x, t)
=
(
1 +

t0
t

)pα
(

1 +
(1 + t0/t)

2α − 1

1 + B
A
|xt−α|2

)−pα

(3.10)

from (3.1) in the small parameter t0/t yields

ρ(x, t + t0)

ρ(x, t)
= 1 +

pαt0
t

(
1− 2α

1 + B
A
|xt−α|2

)
+ O (t0/t)

2 (3.11)

as t → ∞. The error bound |O(t0/t)
2| ≤ [C(α, p)t0/t]

2 depends solely on n
and p (by Taylor’s remainder theorem or since the binomial series eventually
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alternates). Thus the limit (3.8) is attained for x = 0 if 2α − 1 = n/p > 1,
and for x/tα →∞ otherwise.

Having established (3.8), the upper bound (3.9) follows immediately. However,
since limt→∞ ρ(x, t) = 0 vanishes pointwise but not in L1(Rn), the lower bound
is better obtained by Taylor expanding in similarity variables. There E(t) =
‖ρ(t)− ρ(t + t0)‖L1(Rn) can be reëxpressed as

E(t) =
∫ ∣∣∣ρ̂(y)−

( t

t + t0

)nα
ρ̂
(
y
( t

t + t0

)α)∣∣∣dy. (3.12)

From the Taylor expansion

ρ̂
(
y(1 + t0/t)

−α
)

= ρ̂(y) +
n∑

i=1

(
(1 + t0/t)

−α − 1
)
yiρ̂yi

(ȳ),

with ȳ = (1− s)y + sy(1 + t0/t)
−α for 0 < s < 1, we find

E(t) = (1− (1 + t0/t)
−nα)

∫ ∣∣∣∣∣ρ̂(y) +
1− (1 + t0/t)

−α

1− (1 + t0/t)−nα
y · ∇ρ̂(ȳ)

∣∣∣∣∣ dy
= o(1/t) +

αt0
t

∫
|nρ̂ + y · ∇ρ̂(y)|dy as t →∞.

The last identity follows from 0 < −y · ∇ρ̂(ȳ) ≤ (n + p)ρ̂(y) by Lebesgue’s
dominated convergence theorem. Thus tE(t) → C ∈ ]0,∞[ as desired.

Lemma 4 (Convergence rate of displaced Barenblatts) For 0 6= z ∈
Rn,

0 < lim
t→∞

tα
∫
|ρ(x, t)− ρ(x− z, t)|dx < +∞

and

lim
t→∞

2tα
∥∥∥∥∥ρ(x− z, t)

ρ(x, t)
− 1

∥∥∥∥∥
L∞(Rn)

= |z|
√

B/A, (3.13)

where α = (1 + p−1n)/2, B = α/(n + p− 2), and A is selected by (3.7).

PROOF. Similarly, E(t) := ‖ρ(x, t)− ρ(x− z, t)‖L1(Rn) can be rewritten as

E(t) =
∫ ∣∣∣ρ̂(y)− ρ̂(y − zt−α)

∣∣∣dy.

Consider the Taylor expansion:

ρ̂(y − zt−α) = ρ̂(y) +
n∑

i=1

zit
−αρ̂yi

(ȳ),
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where |y − ȳ| < t−α|z|. By the dominated convergence theorem again,

tαE(t) =
∫ ∣∣∣z · ∇ρ̂(ȳ)|dy →

∫
|z · ∇ρ̂(y)|dy as t →∞.

Turning to (3.13), observe from (3.7) that

ρ(x− z, t)

ρ(x, t)
=

ρ̂(y − z/tα)

ρ̂(y)

= (1− 2ε)−(n+p)/2

= 1 + (n + p)ε + O(ε2) (3.14)

as

ε =
y · zt−α − |zt−α|2/2

|y|2 + A/B
→ 0.

For fixed (z, t), the extreme values of ε are attained when y = λzt−α/2, where
λ = 1 ±

√
τ 2 + 1 and τ := 2(A/B)1/2/|zt−α|. Thus the range [ε−, ε+] of ε is

given by

ε± := (1±
√

τ 2 + 1)−1 = ±1

τ
+ O(1/τ 2) (3.15)

as τ ∼ tα →∞. Combining (3.14) with (3.15) yields (3.13) as desired.

Remark 5 (Slow modes) Note that α = 1 for p = n (or m = n−1
n

). Roughly
speaking, the preceding lemmas show both the L1 and relative L∞(Rn) differ-
ences between two Barenblatt solutions dwindle faster after a time translation
than after a spatial translation if p > n, while the reverse is true if p < n
[11][24]. Thus, for p > n, McCann & Slepčev [48] could improve on the rates
found by Dolbeault, del Pino [26] and Otto [50] by centering the mass using
condition (2.5), as Carrillo & Vázquez [11] had done in the radial case. For
p < n, we may expect the convergence order O(1/t) without centering the
mass. This explains why we are able to obtain convergence order O(1/t) for
p ≤ 2 ≤ n in Theorem 1(i) and its corollary without assuming (2.5).
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4 Newtonian potential and moments

The fundamental solution for the Laplace operator is given by

φ(x) :=


−|x|2−n/cn for n ≥ 3,

(2π)−1 ln |x| for n = 2,

|x|/2 for n = 1,

(4.1)

where cn := (n− 2)ωn and ωn := 2πn/2/Γ(n/2) is the surface area of the unit
sphere in Rn. For any fixed y ∈ Rn, this means the equation

∆xφ(x− y) = δ(x− y)

is satisfied in the distributional sense.

The Newtonian potential V (x) of a charge distribution v(x) (i.e. of a signed
Radon measure) is defined as a convolution with the fundamental solution:

V (x) =
∫

Rn

φ(x− y)v(y)dy. (4.2)

Since the fundamental solution φ(x) is locally integrable, the integration is
well-defined as long as the density v(x) of the Radon measure decays fast
enough at infinity; for example,

v(x) = O(|x|−(2+ε)) as |x| → ∞ (4.3)

for any ε > 0 will suffice, as in §9.7 of Lieb & Loss [47]. A priori, this decay rate
(4.3) has nothing to do with fast diffusion. However, comparing this spatial
decay to Corollary 9, we see a Newtonian potential can in fact be defined at
each instant in time for any finite mass solution u(x, t) = O(|x|−n−p) to the
fast diffusion equation in the full range of nonlinearities p > (2− n)+.

As was mentioned above, L1(Rn) convergence rates can only be obtained
by imposing additional restrictions on the initial data 0 ≤ u0 ∈ L1(Rn).
Therefore, compact support or finiteness of certain moments have often been
assumed in the literature. In this section we observe how the asymptotic be-
haviour of the potential V (x) for large |x| is determined by the asymptotic
structure plus certain moments of its density v = ∆V . While this result is
classical in flavor, and closely related to Hardy space theory, we were not suc-
cessful at locating the precise statement we wanted elsewhere in the literature.

13



Theorem 6 (Spatial decay of Newtonian potential) Fix λ, L, p > 0 pos-
itive. Let V (x) denote the Newtonian potential of a signed Radon measure v(y)
on Rn, whose density satisfies

|x|n+p|v(x)| < L if |x| > λ, and (4.4)∫
Rn

|x|p|v(x)|dx =: M < ∞. (4.5)

Suppose∫
xβv(x)dx = 0 (4.6)

for each multi-index β ∈ Nn of degree 0 ≤ |β| := β1 + · · · + βn < p. If
p ≥ (2− n)+ there exist a constant Cp = C(n, p) < ∞ such that

|x|n+p−2|V (x)| ≤ (M + (n− 1)L)Cp when |x| > 3λ. (4.7)

PROOF. To prove (4.7) for n 6= 2, decompose

−cn|x|n+p−2V (x) = |x|n−2+p
∫

Rn

v(y)

|x− y|n−2
dy

= |x|n−2+p

∫
D1

+
∫

D2

+
∫

D3

 v(y)dy

|x− y|n−2

= I1 + I2 + I3,

into a sum of three integrals over disjoint regions D1 = Br(0), D2 = Br(x) :=
{y ∈ Rn : |y−x| < r} and D3 = Rn− (Br(0)∪Br(x)), where r := |x|/3. We
estimate them separately.

