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Abstract

The semi-geostrophic equations with additional terms incorporating the effects of moisture are

introduced. A one dimensional model of these equations which is equivalent to the full three

dimensional in the spatially homogenous case is studied and a weak formulation of this model

is defined. A new stability condition that strengthens the Cullen-Purser stability condition is

introduced and shown to be required for the the dynamics to be energy minimizing. A time

stepping procedure is used to construct difference equations in discrete space and time which are

shown to converge to weak solutions as the size of the mesh tends to zero under certain monotonicity

assumptions on the initial data.
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1 Introduction

The semi-geostrophic equations are a valid approximation of the Navier Stokes equations on
large (horizontal) scales which model rotationally dominated, stratified flows in the atmosphere
[4]. Work by Brenier and Benamou, [2], Cullen and Gangbo, [5], Cullen and Maroofi, [6] and
Loeper [11] established weak existence of solutions in a set of dual variables first introduced by
Hoskins [10]. Smoothness and uniqueness of solutions for the semi-geostrophic equations remain
unknown, except for Loeper’s results [11] on the torus. A recent result of Ambrosio [1] concerning
the existence of solutions to ODEs with BV vector fields, combined with the results of [2] is used
by Cullen and Feldman to prove weak existence of the semi-geostrophic equations in a Lagrangian
reformulation of the original physical variables [4]. Holt [9] introduced a geometric algorithm to
study the effects of moisture convection in the semi-geostrophic equations which is similar to the
difference scheme we use, however no rigorous analysis showing the consistency with the classical
equations was established. This paper is in some sense a first step towards rigorously extending
the result of [4] to include the effects of moist convection studied in [9].

We study the semi-geostrophic equations with the effect of moisture included. This corre-
sponds to introducing an additional term q representing moisture in the semi-geostrophic system
studied by Cullen and Feldman in [4], and replacing conservation of potential temperature θ, with
equations (4)–(5) below. The eight equations written in Eulerian form are for the eight unknowns
u = (u, v, w), φ, θ, q, ug, vg, on a bounded domain [0, T )× Ω where Ω ⊂ R3 are

D(ug, vg)
Dt

+ (−v, u) = (∂1φ, ∂2φ) (1)

where
D

Dt
:= ∂t + (u, v, w) · ∇,

(ug, vg) := (−∂2φ, ∂1φ)

∇ · (u, v, w) = 0, (2)

∂φ

∂z
+ θ = 0, (3)
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Dq

Dt
=





L
[

Dqsat

Dt

]−
if q = qsat

0 otherwise,
(4)

Dθ

Dt
+ L

Dq

Dt
= 0, (5)

where [f ]− ≤ 0 denotes the negative part of the function f .

In what follows we choose units so that L ≡ 1, where L is the latent heat of condensation.
Above, qsat represents the saturation moisture level which is the maximum moisture content a
particular air parcel may have. This is observed to be a monotone decreasing function of height [3].
The function qsat and coefficient L are the exogenous variables that appear in equations (1)–(5).

The endogenous variables are (u, v, w, φ, θ, q, ug, vg), where φ is a geopotential and θ is the
potential temperature. This is the temperature an air parcel would have if it were brought adiabat-
ically to a standard reference pressure, such as the pressure at the surface of the earth [3]. Since
the potential temperature is measured with respect to a standard reference pressure, fluctuations
in height of an air parcel do not affect it in the absence of condensation, which will occur when
a parcel becomes saturated with moisture. This phenomenon is described by equations (4)–(5)
which yield a conservation law for the potential temperature away from saturation. We are most
interested in the vertical component of the above equations which corresponds to (4)–(5) since this
is where the effects of moisture are incorporated into the equations. For this reason we study a one
dimensional version of (1)–(5) where we assume u ≡ v ≡ 0 and study (4)–(5) exclusively restricted
to a one dimensional column. This is equivalent to studying the three dimensional problem in the
spatially homogenous case, meaning all variables depend only on (z, t) instead of (x, y, z, t). The
incompressibility condition (2) then forces the vertical component of the velocity w to be constant
and we denote this velocity as α below. This condition however, will be replaced with the require-
ment that there is a measure preserving flow compatible with the Lagrangian form of equations
(4)–(5).

