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Abstract. On a smooth bounded Euclidean domain, Sobolev-subcritical
fast diffusion with vanishing boundary trace is known to lead to finite-
time extinction, with a vanishing profile selected by the initial datum.
In rescaled variables, we quantify the rate of convergence to this profile
uniformly in relative error, showing the rate is either exponentially fast
(with a rate constant predicted by the spectral gap), or algebraically slow
(which is only possible in the presence of non-integrable zero modes). In
the first case, the nonlinear dynamics are well-approximated by exponen-
tially decaying eigenmodes up to at least twice the gap; this refines and
confirms a 1980 conjecture of Berryman and Holland. We also improve
on a result of Bonforte and Figalli, by providing a new and simpler
approach which is able to accommodate the presence of zero modes, such
as those that occur when the vanishing profile fails to be isolated (and
possibly belongs to a continuum of such profiles).
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1. Introduction

Setting mq := 1− 2
n+q [DKM15], consider the fast diffusion equation with

the exponent 0 < m ∈ (m1−n
2
, 1), integrable non-negative initial data, and

Dirichlet boundary conditions, on a smooth bounded domain Ω ⊂ Rn:

(1.1)
wτ = ∆(wm) on Ω

w = 0 on ∂Ω.

This equation models heat flow in a material whose thermal conductivity
mwm−1 depends inversely on its local temperature w. With m = 1/2 it has
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also been used to model the diffusion of plasma ions across a magnetic field
in simulations [OD73] and experiments [TPO73]. For such an initial value
problem, it is known that the vanishing Dirichlet boundary conditions drive
the solution w to become extinct in finite time, e.g., [Sab62, Sab65, BH80].
To understand the vanishing profile, rescale around the extinction time
T > 0,

w(x, τ) = ((1−m)(T − τ))
1

1−m v
1
m (x, t), t =

m

1−m
ln

T

T − τ
to obtain an equation for v(x, t) with p = 1/m:

(1.2)

∂

∂t

(
vp

p

)
= ∆v + vp on Ω

v = 0 on ∂Ω.

The rescaled solution v on Ω is known to converge (both subsequentially
[BH80] and sequentially [FS00]) as t → ∞ to some unique profile V (x)
selected by the initial datum; moreover, V is a positive solution to the
stationary elliptic problem

(1.3)
∆V + V p = 0 on Ω

V = 0 on ∂Ω.

Solutions to (1.3) represent critical points of the Lyapunov functional [BH78]

(1.4) E(v) =
1

2
‖∇v‖2L2(Ω) −

1

p+ 1
‖v‖p+1

Lp+1(Ω)

for the dynamics (1.2). Sobolev subcriticality p−1 > m1−n
2

= n−2
n+2 implies

Lp+1-coercivity of the energy on the Lp+1-unit sphere, from which the
existence of positive steady states (1.3) had earlier been derived by Berger
[Ber77]. Brezis and Nirenberg showed such solutions need not be unique
however [BN83]; other uniqueness and nonuniqueness results concerning
positive solutions in specific domain geometries may be found in the works
of Gidas-Ni-Nirenberg [GNN79] on the ball, Dancer [Dan88] [Dan90] on
connected approximations to disjoint unions of balls, Damascelli-Grossi-
Pacella [DGP99] on domains with symmetry, Zou [Zou94] on rough balls,
Akagi-Kajikiya [AK14] who used instability to show that uniqueness fails on
thin annuli, so solutions and their rotations form continuous families, and
Akagi [Aka16] who showed the stability of energy minimizers. On the other
hand, Feireisl-Simondon [FS00] showed that the evolution (1.2) selects and
converges to one of the positive solutions V of (1.3) (which may depend on
the initial datum) as t→∞. They did not give a result on the convergence
rate. Later Bonforte, Grillo and Vázquez [BGV12] showed convergence in
relative error h := v−V

V , i.e.

(1.5) lim
t→∞

∥∥∥∥v(x, t)

V (x)
− 1

∥∥∥∥
L∞(Ω)

= 0,
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and provided an exponential rate of convergence in entropy sense, under a
non-degeneracy condition which they were able to verify for m close to 1.