On the main region D1, we use Taylor’s expansion for

f(ε) :=

 (1− ε)1−n
2 if n 6= 2,

1
2
ln(1− ε) if n = 2,

(4.8)

=
f (q)(ε∗)

q!
εq +

q−1∑
k=0

fk

k!
εk,

where fk := f (k)(0) and ε∗/ε ∈]0, 1[. Let q be the smallest integer greater than
or equal to p. Since
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Ii = |x|p
∫
Di

f(
2x · y − |y|2

|x|2
)v(y)dy, i ∈ {1, 2, 3}, (4.9)

the contribution from the first region is

I1 =
∫

|y|<r

|x|pεq f (q)(ε∗)

q!
+

q−1∑
k=0

k∑
j=0

fk|x|p−2k

j!(k − j)!
(2x · y)k−j(−|y|2)j

 v(y)dy,(4.10)

with ε = (2x · y − |y|2)/|x|2. In region D1, we may easily check that ε =
<2x−y,y>

|x|2 ∈ [−7/9, 2/9], where the maximum and minimum occur when y =

±x/3. Monotonicity of f (q)(ε) on ε < 1 implies |f (q)(ε∗)| < |f (q)(2/9)|. Thus

∣∣∣∣∣∣∣
∫

|y|<r

|x|pεqf (q)(ε∗) v(y)dy

∣∣∣∣∣∣∣≤ 3p−q(7
3
)q|f (q)(2

9
)|
∫

|y|<r

|y|p|v(y)|dy, (4.11)

where we have used p ≤ q to estimate |x|p−q ≤ |3y|p−q and the triangle in-
equality to get |εx| ≤ |7y/3| on D1. This controls the first summand in (4.10).
The remaining summands are estimated differently, depending on whether the
degree k + j in y exceeds p or not.

If k + j ≥ p, we use |x|p−k−j ≤ |3y|p−k−j on D1 to deduce

∣∣∣∣∣∣∣
∫

|y|<r

|x|p−2k(2x · y)k−j|y|2jv(y)dy

∣∣∣∣∣∣∣≤
2k−j

3k+j−p

∫
|y|<r

|y|p|v(y)|dy. (4.12)

On the other hand, if k+j < p we observe that the vanishing moment condition
(4.6) implies

∣∣∣∣∣∣∣
∫

|y|<r

(2x · y)k−j|y|2jv(y)dy

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
∫

|y|>r

(2x · y)k−j|y|2jv(y)dy

∣∣∣∣∣∣∣
≤ 2k−j|x|2k−p

3k+j−p

∫
|y|>r

|y|p|v(y)|dy. (4.13)

Combining (4.10)–(4.13) yields |I1| ≤ CpM for Cp large enough.

The remaining two integrals I2 and I3 take place on regions whose p-th moment
dwindles as |x| = 3r →∞. We estimate them first in dimension n ≥ 3. Since
|x− y|n−2 ≥ rn−2 and |y| ≥ r in region D3,
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|I3| ≤
|x|n−2+p

rn−2+p
rp

∫
|y|≥r

|v(y)|dy

≤ 3n−2+p
∫

|y|≥r

|y|p|v(y)|dy.

In the region D2, changing variables from y to z = x−y we find 2r ≤ |x− z|,
so if 2r > λ the decay rate (4.4) yields

|I2|=

∣∣∣∣∣∣∣|x|n−2+p
∫

|z|<r

v(x− z)

|z|n−2
dz

∣∣∣∣∣∣∣
≤ (3r)n+p−2

∫
|z|<r

L

(2r)n+p|z|n−2
dz

= (3/2)n+p−2ωnL/8.

Together, the estimates of I1 + I2 + I3 yield (4.7) for n ≥ 3.

Now consider one space dimension n = 1 but assume p ≥ 1. The estimate
for I1 was carried out above, but we need to reconsider the estimates for I2

and I3 since n − 2 has changed signs. In the domains D2 and D3 we have
|x|p−1 ≤ |3y|p−1 and |x − y| < 4|y|, with equality at the y = −x/3 boundary
of D1. Therefore,

|I2 + I3|= |x|p−1

∣∣∣∣∣∣∣
∫

|y|>r

v(y)|x− y|dy

∣∣∣∣∣∣∣
≤ 3p−14

∫
|y|>r

|y|p|v(y)|dy

≤ 3p−14M.

Therefore, (4.7) is also valid for n = 1 with p ≥ 1.

Finally, consider two space dimensions n = 2. Since
∫

v(y)dy = 0, we may
write,

2π|x|pV (x) =
|x|p

2

∫
R2

v(y)
(

ln(|x− y|2)− ln(|x|2)
)
dy

= I1 + I2 + I3
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with Ii as in (4.8)–(4.9). Again I1 was estimated above, but we need to examine
I2 and I3. Changing the variable of integration from y to z = x− y yields

I2 = |x|p
∫

|z|<r

v(x− z) ln
|z|
|x|

dz.

Since |x− z| ≥ |x| − |z| ≥ 2r in D2, we may use (4.4) to obtain

|I2| ≤ |x|p
∫

|z|<r

L

|x− z|2+p
ln
|x|
|z|

dz

≤ 3p

22+p

L

r2

r∫
0

2πs ln
3r

s
ds

=
(3

2

)2+p
2πL

1/3∫
0

t ln
1

t
dt (4.14)

provided 2|x|/3 = 2r > λ. Turning now to I3, changing variables from z =
x− y to w = z/(3r) yields

I3 = |x|p
∫

|z|>r, |x−z|>r

v(x− z) ln
|z|
|x|

dz,

hence

|I3| ≤ (3r)pL
∫

|3w|>1,|x̂−w|>1/3

| ln |w||
|3r(x̂−w)|2+p

(3r)2dw, (4.15)

where x̂ := x/(3r), and r > λ was used to invoke (4.4). Since both integrals
(4.14) and (4.15) converge, |I2 + I3| ≤ CpL provided |x| > 3λ, establishing
(4.7) for n = 2 and completing the proof of the theorem.

For comparison, we exhibit the tail behaviour of the Newtonian potential for
the Barenblatt profile ρ̂(x), which agrees with the Green’s function φ(x) to
leading order since its zeroth moment is normalized (2.4). Nevertheless, as
in the theorem, the next asymptotic correction is a positive term of order
O(1/|x|n+p−2).

Example 7 (Barenblatt Newtonian potential) The Newtonian potential
R̂ = φ ∗ ρ̂ of the normalized Barenblatt profile (3.7) takes the form
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0 ≤ R̂(x)− φ(x) =
1√

Bn+p

∞∫
|x|

dr1

rn−1
1

∞∫
r1

(
1 +

A

Br2

)−(n+p)/2 dr

rp+1
(4.16)

≤ B−(n+p)/2

p(n + p− 2)|x|n+p−2
. (4.17)

PROOF. Since the potential R̂ shares the spherical symmetry of the Baren-
blatt profile ρ̂, we abuse notation by expressing both as functions of r = |x|
rather than x. The result (4.16) is obtained by integrating ∆R̂ = ρ̂ directly in
spherical coordinates

1

rn−1

d

dr

(
rn−1dR̂

dr

)
=
(
Br2 + A

)−(n+p)/2

to get

R̂′(r1) =
1

rn−1
1

r1∫
0

rn−1ρ̂(r)dr

=
1

ωnr
n−1
1

− 1

rn−1
1

∞∫
r1

rn−1ρ̂(r)dr,

and then integrating again using the boundary condition

0 = lim
|x|→∞

R̂(x)− φ(x).

The inequalities (4.16)–(4.17) are obvious since the integrand varies inversely
with A > 0.

5 Newtonian potentials evolving under fast diffusion

A priori, potential theory has no relation to diffusion equations. In the pre-
ceding section we have merely observed that the structure of the potential for
|x| large is controlled by moments of the density function. Now we consider
the evolution of the Newtonian potential,

U(x, t) =
∫

φ(x− y)u(y, t)dy, (5.1)

18



when the density function u is a solution of the fast diffusion equation (1.1).
The monotonicity in time for any fixed x ∈ Rn is obtained formally as follows:

∂U

∂t
=
∫

φ(x− y)ut(y, t)dy =
∫

φ(x− y)∆(um(y, t) )dy = um > 0. (5.2)

Our main goals for this section are to justify the preceding formula rigorously
in Proposition 10, and establish a comparison property for such potentials
in Proposition 13. As mentioned already, the corresponding results were dis-
covered earlier and independently in the porous medium setting p < −n by
Pierre [53], and subsequently extended to more general contexts (not quite
encompassing the present one) by Dahlberg & Kenig [14] [15] [17] [16] [18]
[19]. We shall need a technical lemma, proved by Lee & Vázquez [46] (Lemma
6.2) when L0 = 0 in the tail hypothesis (2.3), and extended to the case L0 > 0
by Carrillo & Vázquez [11] (Lemma 5.1).