When air parcels become saturated (q = qsat), precipitation occurs and this phase transition
causes the liberation of heat. The heat liberated then causes the parcel to rise while further changes
to the parcel’s potential temperature occur according to equation (4)–(5) as the parcel rises along
the saturated adiabat qsat. Physically it is observed that parcels quickly arrange themselves so
that the parcels with highest potential temperature are at the top of the column. This amounts
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to assuming θ(t, ·) is monotone increasing at all times which is a physical constraint we add to
equations (1)–(5). This is a known as the Cullen-Purser stability criterion and was first proposed
in [7]. Without the effects of moisture (when q ≡ 0), θ is conserved in time and hence monotonicity
of θ is conserved. When moisture effects are included, a stronger constraint is required on θ(t, ·)
which we introduce below in Definition 1.
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2 One dimensional moist semi-geostrophic model

We assume horizontally uniform potential temperature and moisture throughout the column
which is rising at a constant rate α > 0. In the notation below t represents time and z ∈ [0, 1]
represents the position in the column of air of total height 1. For simplicity we assume the following
saturation curve,

qsat(t, z) := qsat(0, 0) +
dqsat

dz
(z + αt), (6)

where dqsat

dz := −β < 0 is a negative constant and α > 0 is the constant speed of ascent of the
column. The time dependence of qsat reflects the vertical displacement of the column.

We now introduce a Lagrangian reformulation of (4)–(5). Given functions θ, q : [0, T )× [0, 1] →
R+ satisfying (4)–(5), we seek a volume preserving diffeomorphism F : [0, T )× [0, 1] → [0, 1] such
that, setting θ̃(t, z) = θ(t, F (t, z)), q̃(t, z) = q(t, F (t, z)) and ˜qsat(t, z) = qsat(t, F (t, z)) the following
equations are satisfied:

∂tq̃(t, z) = −β1[1,∞)(q̃/ ˜qsat)[∂tF (t, z) + α]+ (7)

∂tθ̃(t, z) + ∂tq̃(t, z) = 0. (8)

In addition we require the stability condition that z 7→ θ(t, z) be monotone non-decreasing for
all times. It turns out this goal is too ambitious and we are forced to introduce a weak formulation
of (6)–(8) in section 2.2. We now introduce an additional physical requirement on z 7→ θ(t, z) that
is a strengthening of the monotonicity condition and which we will require on all solutions.

2.1 A stronger stability condition

We will continue to require that z 7→ θ(t, z) be monotone non-decreasing for all times since the
effects of moisture do not change the physical observation that the parcels with largest potential
temperature quickly rise to the top of the column. This physical observation can be interpreted as
an energy minimization condition for the semi-geostrophic energy:

ESG := −
∫

[0,1]
zθ(z)dz, (9)
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since the above integral will be smaller when parcels with larger values of θ are distributed higher
in the column.

Saturated air
When the effects of moisture are included, this stability condition must be modified since there

is an ambiguity in the dynamics of equations (6)–(8) if only the monotonicity of z 7→ θ(t, z) is
imposed as a physical requirement on the solutions. We demonstrate this ambiguity below and
show how it is resolved by choosing the state which minimizes the integral (9).

Consider a column with only two parcels z1 and z2 in [0, 1] and assume they have potential
temperature profiles θ1 = θ2 and moisture profiles q1, q2 with q1 − q2 = −β(z2 − z1). Then time
stepping equation (6) forward, we see that z1 and z2 will both become saturated at the same in-
stant in time. However now there is a choice in the dynamics. Both z1 and z2 could increase their
potential temperature equally (since they become saturated simultaneously) and the monotonicity
of the potential temperature profile would be preserved. However, there is an alternative evolution.
If z1 7→ z2 and z2 7→ z1 then instead of z1 and z2 sharing the increase in potential temperature, all
of the increase is absorbed into z1 as it rises above z2 along the saturated adiabat qsat. By studying
(9) it is clear that the second scenario does indeed result in a lower energy state since when z1

and z2 swap locations, more of the available potential temperature is distributed at the top of the
column. Hence we wish to introduce a stability condition which favors distributing as much of the
available heat released from the convection at the top of the column. This ambiguity is eliminated
if we introduce the stronger stability condition that saturated parcels quickly arrange themselves
so that z 7→ θ(z)+q(z) is a monotone non-decreasing function. We now make this condition precise.

Definition 1 (Strong stability) We say that the function θ : [0, T )× [0, 1] → R+ is strongly stable
if for each t ∈ [0, T )

z 7→ θ(t, z)− βz is monotone increasing on Zt = {z : q(t, z) = qsat(t, z)},
z 7→ θ(t, z) is monotone increasing on [0, 1].