It has been a problem of considerable interest (a) to quantify the rate of
convergence unconditionally, and (b) to predict the higher-order asymptotics
of the relative error h. In contrast to the analogous questions set on the
full space Ω = Rn, resolved in [DKM15] and its references [BBD+09] [CT00]
[CV03] [DPD02] [KM06] [Ott01], this challenge is compounded by the fact
that the linearized problem has unstable modes (including those correspond-
ing to τ -translations in the original variables, which blow up at different
times T ), and can also have zero modes, including modes called integrable
that arise e.g. for reasons of symmetry, as for the thin annuli mentioned
above. Recently, Bonforte and Figalli overcame some of these challenges to
solve (a) for C2,α-generic smooth domains including the ball [BF21]. In a
suitable Hilbert space, they show the linearized evolution of h is generated
by a self-adjoint operator possessing a complete basis of eigenfunctions. To
summarize their findings: the unstable (negative) modes cannot be active due
to Feireisl and Simondon’s convergence, and neutral (zero) modes are absent
on generic domains [ST79], in which case they show that the relative error
decays uniformly with an exponential rate λ no smaller than the first positive
eigenvalue. On arbitrary smooth domains however, such a result eludes
their techniques, which rely on the kernel of the linearized operator being
trivial, and hence the limiting profile being isolated. A simpler derivation
of the rate of exponential convergence was subsequently obtained under the
same restriction by Akagi [Aka21]; although he expresses convergence in
terms of an energy rather than the entropy or relative error, these quantities
can be compared using the boundary regularity theory of [JX22]. Finally,
Jin and Xiong showed unconditionally that the rate of convergence is at
least algebraic in t [JX20], but with a power that is not explicit. In the
present manuscript, we bridge this wide gap (between exponential upper and
algebraic lower bounds on the rate) by developing a new approach which
yields that ‖h‖L∞ either decays exponentially with rate λ or else decays
algebraically at a rate 1/t or slower. In the second case, not only must
zero modes be present, but they must be non-integrable in a sense made
precise below. Moreover, when the decay rate is exponential, we address
(b) by showing that the longtime asymptotics of the nonlinear problem are
described by the linearized dynamics up to the error e−2λt produced by
quadratic corrections. This refines and confirms a conjecture made for the
case n = 1 by Berryman and Holland [BH80].

Besides being more powerful, our approach is also simpler than Bonforte
and Figalli’s. Instead of augmenting Del Pino and Dolbeault’s nonlinear
entropy method [DPD02] with approximate orthogonality conditions, we
rely on an ODE lemma of Merle and Zaag [MZ98], which implies that the
dynamics are eventually dominated either by stable or neutral modes. We
must also control the nonlinearity by adapting parabolic regularity estimates
to the geometry of the steady state around the domain boundary. Delicately
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matching these estimates to the ODE argument allows us to estimate the rate
of convergence via the dichotomy described above. From there we use Hilbert
projection techniques to get an asymptotic expansion up to an e−2λt error.
The latter resembles Denzler, Koch and McCann’s treatment of higher-order
asymptotics in the narrower range m0 = 1 − 2

n < m < 1 of evolutions on
the unbounded domain Ω = Rn — though the linearized analysis around
the selfsimilar spreading solution described in [DKM15] [DKM16] and their
references is more subtle than the present problem, and our rate estimate
does not require us to establish differentiable dependence of the flow on initial
conditions. On the other hand, the whole space problem is not plagued
by the multiplicity and continua of limiting profiles that we presently face.
In the current setting, finer aspects of the dynamics (beyond rate 2λ) may
conceivably be described by constructing invariant manifolds, but we defer
the exploration of this possibility to future research. In the porous medium
regime (which refers to the complementary range of nonlinearities m > 1)
on the whole space Ω = Rn, such a construction was completed by one of
us [Sei14] [Sei15] following earlier work of Angenent [Ang88] for n = 1 and
Koch [Koc99] for n > 1.

The remainder of this manuscript is structured as follows. In the subse-
quent Section 2, we rewrite the problem in terms of the relative error, for
which most of our analysis is conducted, summarize the spectral theory and
introduce some notation. Along with the necessary terminology, Section
3 states our two main dichotomy results. After recalling variants of the
Merle-Zaag lemma [MZ98] due to K. Choi with Haslhofer and Hershkovits on
the one hand [CHH] and with Sun on the other [CS20], our first dichotomy —
separating fast and slow convergence — is proved in Section 4, apart from the
parabolic regularity estimates which yield a quadratic bound in the relative
error for the nonlinearity. These are postponed to Section 5. The remaining
dichotomy is established in Section 6.

2. Linearized dynamics and relative error

In terms of the relative error h := v−V
V , the dynamics (1.2) take the form

(2.1) ∂th+ LV h = N(h),

where LV is the linear operator relative to V ,

LV h = − 1

V p
∆(hV )− ph

= −V 1−p∆h− 2V −p∇V · ∇h− (p− 1)h

= −V −1−p∇ · (V 2∇h)− (p− 1)h,

and N(h) is the nonlinearity, given by

(2.2) N(h) = (1 + h)p − 1− ph+
(
1− (1 + h)p−1

)
∂th.
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Observe that N(h) = MV (h) for any solution h to (2.1), where

(2.3) MV (h) =
1

(1 + h)p−1
((1 + h)p − 1− ph) +

(
1− 1

(1 + h)p−1

)
LV h.