Lemma 8 (Infinite mass scaling limit) Suppose u(x, t) satisfies (2.2)–(2.3),

with T = BL
2/(n+p)
0 and (2pB)−1 = 1−2/(n+p). Then uλ(x, t) := λn+pu(λx, t)

converges in C∞
loc(Q

′) as λ →∞ to v(x, T+t), where v(x, t) := (B|x|2/t)−(n+p)/2

is the infinite mass Barenblatt, and Q′ = {(x, t) ∈ Rn+1 | x 6= 0, t > 0}.

Its proof was based on the observation that uλ(x, t) satisfies the same fast-
diffusion equation as u(x, t), with initial condition tending to v(x, T ) = limλ→∞ uλ(x, 0).
Although Carrillo & Vázquez went on to derive fine asymptotics for the deriva-
tives of u (e.g. (5.6) but with ε = C/|x|) we shall here be content with a simpler
corollary, which asserts spatial decay of all derivatives of u(x, t) at the same
rate as the Barenblatt.

Corollary 9 (Spatial decay of derivatives) Let u(x, t) satisfy (2.2)–(2.3).
To each integer i0 and time interval [t1, t2] ⊂ ]0,∞[ corresponds a constant
K < ∞ (depending only on io, t1, t2 and on u) such that

|Dβu(x, t)| ≤ K

1 + |x|n+p+|β| (5.3)

for all (x, t) ∈ Rn × [t1, t2] and multi-indices β = (β1, . . . , βn) ∈ Nn of order
|β| := ∑n

i=1 βi ≤ i0. As usual, Dβu := ∂|β|u/∂xβ1
1 . . . ∂xβn

n .

PROOF. Fix ε > 0, an integer i0 ≥ 0, and time interval [t1, t2] ⊂ ]0,∞[.
Setting uλ(x, t) := λn+pu(λx, t) and v(x, t) := (B|x|2/t)−(n+p)/2, the preceding
lemma yields λ0 = λ0(i0, t1, t2, u) such that λ ≥ λ0 implies

|Dβuλ(x̂, t)−Dβv(x̂, T + t)| ≤ ε (5.4)
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for all t ∈ [t1, t2], unit vectors x̂ ∈ Rn, and multi-indices β of order |β| ≤ i0.
Direct computation shows

Dβv(x, t) =
1

|x|n+p+|β|D
βv(

x

|x|
, t). (5.5)

On the other hand, choosing |x| ≥ λ0 and λ := |x| yields

Dβuλ(
x

|x|
, t) = |x|n+p+|β|Dβu(x, t).

Thus (5.4) becomes

|Dβu(x, t)−Dβv(x, T + t)| ≤ ε/|x|n+p+|β|, (5.6)

which holds for all |x| ≥ λ0 with t ∈ [t1, t2] and |β| ≤ i0. For |x| ≥ λ0, the
triangle inequality now yields the desired bound (5.3) from (5.5)–(5.6), with

K = ε + (T + t2)
(n+p)/2 max

|β|≤i0
sup
|x̂|=1

|Dβv(x̂, 1)|.

Since u ∈ C∞(Rn× ]0,∞[) as in [2], taking K larger if necessary extends (5.3)
to all x ∈ Rn.

Proposition 10 (Monotone growth of Newtonian potential) Let U =
φ ∗u be the Newtonian potential of a solution u(x, t) ≥ 0 to (2.2)–(2.3). Then

∂U

∂t
(x, t) = um(x, t) > 0 for each x ∈ Rn, t > 0, (5.7)

where m = 1− 2/(n + p), and

lim
t→∞

inf
x∈Rn

U(x, t) =

 0 if n ≥ 3,

+∞ if n ≤ 2.
(5.8)

PROOF. Notice (2.2)–(2.3) imply u0 ∈ L1(Rn); we normalize its mass (2.4)
without loss of generality. Recall u ∈ C∞(Rn × ]0,∞[) is strictly positive [2].
At each instant t > 0 in time, the Newtonian potential is defined by U = φ∗u.
Thus

Ut(x, t) := lim
h→0

∫
Rn

φ(x− y)
u(y, t + h)− u(y, t)

h
dy

= lim
h→0

∫
Rn

φ(x− y)ut(y, τ(y, h))dy,
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where |τ(y, h)−t| < |h| is provided by the mean value theorem. From Corollary
9 we discover

|ut|(y,τ(y,h)) = |∆(u
n+p−2

n+p )|(y,τ(y,h)) ≤
K2

1 + |y|n+p
,

for all |h| < t/2, where K2 depends only on t and u. Recalling the definition
(4.1) of φ(x) ∼ 1/|x|n−2 or ln |x|, Lebesgue’s dominated convergence theorem
yields Ut = φ ∗ ut in the full range p > (2 − n)+ of nonlinearities. Since
ut = ∆(um), it remains only to show the spatial derivatives of um decay quickly
enough to justify the standard argument that φ ∗ ∆(um) = um. Integrating
twice by parts, ∆φ(y) = 0 for y 6= 0 and the explicit form (4.1) of the Green’s
function φ(y) give

φ ∗∆(um)|(x,t) = lim
r→0,R→∞

∫
r<|y|<R

φ(y)∆um(x− y, t)dy

= um(x, t) + lim
R→∞

∫
∂Bn

R(0)

[φ∇um − um∇φ] · y

|y|
dHn−1(y)

= um(x, t).

Since p > 2− n, the last limit vanishes by Corollary 9, which asserts

um|(x−y,t) ≤
K0

1 + |x− y|n+p−2
and |∇um|(x−y,t) ≤

K1

1 + |x− y|n+p−1
.

Thus Ut = φ ∗ ut = φ ∗∆(um) = um > 0 and (5.7) is established.

To address the value of the long time limit, abuse notation by setting φ(|x|) :=
φ(x), and Φ(r) :=

∫
Bn

r (0) |φ(y)|dy = r2/|2(n−2)| (unless n = 2). First consider
the case with n ≥ 3. Since u(x, t) → 0 uniformly as t →∞, given r > 0 there
exists T (r) > 0 such that ‖u(·, t)‖L∞(Rn) < 1

rΦ(r)
for all t > T (r). Then,

|U(x, t)|=
∫
|φ(x− y)|u(y, t)dy

≤ 1

rΦ(r)

∫
Bn

r (x)

|φ(x− y)|dy + |φ(r)|
∫

Rn−Bn
r (x)

u(y, t)dy

≤ 1

r
+

1

cnrn−2
.

Thus for each r > 0

lim
t→∞

|U(x, t)| ≤ 1

r
+

1

cnrn−2

uniformly in x, hence the first part of (5.8) is obtained.
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Turning to n ≤ 2, again u(x, t) → 0 uniformly as t → ∞. Given r > 0 we
may therefore find T (r) > 0 so that

∫
Br(x) u(y, t)dy < 1/2 for all t > T (r) and

x ∈ Rn. If n = 1, then φ(y) = |y|/2 and

|U(x, t)| ≥ 1

2

∫
R−Bn

r (x)

|x− y|u(y, t)dy ≥ r

2

∫
R−Bn

r (x)

u(y, t)dy =
r

4
.

On the other hand φ(y) = (2π)−1 ln |y| changes its sign at |y| = 1 when n = 2.
Let 0 < ε < 1 < r be given constants. Then there exists T (r, ε) > 0 such that
‖u(·, t)‖L∞(Rn) < ε and

∫
Br(x) u(y, t)dy < 1/2 for all t > T (r, ε) and x ∈ R2.

Thus,

2πU(x, t) =

 ∫
|y−x|>r

+
∫

1<|y−x|<r

+
∫

|y−x|<1

u(y, t) ln |x− y|dy

≥ 1

2
ln r + 0 + ε

∫
Bn

1 (x)

ln |x− y|dy.