This condition resolves the ambiguity in the above example and requires the evolution to favor
the second scenario, where z1 and z2 swap locations. The above stability condition is well known

5



amongst meteorologists and can be found in the work of Cullen [3]. Equations (6)–(8) along with
the stability condition in Definition 1 are what we will refer to as the moist one-dimensional semi-
geostrophic model.

2.2 Motivation for weak formulation

As the column of air rises in the atmosphere, it is possible that at some instant in time the stability
condition in Definition 1 will fail to be satisfied. An instantaneous and discontinuous rearrangement
of the fluid particles may then occur to correct the lack of stability. As a simple example, if the
column of air has uniform potential temperature and the moisture in a parcel at the bottom of the
column becomes saturated and heat is released, the parcel will jump discontinuously to the top of
the column to a stable configuration. Hence we expect very little regularity from the Lagrangian
map F : [0, T ]× [0, 1] and at best we could hope for a measure valued velocity field. We therefore
introduce a weak formulation as follows. As a weakening of a volume preserving diffeomorphism F

of [0, 1] to itself, we seek a map F : [0, T ) × [0, 1] → [0, 1] that is Lebesgue measure preserving in
the sense that

F (t, .)#L1
[0,1] = L1

[0,1]. (10)

where here F (t, ·)#L1
[0,1] is the push forward of one dimensional Lebesgue measure by the map

z 7→ F (t, z), defined by
F (t, ·)#L1

[0,1](E) = L1(F−1(t, E)),

on L1 measurable sets E ⊂ [0, 1]. In addition we require F to define a flow in the space of measure
preserving mappings. These requirements motivate conditions (i)–(ii) below in Definition 2. We
can obtain sufficient regularity of the maps F to ensure that ∂tF (t, z) defines a Borel measure
valued velocity field and hence our weak formulation involves understanding (7)–(8) in the sense of
measures. In addition we require our solutions to satisfy the strong stability assumption (iii) given
in Definition 1.

It turns out to be difficult to relate the velocity measure derived from the Lagrangian map
z 7→ F (t, z) to the velocity on the right hand side of equation (7). This difficulty is encountered
due to rapid oscillations of particles, which occurs when saturated and unsaturated air mix. In
such a scenario, it is physically observed that a parcel’s moisture may not change according to
equation (7) but may become unsaturated upon mixing with dry air parcels when it rises in the
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atmosphere. These physical observations are incorporated into the assumptions on the measure ω

below. We will show in Theorem 4 that our weak notion of a solution is indeed consistent with a
smooth solution of (6)–(8) in the absence of the mixing described above.

Definition 2 (Weak Lagrangian Formulation) Given T > 0 we seek a triplet

θ̃, q̃, F ∈ BV ([0, T )× [0, 1]),

along with a positive measure dω(t, z) with spt ω ⊂ {(t, z) : q̃ = q̃sat}. We then require the following
equations to be satisfied:

−
∫ 1

0

∫ T

0
∂tφ(t, z)q̃(t, z)dtdz = −β

∫ 1

0

∫ T

0
φ(t, z)dω(t, z) +

∫ 1

0
φ(0, z)q(0, z)dz

∫ 1

0

∫ T

0
∂tφ(t, z)[θ̃(t, z) + q̃(t, z)]dtdz = −

∫ 1

0
φ(0, z)[θ̃(0, z) + q̃(0, z)]dz

for all φ ∈ C∞
c ([0, T )× [0, 1]).

We require the following conditions on the solution for it to be physically admissible:

(i) F (t, ·) pushes forward L1([0, 1]) to L1([0, 1]) and yields the monotone rearrangement θ(t, ·)
of θ̃(t, ·) for a.e t ∈ [0, T ).
(ii) F (0, z) = z for a.e z ∈ [0, 1]
(iii) (stability) θ is stable in the sense of Definition 1.
(iv) q̃(t, z) ≤ q̃sat(t, z) for a.e (t, z) ∈ [0, T )× [0, 1].

Remark 3 Note that t 7→ F (t, z) is only responsible for rearrangements of the column relative
to itself. If the map z 7→ θ(t, z) is strictly increasing and either z 7→ θ(t, z) + q(t, z) is strictly
increasing or q̃(t, z) < q̃sat(t, z) is satisfied for all times on [0, 1], then F (t, z) = z for all times and
no rearrangements occur. When F (t, ·) 6= Id we say mixing has occurred.