Since
∫
Bn

1 (x) ln |x−y|dy is finite and independent of x, by choosing r large and

ε small, we see (5.8) holds for n = 1, 2.

Since
∫

u(x, t)dx = 1, we may view U(x, t) as a weighted average of φ(x− y).
We can easily see that this average is dominated by the value of φ(x) for large
|x| since the solution is diffusive. In this sense the limits (5.8) were expected.
We will also require the limiting behaviour of the Newtonian potential as
t → 0, to understand in what sense the Newtonian evolution achieves its
initial condition.

Lemma 11 (Initial Newtonian potential) Let U = φ∗u denote the New-
tonian potential at each instant in time of a solution u(x, t) to (2.2)–(2.4).
Then T > 0 large enough yields a uniform tail control u(x, t) ≤ %(x, 2T ) for
(x, t) ∈ Rn × [0, T ] given by the modified Barenblatt (3.5). Furthermore

U0(x) := (φ ∗ u0)(x) = lim
t↓0

U(x, t) a.e. x ∈ Rn, (5.9)

and the limit converges both pointwise and in L1
loc(R

n).

PROOF. The preceding proposition shows U(x, t) increases with t > 0 for
fixed x, so the limit (5.9) converges pointwise; the only question is whether or
not it converges to U0(x).
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Introduce the weight function

w(x) :=

 (1 + |x|)2−n if n 6= 2

ln(2 + |x|) if n = 2.

A classical estimate based on Fubini’s theorem shows continuity of the oper-
ation ∆−1 : L1(Rn, w(x)dx) −→ L1

loc(R
n) defined by ∆−1u := φ ∗ u; see the

proof of Theorem 9.7 in Lieb & Loss [47]. Using the tail condition (2.3) we
shall convert the L1

loc(R
n) convergence in (2.2) of

lim
t↓0

u(·, t) = u0(·) (5.10)

to convergence in the weighted space L1(Rn, w(x)dx); it will then follow that
(5.9) holds in L1

loc(R
n). To do this, define the infinite mass modification

%(x, t) =


(

t

B|x|2 − At(n+p)/p

)(n+p)/2

if |x|2 > t(n+p)/pA/B

+∞ otherwise

of the Barenblatt solution as a comparison function. For T > BL
2/(n+p)
0 and

|x| large enough, (2.3) implies %(x, T ) ≥ u0(x). Since limt→∞ %(x, t) = +∞
monotonically, and reaches its limit in finite time on compact sets, taking
T larger still ensures %(x, T ) ≥ u0(x) globally. The maximum principle then
implies %(x, T + t) ≥ u(x, t) on Rn, and %(x, 2T ) ≥ u(x, t) for all t ≤ T .
Choose r > 0 so r2 = (3T )(n+p)/pA/B. Now u(·, t) → u0(·) in L1(Bn

r (0), dx)
according to (2.2), with or without the weight w(x). Outside the ball Bn

r (0),
every subsequence admits a sub-subsequence u(·, tk) → u0(·) which converges
pointwise almost everywhere as tk ↓ 0. Since this subsequence is dominated
by %(·, 2T ) ∈ L1(Rn − Bn

r (0), w(x)dx) we conclude the full sequence (5.10)
converges in the weighted space L1(Rn, w(x)dx) by the dominated convergence
theorem. This implies U(·, t) → U0 in L1

loc(R
n) as t ↓ 0. Again, a subsequence

converges pointwise almost everywhere to U0(·). A priori, the full limit (5.9)
converged pointwise, so its value has been identified, and the proof of the
lemma concluded. In dimension n 6= 2, both the limit and the convolution
U0(x) are upper semicontinuous, so (5.9) holds at every point x ∈ Rn — not
just almost everywhere.

Lemma 12 (Diffusion coefficient for potential difference) For m ∈ R,
the function fm : ]0,∞[ −→ R defined by

fm(s) =

m if s = 1

(sm − 1)/(s− 1) otherwise
(5.11)
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is C∞-smooth and non-vanishing unless m = 0. Thus when 0 < m < 1, if
u(x, t) and ρ(x, t) are positive continuous functions, so is

a(x, t) = ρm−1fm(u/ρ) =

mρm−1(x, t) where u(x, t) = ρ(x, t),

(um − ρm)/(u− ρ) elsewhere.
(5.12)

If (1− ε)ρ < u < (1+ ε)ρ holds for some constant ε > 0 sufficiently small then
0 < mρm−1(x, t)/2 < a(x) < 2mρm−1(x, t). Moreover,

ρ2−m∇a(x, t) = f ′m(u/ρ)∇(u− ρ) + mfm−1(u/ρ)∇ρ. (5.13)

PROOF. The function fm(s) defined by (5.11) is smooth for all s > 0, except
possibly at s = 1. L’Hopital’s rule shows continuity of fm(s) at s = 1. Since
fm(s) is a ratio of two holomorphic functions, the singularity is removable and
fm(s) is holomorphic in a neighbourhood of s = 1. For s > 0, fm(s) takes the
same sign as m, since the sign of the denominator determines the sign of the
numerator. Continuity at s = 1 gives an ε > 0 for which |s − 1| < ε forces
fm(s) ∈ ]m/2, 2m[. Since a = ρm−1fm(u/ρ) with u(x, t) and ρ(x, t) positive
and continuous functions, the first four claims of the lemma have been proved.
The remaining formula (5.13) follows by straightforward differentiation of a =
ρm−1fm(u/ρ) using the identity (m− 1)fm(s)− (s− 1)f ′m(s) = mfm−1(s).

The main advantage of employing the Newtonian potential results from its
monotonicity in time (5.2). Since U(x, t) is increasing in time for any fixed
x ∈ Rn, U(x, t) and U(x, t′) form disjoint layers when t 6= t′. The following
lemma implies that if the Newtonian potential of a solution lies between two
such layers, it stays trapped between them forever.

Proposition 13 (Potential comparison) Let U(x, t) and Ũ(x, t) be the New-
tonian potentials of two bounded solutions u, ũ ∈ L∞(Rn+1

+ ) to (2.2)–(2.4),
(plus (2.5) if n = 1). Then U(x, t) is continuous on the closure of the half-
space Rn+1

+ := Rn × ]0,∞[, and U(x, 0) ≤ Ũ(x, 0) for all x ∈ Rn implies

U(x, t) ≤ Ũ(x, t) for all t > 0.

PROOF. Let V (x, t) = U(x, t) − Ũ(x, t). Then V is the potential function
of the difference v = u − ũ at each instant in time. Proposition 10 shows it
satisfies

∂V

∂t
= um(x, t)− ũm(x, t) = a∆V, (5.14)
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where a(x, t) = (um(x, t)− ũm(x, t))/(u(x, t)− ũ(x, t)) is positive and continu-
ous according to Lemma 12. Viewing a(x, t) as frozen (independent of V ), we
may apply the maximum principle for linear parabolic equations, e.g. Fried-
man’s Lemma 2.5 [29], to conclude that U(x, t) ≤ Ũ(x, t) for all x ∈ Rn and
t > 0 since V (x, 0) = U(x, 0)− Ũ(x, 0) ≥ 0. The hypotheses which remain to
be verified for the maximum principle to apply are: continuity of V (x, t) for
t ≥ 0, and the existence of τ > 0 for which the limit

lim inf
|x|→∞

min
t∈[0,τ ]

V (x, t) = 0 (5.15)

vanishes.

Recall from Lemma 11 that taking T > 0 large enough implies u(x, t) ≤
%(x, 2T ) for all x ∈ Rn and t ≤ T , where %(x, t) is the modified Barenblatt
(3.5). Since T can be arbitrarily large, it suffices to establish continuity of
U(x, t) on Rn× [0, T [. In fact, continuous and monotone dependence on t ≥ 0
is implied by Proposition 10 and Lemma 11; we need only show U(x, t) is
a continuous function of x ∈ Rn for each fixed t ∈ [0, T [, and then invoke
semicontinuity to conclude the monotone limit (5.9) agrees with U0(x) ev-
erywhere. Notice that %(x + z, 2T ) ≤ %(x, 3T ) as long as the translations
|z|2 ≤ 4AT n/p(3n/p − 2n/p)/B are sufficiently small. Thus

lim
z→0

U(x + z, t) = lim
z→0

∫
Rn

u(x + z− y, t)φ(y)dy

= U(x, t)

by Lebesgue’s dominated convergence theorem: p > (2− n)+ implies integra-
bility of the dominating function |φ(·)|min{%(x− ·, 3T ), ‖u0‖L∞(Rn)}.

Turning now to the uniform limit (5.15), fix ε > 0 such that (2−n)+ < p−ε ≤
1 + (2− n)+. Taking T larger if necessary, the modified Barenblatt bound on
u and ũ(·, t) ≤ %(·, 2T ) for t ∈ [0, T ] implies

lim
|x|→∞

|x|n+p−ε|v(x, t)| ≤ lim
|x|→∞

|x|n+p−ε2%(x, 2T )

= 0 and (5.16)

M =
∫

Rn

|x|p−ε|v(x, t)|dx≤
∫

Rn

|x|p−ε min{2%(x, 2T ), ‖v‖L∞(Rn+1
+ )}dx

< +∞. (5.17)

Now the zeroth moment (2.4) of v = u − ũ vanishes, and if n = 1 the first
moment (or center of mass) vanishes also (2.5). Since the bounds (5.16) and
(5.17) depend on T but not t, Theorem 6 yields supt∈[0,T ] |V (x, t)| ≤ (1 +
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M)Cp−ε/|x|n+p−ε−2 for large x ∈ Rn; (5.15) follows, concluding the proof of
the lemma.

6 Relative uniform rate from potential convergence

Building on results of the preceding sections, we shall eventually prove there
exist constants S, T ≥ 0 such that R(x, t−T ) ≤ U(x, t) ≤ R(x, t+S) at time
t = T , and hence at all subsequent times. It then follows that

|U(x, t)−R(x, t)| ≤ |R(x, t + S)−R(x, t− T )|, for all t > T.

In this case the potential difference |U −R| is bounded by the difference of a
single potential R with two different starting times. Since ρ(x, t) is known to
converge to a Barenblatt profile, it is natural to expect u(x, t) to be contracted
towards the same profile at the rate which two Barenblatts attract each other.
This section is devoted to proving the following theorem:

Theorem 14 (Relative uniform rate from potential convergence) Let
U,R be the Newtonian potentials of a solution u to (2.2)–(2.4), and of the
Barenblatt solution ρ, respectively. If there exist T, S > 0 such that

R(x, t− T ) ≤ U(x, t) ≤ R(x, t + S) if x ∈ Rn, t ≥ T, (6.1)

then

lim sup
t→∞

t

∥∥∥∥∥u(x, t)

ρ(x, t)
− 1

∥∥∥∥∥
L∞(Rn)

< ∞. (6.2)

PROOF. The proof is subdivided into eight steps. That 1/t convergence of

the densities corresponds to t−
n
2p

(n+p−2) convergence of the Newtonian poten-
tials can be expected from the scaling properties of the evolution.

Claim 1 (potentials converge like t−
n
2p

(n+p−2)) Taking A = A(n, p) from
(3.7), hypothesis (6.1) implies

|U(x, t)−R(x, t)| ≤ S + T

((t− T )n/pA)(n+p−2)/2
if x ∈ Rn, t > T.

Proof of claim 1. From hypothesis (6.1), the monotonicity ∂R/∂t = ρm > 0 of
Proposition 10 yields
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|U(x, t)−R(x, t)| ≤ |R(x, t + S)−R(x, t− T )|

= (S + T )
∂R

∂t
(x, τ(t,x))

= (S + T )ρm(x, τ(t,x))

≤ (S + T )ρ
n+p−2

n+p (0, t− T )

for all x ∈ Rn, t > T and some τ(x, t) ∈ ]t− T, t + S[. The explicit form (3.1)
of ρ completes the claim. Here A = A(n, p) normalizes the mass of ρ. 4

To derive a convergence rate for the density u − ρ = ∆(U − R) from the
rate just established for its Newtonian potential, we need a result which al-
lows us to take spatial derivatives. The parabolic regularity theory laid out in
Ladyženskaja, Solonnikov & Ural’ceva [44] provides a key ingredient. Follow-
ing the argument of Carrillo & Vázquez from the radially symmetric setting
[11], we exploit the invariances of the equation by working with the family of
rescaled solutions

uλ(x, t) = λnαu(λαx, λt), ρλ(x, t) = λnαρ(λαx, λt). (6.3)

Note that uλ solves the same equation (1.1) as u does, while the Barenblatt
solution ρλ(x, t) = ρ(x, t) is unchanged by the scaling. In fact, ρ(x, t) =
limλ→∞ uλ(x, t), as can be guessed from the result at t = 0; see Vázquez [60]
and Claim 3. This rescaling will allow us to derive asymptotic results while
working on a compact subset of space-time, thereby avoiding the degeneracies
at infinity which hinder the regularity theory. Ultimately, a separate argument
will be supplied by Claim 7 to control the tail evolution of the solutions by
comparison with retarded and advanced Barenblatts. The same tactics were
implemented by Carrillo & Vázquez to separate bulk from tail behaviour in
their radial argument [11].

Claim 2 (rescaled potentials converge like 1/λ) Denote by Uλ = φ ∗ uλ

and Rλ = R the Newtonian potentials of uλ and ρλ from (6.3). For all (x, t)
in the open halfspace Rn+1

+ , claim 1 implies

λ |Uλ(x, t)−Rλ(x, t)| ≤ T + S

((t− T/λ)n/pA)
(n+p−2)/2

if λ > T/t. (6.4)

Proof of claim 2. For n 6= 2, the fundamental solution φ of (4.1) yields

Uλ(x, t) =−λ(n−2)α
∫
|λαx− λαy|2−nu(λαy, λt)d(λαy)/cn

= λ(n−2)αU(λαx, λt).

27



For two space dimensions, (2.4) implies the corresponding identity

Uλ(x, t) =
1

ω2

∫
[ln |λαx− λαy| − ln λα]u(λαy, λt)d(λαy)

= U(λαx, λt)− (ln λ)α/ω2,

with ω2 = 2π. Since the same expressions apply to Rλ(x, t), the scaling relation

|Uλ(x, t)−Rλ(x, t)| = λ(n−2)α|U(λαx, λt)−R(λαx, λt)|

holds for all n ≥ 1. Recalling α = (n + p)/(2p), Claim 1 yields (6.4). 4

We shall also need local gradient bounds which are uniform as λ →∞; these
follow from the gradient limits given, for example, by the next claim (without
a rate).

Claim 3 (uniform scaling limit) For a solution u(x, t) to (2.2)–(2.4), the
limit limλ→∞ uλ(x, t) = ρ(x, t) of (6.3) converges in C1

loc(R
n+1
+ ), and uniformly

in relative error

lim
λ→∞

∥∥∥∥∥uλ(x, 1)

ρ(x, 1)
− 1

∥∥∥∥∥
L∞(Rn)

= 0. (6.5)

Proof of claim 3. From Lee & Vázquez [46], one expects limλ→∞ uλ to converge
in Ck

loc(R
n+1
+ ) for all k ≥ 0. When k = 0, this follows from Vázquez’ Theorem

21.1 [60], or Friedman & Kamin [30]. Indeed, for each ε > 0 there exists
t0 = t0(ε, u0) such that λt ≥ t0 yields

|u(x, λt)− ρ(x, λt)| ≤ ερ(x, λt)

for all x ∈ Rn. Replacing x by λαx and recalling ρλ = ρ gives

|uλ(x, t)− ρ(x, t)| ≤ ερ(x, t),

which is bounded uniformly by ερ(0, t1) on Rn × ]t1,∞[ for all λ > t0/t1. In
particular, (6.5) is established.