In the following theorem, we show that in the absence of the mixing described in the previous
remark, a smooth weak solution in the sense of Definition 2 is indeed a smooth solution of (6)–(8).
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Theorem 4 (Consistency of weak formulation in the absence of mixing) A smooth weak solution
(θ̃, q̃, F, ω) to (6)–(8) in the sense of Definition 2 which satisfies ∂zθ(t, z) > 0 and either ∂zθ(t, z)+
∂zq(t, z) > 0 or q(t, z) < qsat(t, z) on [0, 1] for each t ∈ [0, T ] satisfies equations (6)–(8).

Proof: The case q(t, z) < qsat(t, z) is clear by noting that spt ω ⊂ {(t, z) : qsat(t, z) = q(t, z)}. We
deal with the first case now.

To preserve strict monotonicity of z 7→ θ(t, z) and z 7→ θ(t, z) + q(t, z), it is clear that F (t, z) = z

for each t ∈ [0, T ). We write dω = g(t, z)dtdz where g is a smooth positive function. Then the
following equations are satisfied:

∂tq̃(t, z) = −βg(t, z) (11)

∂tθ̃(t, z) + ∂tq̃(t, z) = 0. (12)

It is clear that g(t, z) ≥ 1[1,∞)(q̃/ ˜qsat)[∂tF (t, z)+α]+ since otherwise condition (v) would be violated
in Definition 2. Assume there exists a z0 ∈ [0, 1] and t0 ∈ [0, T ) such that g(t0, z) > 1[1,∞)(q̃/ ˜qsat)α.
Because z 7→ g(t, z) is smooth however, for any ε > 0, equation (11) along with the fact that spt
ω ⊂ {(t, z) : qsat(t, z) = q(t, z)} guarantees that q(t0 + ε, z0) = qsat(t0 + ε, z0). Since g(t, z) 6= 0
if and only if q(t, z) = qsat(t, z), it follows from (6) and (8) that g(t0, z0) = α, a contradiction.
Consequently

g(t, z) = 1[1,∞)(q̃/ ˜qsat)α

= 1[1,∞)(q̃/ ˜qsat)[∂tF (t, z) + α]+,

which yields the desired result. 2

3 Construction of the solutions

We construct the weak solutions by replacing the continuous equations (6)–(8) with difference
equations with finite time step ∆t > 0 and spatial partition size h > 0, while requiring that θ(t, ·)
satisfies the stability condition in Definition 1 at all times. We then let the size of the time and
space partition tend to zero and obtain weak solutions to the equations (6)–(8) in the sense of
Definition 2.
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3.1 Time stepping procedure

We discretize equations (6)–(8) in time yielding,

qsat
h (tk+1, zi) = qsat

h (0, 0)− β(zi + αtk+1), (13)

q̃h(tk+1, zi)− q̃h(tk, zi) = −β1[1,∞)

(
q̃h(tk, zi)

q̃sat
h (tk + ∆t, zi)

)
[Fh(tk+1, zi)− Fh(tk, zi) + α∆t]+ (14)

θ̃h(tk+1, zi)− θ̃h(tk, zi) + q̃h(tk+1, zi) + q̃h(tk, zi) = 0. (15)

along with the requirement that θh(tk, ·) satisfy Definition 1 and Fh(tk+1, ·)#L1
[0,1] = L1

[0,1] for each
h > 0. Hence the algorithm described below will involve taking a time step ∆t > 0 and determining
qsat(tk +∆t, ·). Subsequent iterations will then involve computing new values of θ̃h, q̃h from the last
two equations and the performing rearrangements of θh + qh on the saturated regions as to satisfy
the stability condition in Definition 1.
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4 Main result

We now prove our main existence result for very specific initial data. Specifically we prove
existence when z 7→ θ0(z) + q0(z) is monotone non-increasing. This assumption, although specific,
still demonstrates important aspects of the dynamics of weak solutions to (6)–(8) as defined by
Definition 2.

Theorem 5 (Global in time existence) Fix θ0, q0 such that z 7→ θ0(z) + q0(z) is monotone non-
increasing, z 7→ q0(z) + (β − ε)z is strictly increasing for some 0 < ε < β, and θ0 is stable in the
sense of Definition 1. Given T > 0 there exists a weak solution to (6)–(8), θ̃, F, q̃, ω in the sense
of Definition 2 on [0, T )× [0, 1], which satisfies θ0 = θ̃(0, ·) and q0 = q̃(0, ·) a.e.