Since ρ is bounded away from zero and infinity on the cylinder Q = Bn
Υ+1 ×

]t1, t2[ of radius Υ + 1, the same will hold for uλ when λ is large. Thus the
pressure qλ(x, t) := muλ(x, t)m−1/(m − 1) converges uniformly on Q to the
smooth function q∞(x, t) = − m

1−m
(At2α+B|x|2)/t. Also, for λ sufficiently large

(depending on u0 and t1), Lee & Vázquez’ Theorem 6.1 [46] assert concavity
of qλ(x, t) = λ1−2αq1(λ

αx, λt) on the ball Bn
Υ+1 ⊂ Rn; in fact, they show

lim
λ→∞

sup
x∈Rn

sup
t≥t1

∣∣∣∣∣ ∂2

∂x2
i

(qλ − q∞)

∣∣∣∣∣
(x,t)

= 0, i = 1, . . . , n. (6.6)
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Uniform convergence of a sequence of concave functions to a smooth limit
implies convergence of their gradients limλ→∞∇qλ = ∇ρ. This convergence is
uniform on the slightly smaller ball Bn

Υ, and with a rate independent of t on
the interval ]t1, t2[. Although it is not needed subsequently, mum−2

λ ∂uλ/∂t =
∂qλ/∂t = (m− 1)qλ∆qλ + |∇qλ|2 converges uniformly on Bn

Υ× ]t1, t2[ by (6.6),
hence the same is true of ∂uλ/∂t. 4

From (5.7), the Newtonian potential Uλ(x, t) satisfies an equation

∂Uλ

∂t
= (uλ)

m−1∆Uλ

which is uniformly parabolic on compact subdomains of the open halfspace
Rn+1

+ . Thus, on the ball Bn
Υ := {x ∈ Rn | |x| < Υ} cross the interval [t1, t2] ⊂

]0,∞[, both uλ and Uλ satisfy uniformly parabolic equations and ∆Uλ = uλ.
We employ the following a priori estimate from the classical regularity theory
for uniformly parabolic systems:

Claim 4 (Ladyženskaja, Solonnikov and Ural’ceva [44]) Let Q = Ω ×
]t1, t2[ with Ω ⊂ Rn a bounded domain, 0 < t1 < t2 < ∞, and Q′ ⊂ Q an open
subset with d = dist(Q′, ∂Q) > 0. Let u(x, t) = (u1(x, t), . . . , uN(x, t)) be a
smooth solution of a system of the form

∂u

∂t
= a(x, t)∆u +

n∑
j=1

Bj(x, t)
∂u

∂xj

, (x, t) ∈ Q,

where the coefficient a(x, t) is scalar valued and each Bj(x, t) is an N × N
matrix. If

0 < ν1 < a(x, t) < ν2 < ∞ when (x, t) ∈ Q, (6.7)

and

|∇a(x, t)| < µ, |Bj(x, t)| < µ when (x, t) ∈ Q, j = 1, · · · , n, (6.8)

then
max

(x,t)∈Q′
|∇u(x, t)| < C(d, ν1, ν2, µ, ‖u‖L∞(Q;RN )).

Proof of claim 4. This claim is a special case of Theorem 4.1 in Chapter
VII of Ladyženskaja, Solonnikov and Ural’ceva [44]. The original version of
the theorem is written in divergence form, and is applicable to more general
equations with weaker conditions on the coefficients. 4

We now use this estimate to transfer the convergence order of the Newtonian
potentials to their density functions.

29



Claim 5 (relative error decays like 1/t locally) Let uλ(x, t) denote the
rescaling (6.3) of a solution to (2.2)–(2.4), and ρ the Barenblatt of the same
mass. For each Υ < ∞, (6.1) implies there exists C = C(p, Υ, u0) such that∣∣∣∣∣uλ(x, t)− ρ(x, t)

ρ(x, t)

∣∣∣∣∣ ≤ C

λt
if |x| ≤ Υtα, λt ≥ 1. (6.9)

Proof of claim 5. Fix Q = {x | |x| < Υ + 2} × ]0.1, 2[ and Q′ = {x | |x| <
Υ + 1} × ]0.2, 1.9[. Set Vλ(x, t) = λ(Uλ(x, t)−R(x, t)), where Uλ and R = Rλ

are the Newtonian potentials of the respective solutions uλ and ρλ = ρ. Then,
(6.4) implies that Vλ are uniformly bounded,

‖Vλ‖L∞(Q) < (T + S)M(n, p) for all λ ≥ 20 T ,

and satisfy

∂Vλ

∂t
= aλ(x, t)∆Vλ with aλ(x, t) = (um

λ − ρm)/(uλ − ρ) (6.10)

from (5.7). Combining Lemma 12 with Claim 3, we see on the compact domain
Q, that the coefficients aλ(x, t) are uniformly bounded away from zero and
infinity for λ large, i.e., (6.7) holds uniformly for all aλ with λ large. Since
|∇ρ| and |∇uk| are uniformly bounded by Claim 3, the same lemma (5.13)
shows |∇aλ| to be uniformly bounded hence (6.8) holds uniformly on Q with
some constant µ > 0 for λ large.

Now we may apply Ladyženskaja et al (Claim 4) for the scalar case with
Bj = 0 and obtain

max
(x,t)∈Q′

|∇Vλ(x, t)| < C0

for some constant C0 = C0(p, Υ, u0) depending implicitly on T, S and n
through u0. With respect to λ, this bound is uniform for λ large.

Now we consider the second order derivatives. Let wλ = ∇Vλ. Then, after
differentiating (6.10), we obtain

∂wλ

∂t
= aλ(x, t)∆wλ +

n∑
j=1

Bλ
j (x, t)

∂wλ

∂xj

,

where the j-th column of Bλ
j is ∇aλ and other elements are all zero. Therefore,

|Bλ
j | = |∇aλ| < µ, j = 1, · · · , n.

After applying Ladyženskaja et al one more time, we obtain a uniform bound
for the second order derivatives of Vλ and, hence, there exists C1 = C1(p, Υ,u0) >

30



0 such that

|∆Vλ(x, τ)| = |λ(uλ − ρ)(x, τ)| < C1

for all |x| ≤ Υ, 0.3 < τ < 1.8 and λ large. Taking C1 larger if necessary, the
inequality extends to all λ > 1. Fixing τ = 1, and introducing new variables
y ∈ Rn and t > 0, the preceding formula reads

C1

λt
> |uλt(y, 1)− ρ(y, 1)| ∀ |y| ≤ Υ, λt > 1,

= tnα|uλ(t
αy, t)− ρ(tαy, t)| (6.11)

from the scaling relation (6.3). Now (3.1) shows

ρ(tαy, t) ≥ t−nα(A + BΥ2)−pα ∀ |y| ≤ Υ, t > 0. (6.12)

Combining (6.11)–(6.12) with the identifications C = (A + BΥ2)pαC1 and
x = tαy yields the desired estimate (6.9). 4

Setting λ = 1 in Claim 5 yields the uniform bound (6.2) on growing balls |x| ≤
Υtα. It remains only to show C = C(p, Υ, u0) can be chosen independent of Υ
as Υ →∞, by constructing a tail estimate which controls the complementary
region |x| ≥ Υtα. This estimate relies on trapping the tails of uk between two
time delayed Barenblatts, which requires the next claim, suggested by (3.8).

Claim 6 (Barenblatt tail separation) Let 1+BΥ2
0/A = 4α(1+pα) define

Υ0, with p, α, A, B and ρ(x, t) from (3.1). Then

ρ(x, t + 1)

ρ(x, t)
≥ 1 +

pα

2t
if |x| ≥ Υ0t

α, t ≥ 1. (6.13)

Proof of claim 6. Fix t ≥ 1. Applying the mean value theorem to (3.10) yields
t∗ = t∗(α, t) ≥ t such that

ρ(x, t + 1)

ρ(x, t)
=
(
1 +

1

t

)pα
(

1 +
2α/t∗

1 + B
A
|xt−α|2

)−pα

≥
(
1 +

pα

t

)(
1− 2pα2/t∗

1 + B
A
|xt−α|2

)

= 1 +
pα

t

(
1− 2α

1 + B
A
|xt−α|2

(
t + pα

t∗

))

≥ 1 +
pα

2t
.
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The first inequality follows from the convexity of (1 + s)±pα ≥ 1 ± pαs on
s > −1, and the second from |xt−α| ≥ Υ0, t∗ ≥ t ≥ 1, and our choice of Υ0.
4

Claim 7 (tails lie between two Barenblatts) Fix a solution u(x, t) to (2.2)–
(2.4) which satisfies (6.1) and its rescalings (6.3). For Υ0 from (6.13) and λ
sufficiently large,

ρ(x, t− 1) ≤ uλ(x, t) ≤ ρ(x, t + 1) if |x| ≥ Υ0t
α, t ≥ 2. (6.14)

Proof of claim 7. The upper and lower bounds (6.14) are proved similarly,
using the maximum principle on a suitably chosen domain. We prove the
upper bound first. Taking t = 1 in (6.13) yields

ρ(x, 2)≥ (1 + pα/2)ρ(x, 1) if |x| ≥ Υ0 (6.15)

≥uλ(x, 1) (6.16)

for λ > 1 sufficiently large, from (6.5). Furthermore, λ ≥ (1 + 2/(pα))C with
C = C(p, Υ0, u0) from (6.9), ensures

uλ(x, t)≤ (1 +
C

λt
)ρ(x, t) if |x| ≤ Υ0t

α, t ≥ 1

≤ ρ(x, t + 1) if |x| = Υ0t
α, t ≥ 1 (6.17)

by (6.13). The maximum principle orders the solutions uλ(x, t) ≤ ρ(x, t + 1)
of (2.2) on the entire outer region |x| ≥ Υ0t

α, t ≥ 1, since this ordering holds
on its boundary (6.16)–(6.17).