Proof: The proof procedure will involve taking time steps that correct the lack of monotonicity
of θ + q on the saturated regions during each time step, while allowing further exchanges between
the parcel’s potential temperature and moisture to occur according to equations (14)–(15). We
will make an inductive argument on the time step and show that certain properties of θ and q are
preserved. A main ingredient is the compact embedding BV ⊂⊂ L1 (see [8]), combined with the
Riesz representation theorem to prove the convergence of our difference scheme to a weak solution
to (6)–(8) in the sense of Definition 2.

Partition [0, T ) into N intervals [kT, (k + 1)T/N) and [0, 1] into M intervals [k/M, (k + 1)/M)
where ∆t := T/N satisfies ∆t < εh/αβ. This assumption ensures that only one parcel will become
saturated at a time, in sequence from the top of the column. We approximate θ0 and q0 by func-
tions θh(0, ·) and qh(0, ·) by defining θh(0, z) := θ0((k + 1)/M) and qh(0, z) := q0((k + 1)/M) for
z ∈ [zk, zk+1) where zk := k/M . Our choice of approximation ensures that z 7→ θh(0, z) satisfies
Definition 1 and z 7→ qh(0, z)+ (β− ε)z is monotone increasing. The latter property will be impor-
tant in Step 2 of the proof. Below θ̃h and q̃h will denote the solutions of the difference equations
(14)–(15) which we construct below.

Step 1 (Rearrangements):

We now describe the time stepping procedure inductively. At an initial time tk := kT , we as-
sume that θh(tk, zi) = θ(0, zi), Fh(tk, zi) = zi and qh(tk, zi) = qh(0, zi) on [0, bk) for some bk ∈ [0, 1],
that z 7→ θh(tk, z) + qh(tk, z) is monotone increasing on [bk, 1] and qh(tk, z) ≤ qsat

h (tk, z) on [0, 1],
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with the the top particle remaining saturated (qh(tk, zM ) = qsat
h (tk, zM )) at all times tk after it

becomes saturated initially. These properties will be preserved at the end of the time step to time
tk+1, with evolution of θ̃h, q̃h proceeding according to equations (14)–(15).

Compute qsat
h (tk + ∆t, z) from (13). We will call a parcel zi saturated at time t if qh(t, zi) ≥

qsat
h (t + ∆t, zi). Then since ∆t < εh/αβ and z 7→ qh(tk, z) + (β − ε)z is increasing on [0, bk),

at most one parcel zi becomes saturated from [0, bk) and if so set bk+1 = zi and define the map
z 7→ Gh(tk+1, z) by

Gh(tk+1, zj) :=





zj if zj < bk+1

zj−1 if bk+1 < zj ≤ zM

zM if j = i,

(16)

and extend Gh(tk+1, ·) to be piecewise constant on the intervals z ∈ [zj , zj+1).
Use q̃sat

h (tk+1, zj) = qsat
h (tk+1, Gh(tk+1, zj)) to define the functions q̃h(tk+1, zj), θ̃h(tk+1, zj) by

q̃h(tk+1, zj) := q̃h(tk, zj)− 1[1,∞)

(
q̃h(tk, zj)

q̃sat
n (tk+1, zj)

)
(β[Gh(tk+1, zj)− zj ] + q̃h(tk, zj)− q̃sat

h (tk+1, zj))),

θ̃h(tk+1, zj) := θ̃h(tk, zj) + q̃h(tk, zj)− q̃h(tk+1, zj)

for all j = 0, · · · ,M − 1, and the corresponding Eulerian functions are defined as:

θh(tk+1, Gh(tk+1, zj)) := θ̃h(tk+1, zj),

qh(tk+1, Gh(tk+1, zj)) := q̃h(tk+1, zj).

Similarly to Gh(tk+1, ·), extend θ̃h(tk+1, ·), q̃sat
h (tk+1, ·) and q̃h(tk+1, ·) to be piecewise constant on

the intervals z ∈ [zj , zj+1). The definition (16) maps the parcel zi to the top position in the col-
umn so that z 7→ θh(tk+1, z) + qh(tk+1, z) is monotone non-decreasing on [bk+1, 1] where bk+1 = zi.
Hence the inductive hypotheses are satisfied for bk+1 at time tk+1 and satisfied for t = 0. The
map z 7→ θh(tk+1, z) also remains monotone increasing on [bk+1, 1]. To demonstrate this, note
that since the particle initially at bk+1 ends up with less moisture content than the particle at zM ,
qh(tk, zM ) = qsat

h (tk, zM ) = q̃sat
h (tk+1, bk+1) and zM 7→ zM−1 under (16), θ̃h(tk, bk+1)+q̃h(tk, bk+1) ≥

θh(tk, zM ) + qh(tk, zM ) implies that θh(tk+1, zM ) ≥ θh(tk+1, zM−1) and z 7→ θh(tk+1, z) was already
monotone on [bk+1, zM−1). Now define Fh(tk+1, zj) := Gh(tk+1, Fh(tk, zj)) and proceed to Step 2.
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Step 2 (Estimates):

(i) Spatial estimates:
We proceed by making an inductive argument about the behavior of z 7→ Fh(tk, z) based on the
time step done in Step 1 above, which controls the BV norm on [0, 1].