Turning now to the lower bound (6.14), taking λ large enough in (6.5) yields

uλ(x, 2)≥ ρ(x, 2)/(1 + pα/2)

≥ ρ(x, 1) if |x| ≥ Υ0 (6.18)

from (6.15). Moreover, λ ≥ (1 + 2/(pα))C in Claim 5 ensures

uλ(x, t)≥ (1− C

λt
)ρ(x, t) if |x| ≤ Υ0t

α, t ≥ 1

≥ ρ(x, t− 1) if |x| ≥ Υ0(t− 1)α, t ≥ 2 (6.19)

by (6.13). The maximum principle again orders the solutions uλ(x, t) ≥ ρ(x, t−
1) of (2.2) on the outer region |x| ≥ Υ0t

α, t ≥ 2, since this ordering holds on
its boundary (6.18)–(6.19). This establishes (6.14). 4
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Claim 8 (relative error decays like 1/t uniformly) If u(x, t) solves (2.2)–
(2.4), and satisfies (6.1), then (6.2) holds.

Proof of claim 8. Let uλ(x, t) denote the family of rescaled solutions (6.3), and
take Υ0 = Υ0(p, n) from Claim 6. For λ > 1 sufficiently large, (6.14) combines
with (3.8) to yield C1 = C1(p, n) such that∣∣∣∣∣uλ(x, t)

ρ(x, t)
− 1

∣∣∣∣∣ ≤ C1

t
if |x| ≥ Υ0t

α, t ≥ 2. (6.20)

Claim 5 extends (6.20) to all x ∈ Rn, but with a larger constant C =
C(p, u0) ≥ C1. Thus for all t > 2,

C

t
≥
∥∥∥∥∥uλ

ρ
(x, t)− 1

∥∥∥∥∥
L∞(Rn)

=

∥∥∥∥∥uρ (λαx, λt)− 1

∥∥∥∥∥
L∞(Rn)

=

∥∥∥∥∥uρ (x, λt)− 1

∥∥∥∥∥
L∞(Rn)

which completes the proof of Claim 8 and the theorem.

7 Initial comparisons in special cases

Certain peculiarities make the Newtonian potential easier to handle in one
space dimension (or with radial symmetry) than in the general case. These
permit the desired bounds to be obtained for all p > (2 − n)+ without mo-
ment vanishing conditions — in particular, without appealing to Theorem 6.
In such special cases, the Coulomb potential of a single point charge by itself
forms a lower barrier for the Newtonian potential of any centered distribution
with appropriate tails. The one dimensional estimates are facilitated by con-
vexity of the integral kernel φ(x), while in higher dimensions radial symmetry
permits Newton’s theorem to be invoked. The reader interested only in higher
dimensions with non-radial data can omit the present section.

Proposition 15 (Initial comparison in one dimension) Fix n = 1 and
p > 1, so φ(x) = |x|/2. Let U0 = φ ∗ u0 be a potential whose density 0 ≤ u0 ∈
L1(R) satisfies (2.3)–(2.5). Then there exists C > 0 such that

0 ≤ U0(x)− φ(x) ≤ C/|x|p−1 for all x ∈ R. (7.1)
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PROOF. Recall that

U0(x) :=
∫

φ(y)u0(x− y)dy.

Let dµ(y) = u0(x− y)dy. Then, changing variables to z = x− y, the mass and
center of mass normalizations (2.4)–(2.5) give

∫
ydµ(y) =−

∫
(x− z)u0(z)dz

=−x
∫

u0(z)dz +
∫

zu0(z)dz

=−x.

Since φ(x) = |x|/2 is convex and µ is a positive measure with unit total mass,
for any x ∈ R, Jensen’s inequality yields

U0(x) =
∫

φ(y)dµ(y) ≥ φ
( ∫

ydµ(y)
)

= φ(x). (7.2)

Now we consider the difference between U0(x) and φ(x) for large |x|. Let
V (x) = U0(x)−φ(x). Then V (x) is the Newtonian potential of v(x) := u0(x)−
δ(x) and

V (x) =
1

2

∫
|y − x|v(y)dy

=
1

2

∫
(y − x)v(y)dy +

x∫
−∞

(x− y)v(y)dy

=

x∫
−∞

(x− y)v(y)dy (7.3)

since v0 has zero total mass and center of mass. Now u0(y) ≤ O(1/|y|p+1) from
(2.3), so after integration (7.3) we obtain |V (x)| = O(1/|x|p−1) as |x| → ∞.
Thus there exist C > 0 and r0 > 0 such that

V (x) < C/|x|p−1 for |x| > r0. (7.4)

Since the continuous function V (x) attains its maximum on the interval |x| ≤
r0, whereas 1/|x|p−1 is bounded below, taking C larger if necessary extends
the estimate (7.4) to all x ∈ R, concluding the proof of both (7.1) and the
proposition.

Turning to spherically symmetric data in dimensions n ≥ 3, we derive a sim-
ilar estimate which allows us to recover the decay rate proved by Carrillo &
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Vázquez [11] under this symmetry hypothesis (in all dimensions). Let us begin
by recalling Newton’s theorem (§9.7 of Lieb & Loss [47]):

Newton’s Theorem. Let v ∈ L1(Rn) be a radially symmetric function with
compact support spt (v) ⊂ Br(0). Then, its Newtonian potential V (x) satisfies

V (x) = φ(x)
∫

Rn

v(y)dy, |x| ≥ r,

V (x) ≥−|φ(x)|
∫

Rn

|v(y)|dy, |x| ≤ r.

Proposition 16 (Initial comparison assuming radial symmetry) Fix n ≥
3 and p > 0. Let U0 = φ ∗ u0 be the Newtonian potential of a density
0 ≤ u0 ∈ L1(Rn) which is radially symmetric and satisfies (2.3)–(2.5). Then
there exists C > 0 such that

0 ≤ U0(x)− φ(x) ≤ C/|x|n+p−2 for all x ∈ Rn. (7.5)

PROOF. For λ > 0, let Uλ(x) ≤ 0 denote the Newtonian potential of the
truncated density χBn

λ
(0)u0. Set

ε(λ) :=
∫

Rn−Bn
λ
(0)

u0(y)dy.

Newton’s theorem implies Uλ(x) ≥ (1− ε(λ) )φ(x) for each λ > 0 and x ∈ Rn.
On the other hand, since

Uλ(x) =
∫

Bn
λ
(0)

φ(x− y)u0(y)dy

≥
∫

Rn

φ(x− y)u0(y)dy

= U0(x),

Lebesgue’s monotone convergence theorem implies that Uλ(x) ↓ U0(x) as λ →
∞. Since ε(λ) → 0 in the same limit, we obtain the first inequality in (7.5)

U0(x) ≥ φ(x), for all x ∈ Rn.

Now consider the second inequality. Set r = |x|. Then Newton’s theorem
implies that

Ur(x) = (1− ε(r))φ(x).
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Since u0(x) = O(1/rn+p) is assumed for |x| large (2.3),

ε(r) =

∞∫
r

u0(s)s
n−1ds = O(1/rp) as r →∞.

Since φ(x) = O(1/rn−2) for n ≥ 3, we conclude ε(r)φ(x) = O(1/rn+p−2).
Therefore, there exist C and r0 > 0 such that

U0(x)≤Ur(x)

≤φ(x) + C/rn+p−2 for |x| ≥ r0.