Following the inductive time step in Step 1, it is clear that the map z 7→ Fh(tk, z) remains the
identity on [0, bk) and a decreasing function on [bk, 1] where bk represents the point in the opening
paragraph of Step 1. The map z 7→ Fh(tk, z) remains decreasing on [bk, 1] since parcels swap posi-
tions in [bk, 1] fall as a group in any subsequent time steps. This is clear from definition (16).

These observations allow us to conclude the estimate:

||Fh(tk, ·)||BV ([0,1]) ≤ 2, for all k ∈ [1, N ]. (17)

(ii) Time estimates:
Definition (16) ensures that Fh(tk, z) = z on [0, sz) and z 7→ Fh(tk, z) is non-increasing on [sz, T ]
for each z ∈ [0, 1]. This is true since for each z ∈ [0, 1], there is a k ∈ [1,M ] such that z < bj for
all j ≤ k so that Fh(t, z) = z on [0, bk), and by looking at the second line in the definition (16), it
is clear that z 7→ Fh(tk, z) remains non-increasing for all future times. Extend Fh(·, z), q̃h(·, z) and
θ̃h(·, z) to be piecewise linear on [tk, tk+1) for each z ∈ [0, 1]. Hence we can conclude the estimate:

||Fh(·, zi)||BV ([0,T ) ≤ 2. (18)

Combining estimates (17) and (18) and Lemma 7 we arrive at:

||Fh||BV ([0,T )×[0,1]) ≤ C(θ0, q0). (19)

Notice the lack of time dependence of this BV estimate and that similar BV estimates hold for θ̃h

and q̃h since the composition of monotone functions is monotone.
We now recall the compact embedding BV ⊂⊂ L1. This along with the estimates (17), (18),

(19) ensure an L1([0, T )× [0, 1]) convergent subsequence of Fh θ̃h, q̃h as h → 0. Due to the above
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estimates, it’s also clear that
∣∣∣∣1[1,∞)

(
q̃h

q̃sath

)
[∂tFh + α]+dtdz

∣∣∣∣ ([0, T ]× [0, 1]) ≤ C(θ0, q0).

Hence we can extract a weak-* limit of these measures, which we will call ω on [0, T ]× [0, 1].
Step 3: Convergence to the solution
We take the difference equations acquired in Step 1.2 and make them piecewise linear in time, con-
necting the endpoint at tk to the endpoint at tk+1 of q̃h, θ̃h and Fh. This gives us two differential
equations (7)–(8) satisfied almost everywhere in [0, T )×[0, 1] except that the argument of the indica-
tor function is evaluated at q̃h(tk, z))/q̃sat

h (tk+1, z) when t ∈ [tk, tk+1). Letting ϕ ∈ C∞
c ([0, T )×[0, 1])

we multiply our equations by this test function and integrate by parts to arrive at the following
equations:

−
∫ 1

0

∫ T

0
∂tϕ(t, z)q̃h(t, z) =

dqsat

dz

∫ 1

0

∫ T

0
ϕ(t, z)ah(t, z)dtdz +

∫ 1

0
ϕ(0, z)q0(t, z)dtdz,

∫ 1

0

∫ T

0
∂tϕ(t, z)[θ̃h(t, z) + q̃h(t, z)]dtdz =

∫ 1

0
ϕ(0, z)[θ0(z) + q0(z)],

where
ah(t, z) := 1[1,∞)

(
q̃h(t, z)

q̃sat
h (t + ∆t, z)

)
[∂tFh(t, z) + α]+.

From the estimates of section 2 we have that

q̃h → q̃ in L1([0, T ]× [0, 1]) (20)

θ̃h → θ̃ in L1([0, T ])× [0, 1]) (21)

Fh → F in L1([0, T ]× [0, 1]) (22)

ωh := 1[1,∞)

(
q̃h(t, z)

q̃sat
h

(t + ∆t, z)
)

[∂tFh + α]+dtdz
∗
⇀ ω on [0, T ]× [0, 1], (23)

as h and ∆t < εh/αβ tend to zero. It is clear from the dominated convergence theorem and the
Riesz representation theorem that the above convergence is sufficient so that ω, q̃, θ̃ satisfy the
equations in the weak formulation of equations (6)–(8) (Definition 2). Lemma 8 along with Lemma
9 ensure that z 7→ F (t, z) is indeed the measure preserving map which yields the monotone rear-
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rangement of θ̃(t, z), θ(t, z) for L1 almost every time t ∈ [0, T ].

Step 4 (Properties of solution):
(i) spt ω concentrated on saturated parcels

The map t 7→ q̃(t, z0)/q̃sat(t, z0) is continuous everywhere for each z0 ∈ [0, 1]. This can be seen
by studying equation (16) as h → 0 and noting that the only discontinuity in t 7→ Gh(t, z0)
which occurs when z0 becomes saturated is not a discontinuity of t 7→ q̃(t, z0)/q̃sat(t, z0) since
this ratio approaches (and recedes from) saturation continuously. Therefore the set Ωu(z0) :=
{t : 0 < q̃(t, z0)/q̃sat(t, z0) < 1} is open. Lemma 6 implies that there is a subsequence such
that q̃hk

(t, z0)/q̃sat
hk

(t, z0) → q̃(t, z0)/q̃sat(t, z0) in L1([0, T ]) as hk → 0 for a.e z0 ∈ [0, 1]. Note
that ∂tq̃(t, z) = −βω in the weak sense of Definition 2. Since q̃h → q̃ on L1([0, T ] × [0, 1]),
Lemma 6 ensures that q̃hk

(t, z0) → q̃(t, z0) as hk → 0 for a.e z0 ∈ [0, 1]. Lemma 8 then tells
us that ∂tq̃hk

(t, z0)
∗
⇀ ∂tq̃(t, z0) on [0, T ] for a.e. z0 and that ∂tq̃hk

∗
⇀ ∂tq̃ on [0, T ) × [0, 1].

Since q̃h(t, z0) is constant on the open set t ∈ Ωu(z0), it follows that ∂tq̃hk
(t, z0)

∗
⇀ 0 on Ωu(z0).

Consequently ∂tq̃(t, z0) = 0 on Ωu(z0) which implies that the support of ω is concentrated on
{(t, z) : q̃(t, z) = q̃sat(t, z)}.

(ii) t 7→ F (t, z) measure preserving

Since Fh → F in L1([0, T ) × [0, 1]) it follows from Lemma 4that Fh(t, ·) → F (t, ·) for Lebesgue
almost every t ∈ [0, T ). From the dominated convergence theorem, the L1 limit of measure pre-
serving maps is measure preserving.

(iii) Strong stability

This property is clear from the L1 convergence of θh and qh.

(iv) q ≤ qsat on [0, T ]× [0, 1]

That this property is satisfies is also clear from the L1 convergence of q̃h, Fh and q̃sat
h .
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Hence all of the requirements on θ̃, q̃, F and ω of Definition 2 are satisfies and hence constitutes
a weak solution to (6)–(8). 2

5 Appendix

The following lemmas are used to prove the results.

Lemma 6 Let fh → f in L1([0, 1]× [0, 1]; [0, 1]). Then for Lebesgue a.e x ∈ [0, 1] fh(x, ·) → f(x, ·)
in L1([0, 1]).

Proof: Since fh → f in L1([0, 1]× [0, 1]; [0, 1]),

0 = lim inf
h→0

∫ 1

0

∫ 1

0
|fh(x, y)− f(x, y)|dxdy

≥
∫ 1

0
lim inf

h→0

∫ 1

0
|fh(x, y)− f(x, y)|dxdy.

Hence fh(x, ·) → f(x, ·) for a.e x ∈ [0, 1] at least up to a subsequence. 2

Lemma 7 Let Ω = [0, 1]×[0, 1] be and f : Ω → R. Then f ∈ BV (Ω;R) if and only if ||f(z, ·)||BV ≤
C and ||f(·, t)||BV ≤ C for every z, t ∈ [0, 1] and some C > 0.