Furthermore, since U0 ≤ 0 from the definition φ(x) = −|x|2−n/cn, taking C
larger if necessary yields

U0(x)− φ(x)≤ 1/|cnr
n−2|

≤C/rn+p−2 for |x| ≤ r0,

to conclude the proof of (7.5).

8 Convergence rates for general solutions

Elementary examples with discrete measures show the time zero comparisons
of the preceding section cannot generally hold true in several dimensions.
However, by allowing some time to elapse, we deduce below a leap-frog (or
“tortoise and hare” type) theorem, which shows that a large enough headstart
enables the Newtonian potential of any solution to overtake its competitors.
This theorem requires a decay (8.1) for the initial potentials, which may be
expected in view of Theorem 6. Its corollary will allow us to prove our main
theorem by invoking the results of Section §6.

Theorem 17 (Newtonian potentials leap-frog) Fix n ≥ 1 and p > (2−
n)+. Let U = φ∗u and Ũ = φ∗ũ be the Newtonian potentials at each instant in
time, of two solutions u(x, t) and ũ(x, t) to (2.2)–(2.4), whose initial difference
satisfies the decay condition

lim sup
|x|→∞

|x|n+p−2|U(x, 0)− Ũ(x, 0)| < ∞. (8.1)

Given T0 > 0, taking T > 0 large enough ensures

U(x, t) ≥ Ũ(x, T0) for all t ≥ T and x ∈ Rn. (8.2)
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PROOF. Fix T0 > 0. Hypothesis (8.1) provides C > 0 and r0 > 0 such that

U(x, 0) > Ũ(x, 0)− C/|x|n+p−2 for |x| > r0.

Since Ut = um in Proposition 10, using the continuity and bound %(x, 2T1) on
ũ(x, t) provided for t ∈ [0, T1] by taking T1 > T0 large enough in Lemma 11,
one finds

Ũ(x, T0)− Ũ(x, 0) =

T0∫
0

ũm(x, s)ds, for a.e. x ∈ Rn,

≤ %m(x, 2T1)

T0∫
0

ds

≤T0

(
4T1

B|x|2

)(n+p−2)/2

when |x| > r1,

with r1 =
√

2(2T1)(n+p)/pA/B as in (3.5). The same reasoning plus two in-
equalities preceding yield

U(x, t) = U(x, 0) +

t∫
0

um(x, s)ds

> Ũ(x, T0)− C0/|x|n+p−2 +

t∫
0

um(x, s)ds, a.e. |x| > r2, (8.3)

where C0 = C + T0(4T1/B)(n+p−2)/2 and r2 = max{r0, r1}. The remainder of
the proof is devoted to showing that for t large enough, the positive integral
more than compensates for the negative corrector in (8.3).

Vázquez’ Theorem 21.1 [60] provides a time T2 such that

3

2
ρm(x, t) > um(x, t) >

1

2
ρm(x, t) for t > T2, (8.4)

where

ρm(x, t) =
(
Atn/p + B|x|2t−1

)−(n+p−2)/2
.

Take T > 0 large enough that

1

2
(2B)

2−n−p
2

T∫
T2

s
n+p−2

2 ds > C0.

Then |x| > r :=
√

AT 1+(n/p)/B implies
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1

2

T∫
T2

ρm(x, s)ds >
1

2

T∫
T2

(
2B|x|2s−1

)−(n+p−2)/2
ds

>C0/|x|n+p−2. (8.5)

Combining (8.3), (8.4) and (8.5) yields

U(x, T ) > Ũ(x, T0) for all |x| > max{r, r2}, (8.6)

not just a.e. x since now both functions are continuous, as in Proposition 13.
As t →∞, Proposition 10 asserts U(x, t) ↑ 0 or U(x, t) ↑ +∞ strictly mono-
tonically, the convergence being uniform on the compact set |x| ≤ max{r, r2},
and the value of the limit depending on dimension only. Taking T larger if
necessary therefore extends (8.6) to all x ∈ Rn, establishing (8.2) to conclude
the proof of the proposition.

Remark 18 Theorem 17 and its proof extend to the case where either u or ũ
is replaced by the Barenblatt solution ρ, even though the initial condition (2.2)
is violated in the sense that lim

t↓0
ρ(x, t) does not converge in L1

loc(R
n).

Corollary 19 (Barenblatt sandwich) Let U = φ ∗ u and R = φ ∗ ρ denote
the Newtonian potentials at each instant in time of a solution u(x, t) to (2.2)–
(2.5), and of the Barenblatt solution ρ respectively. Under any of the additional
hypotheses of Theorem 1, there exist constants S, T ≥ 0 such that

R(x, t− T ) ≤ U(x, t) ≤ R(x, t + S) for x ∈ Rn, t ≥ T. (8.7)

PROOF. The densities u(x, t) and ρ(x, t) are bounded functions in space at
each positive time t > 0 due to the L1-L∞ smoothing effect of Bénilan and
Véron reviewed in Vázquez [59]; in fact ‖u(·, t)‖L∞(Rn) ≤ ρ(0, t) decreases to
zero as t →∞. It suffices to exhibit positive constants T0, T, T1 > 0 such that

R(x, T0) ≤ U(x, T ) ≤ R(x, T1) for x ∈ Rn, (8.8)

since

R(x, s) ≤ R(x, s + T0) ≤ U(x, s + T ) ≤ R(x, s + T1) for (x, s) ∈ Rn+1
+

then follows from the monotonicity ∂R/∂s > 0 of Proposition 10 and the
comparison principle of Proposition 13. The change of variables s = t−T and
S = (T1 − T )+ then yields (8.7).

To deduce (8.8), we must first check the hypotheses of Theorem 17 are satisfied.
If n ≥ 2 and p > 0, as in Theorem 1(i) and (ii), then by assumptions (2.3)–
(2.5) — and (2.6) also if p > 2 — all moments of v0(x) := u(x, 0) − ρ(x, τ)
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up to but excluding p vanish, where τ ≥ 0 is from (2.1). Thus (4.4)–(4.6) are
satisfied, and the desired tail decay (8.1) of the potential φ ∗ v0 is asserted by
Theorem 6. If instead, as in Theorem 1(iii) or (iv), n = 1 < p, or else v0 is
radial but n ≥ 3, the same tail decay estimate follows from Proposition 15 or
16.

Either way, fixing T0 > 0 and taking ũ = ρ in the remark following Theorem
17 yields a positive constant T > 0 such that

U(x, T ) ≥ R(x, T0) if x ∈ Rn.

Interchanging the roles of u ↔ ũ in the preceding argument, yields T1 > 0
such that

R(x, T1) ≥ U(x, T ) if x ∈ Rn.

This concludes the proof of (8.8) and the corollary.

PROOF. (of Theorem 1) First assume u0(x) has vanishing center of mass
(2.5), in addition to the other requirements of Theorem 1. Combining Corollary
19 with Theorem 14 yields the desired rate of convergence (2.9). This concludes
the proof of the theorem, except if p ∈ ]1, 2] and n ≥ 2 in case (i), when we
do not wish to assume (2.5). The tails (2.3) of u0(x) are sufficiently small to
ensure its center of mass of u0(x) converges to some z ∈ Rn. Since the diffusion
(2.2) commutes with translation, the preceding argument implies the ratio

∥∥∥∥∥ u(x, t)

ρ(x− z, t)
− 1

∥∥∥∥∥
L∞(Rn)

≤ C

t
, t � 1,

converges uniformly at rate O(1/t) as t →∞. In the same limit, (3.13) shows
the ratio ρ(x − z, t)/ρ(x, t) → 1 converges uniformly at rate O(1/tα). Since
α = (n + p)/2p ≥ 1 in the range 1 < p ≤ 2 ≤ n we are dealing with, the
triangle inequality yields

∣∣∣∣∣u(x, t)

ρ(x, t)
− 1

∣∣∣∣∣≤
∣∣∣∣∣ u(x, t)

ρ(x− z, t)
− 1

∣∣∣∣∣
∣∣∣∣∣ρ(x− z, t)

ρ(x, t)

∣∣∣∣∣+
∣∣∣∣∣ρ(x− z, t)

ρ(x, t)
− 1

∣∣∣∣∣
≤ C

t
(1 +

C ′

tα
) +

C ′

tα
, t � 1,

= O(1/t) as t →∞.

The constants C and C ′ cannot depend on anything other than p and u0, since
these determine n, z and ρ.
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