Proof: Taking ϕ ∈ C1
c ([0, 1]2 R2), the estimates

||Df ||TV ([0,1]2) := sup
||ϕ||L∞(Ω;R2)≤1

∫ 1

0

∫ 1

0
f(t, z)

(
∂ϕ1

∂t
+

∂ϕ2

∂z

)
dzdt

≤
∫ 1

0

∣∣∣∣
∣∣∣∣
∂f

∂z
(t, ·)

∣∣∣∣
∣∣∣∣
TV ([0,1])

dt +
∫ 1

0

∣∣∣∣
∣∣∣∣
∂f

∂t
(z, ·)

∣∣∣∣
∣∣∣∣
TV ([0,1])

dz

imply the lemma, since ||f ||BV ([0,1]2) := ||f ||L1([0,1]2) + ||Df ||TV ([0,1]2 . 2

Lemma 8 Let fk ∈ BV (R;R) with ||fk||BV ≤ C where C > 0 is independent of k. Then there
exists a subsequence {fnk

} such that,

fnk
→ f in L1(X;R),
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f ′nk
⇀ f ′ weak-* as measures .

Proof: Since fnk
are BV functions they have measure valued derivatives, f ′nk

. So,

∫
fnk

φ′dz = −
∫

f ′nk
φdz,

for some measure f ′nk
∈ M(R) when φ ∈ C1

c . Now use the weak-* compactness of M(R) along
with the uniform BV bound |f ′nk

| ≤ C to get a weak-* convergent subsequence f ′nk
→ g. The

BV compactness theorem ensures that fnk
→ f ∈ L1 ∩ BV up to taking a further subsequence.

Now, fnk
φ′ is uniformly bounded in L1 by Cφ′. By ensuring we take a subsequence that converges

pointwise Lebesgue a.e to f we can now use the dominated convergence theorem to conclude that,
∫

fφ′dz = −
∫

gφdz.

But f ∈ BV and so we know that,
∫

fφ′dz = −
∫

f ′φdz,

where f ′ is the weak measure valued derivative of f . Hence,
∫

gφdz =
∫

f ′φdz

for all φ ∈ C1
c . By choosing an interval and using Urysohns lemma it is easy to see that gdz and

f ′dz must agree on all Borel sets and hence f ′nk
→ f ′ weak ∗. 2

Lemma 9 Let (Ω, µ) be a topological space with finite borel measure µ and fh, f ∈ L1(Ω; dµ). If
fh → f , f∗h → g pointwise µ-a.e where f∗h is the increasing rearrangement of fh, then g = f∗.

Moreover, if µ = L1 is Lebesgue measure, f∗h → f∗ in L1(Ω; dµ), sh is a measure preserving
map which yields the rearrangement between f∗h and fh, sh → s in L1(Ω; dµ). Then s is a measure
preserving map which satisfies f∗ ◦ s = f .

Proof: Recalling the definition of rearrangement by Brenier, we can say
∫

Ω
F (fh(z))dµ(z) =

∫

Ω
F (f∗h(z))dµ(z), (24)
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for all F ∈ C(Rd) with |F (ξ)| ≤ K(1 + |ξ|) for some K > 0. Hence |F (fh)| ≤ K + |fh| and
|F (f∗h)| ≤ K + |f∗h |. The continuity of F , the pointwise a.e convergence of fh → f and the
assumption that fh, f ∈ L1(Ω; dµ) allows us to use the Lebesgue Dominated Convergence Theorem
to let h → 0 in the above equation, yielding

∫

Ω
F (f(z))dµ(z) =

∫

Ω
F (g(z))dµ(z). (25)

But since g is the pointwise limit of increasing functions, it is increasing. Since increasing rear-
rangements are unique it follows that g(z) = f∗(z).

Now for the second part of the lemma, first note that a simple application of the dominated con-
vergence theorem tells us that the pointwise limit of measure preserving mappings limh→0 sh := s

is measure preserving. Given ε > 0, choose N > 0 sufficiently large so that |f∗h(x) − f∗(x)| < ε

for all x ∈ Ω except on a set Ωε with |Ωε| < ε. Since sh is measure preserving, it follows that
|f∗h(sh(x)) − f∗(sh(x))| < ε uniformly except on a set Ωε

sh
= sh(Ωε) with |Ωε

sh
| < ε once again.

Hence for all x except in a set with measure no greater than ε, we have that

|f∗h(sh(x))− f∗(s(x))| ≤ |f∗h(sh(x))− f∗(sh(x))|+ |f∗(sh(x))− f∗(s(x))| < ε/2 + ε/2 = ε.

This of course means that f∗ ◦ s and f agree everywhere except for an ε-set. But ε is arbitrary and
so f∗ ◦ s = f . 2
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