Indeed, solving (2.1) for ∂th, dividing by the prefactor and shifting the
nonlinearities onto the right-hand side yields N(h) = MV (h). This allows us
to exchange temporal for spatial derivatives of h in the nonlinearity. Since
in most parts of the paper the reference stationary solution is fixed, we will
often write L = LV for notational simplicity.

The relative error and the linear operator are best understood when
analyzed in suitable weighted Lebesgue and Sobolev spaces. Given σ > 0
and a positive solution V to (1.3), the weighted inner product

〈f, g〉σ =

∫
Ω
fgV σdx

makes L2
σ = L2

σ(Ω) := {f : 〈f, f〉σ < ∞} into a Hilbert space. We will
occasionally be concerned with more general Lebesgue spaces induced by the
norm

‖f‖Lqσ =

(∫
Ω
|f |q dµσ

) 1
q

,

where dµp(x) := V (x)pdx. Weighted (homegeneous) Sobolev spaces such as

Ḣ1
σ are defined analogously; c.f. (2.4) below.
Multiplication by V acts as an isometry between L2

p+1 and L2
p−1. Under

this isometry, the linear operator LV +pI is unitarily equivalent to an operator
L̃ = V ◦ (LV + pI) ◦ V −1 with compact inverse on L2

p−1, whose spectral
theory, subject to vanishing Dirichlet boundary conditions, was elucidated
by Bonforte and Figalli [BF21]: the corresponding operator L= LV is a
self-adjoint semibounded operator on L2

p+1;the spectrum of L is discrete and

the eigenfunctions form a basis of L2
p+1. They are critical points for the

restriction of the weighted Dirichlet energy

(2.4) EV (φ) = ‖φ‖2
Ḣ1

2
:=

∫
Ω
|∇φ|2V 2dx

to that subset of the Lp+1 unit-sphere for which the boundary trace of φV
vanishes. Using two nonnegative integers I and K, let us list the eigenvalues
with repetition as

λ−I ≤ . . . ≤ λ−1 < 0 = λ0 = . . . = λK−1 < λK ≤ . . . .

• The integer I represents the dimension of the unstable modes of L
(and coincides with the Morse index of E(v) from (1.4) at V ).
• K represents the dimension of kernel of L and any corresponding

eigenfunctions are called Jacobi fields.
• Let us call the eigenfunctions which correspond to λ−I to λ−1 the

unstable modes, those corresponding to λ0 to λK−1 the neutral (or
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central) modes, and the remaining eigenfunctions (starting with eigen-
value λK)the stable modes. The corresponding eigenspaces will be
denoted by Eu, Ec and Es, respectively. They are understood as
subspaces of L2

p+1, so that L2
p+1 = Eu ⊕ Ec ⊕ Es.

• λ−I = 1−p = 1− 1
m and it is actually simple (a.k.a. multiplicity 1, so

λ−I < λ1−I) with corresponding eigenfunction 1 (called the ground
state). In the original variables it corresponds to time translation
of the solution; the signs I > 0 > λ−I account for the fact that
τ -translations of a given solution disappear at different times T hence
diverge sharply from each other under the rescaling appropriate for
one of them.

Notation. We finally comment briefly on some notation that we will
frequently use throughout this work: We write a . b if there is a constant
C such that a ≤ Cb. The constant C may depend on the limiting profile V ,
the domain, and other parameters such as p = 1/m, but this dependence is
continuous under small perturbations of V in the relatively-uniform topol-
ogy generated by (3.6) below, hence C may be regarded as being locally
independent of V . We write t� 1 to indicate t must be sufficiently large.

3. Fast versus slow convergence dichotomies

Recall Bonforte, Grillo and Vázquez [BGV12] showed if V (x) is the limit

solution of v(x, t) (see [FS00]) then the relative error h(t) = v(t)
V − 1 decays

uniformly:

(3.1) ‖h‖L∞(Ω) = o(1) as t→∞.

In this section we describe two dichotomy theorems which establish that
a spectral gap gives the sharp rate of exponential convergence, unless the
linearized dynamics has a non-integrable kernel in the refined sense of Defini-
tion 3.3. When Definition 3.3 fails to be satisfied, we show the convergence
occurs either exponentially at the rate of the spectral gap or no faster that
O(1/t).

Theorem 3.1 (First dichotomy for asymptotic behavior). For 0 < m ∈
(m1−n

2
, 1) = (n−2

n+2 , 1), let Ω ⊂ Rn be a smooth bounded domain and v(x, t)≥ 0

on (x, t) ∈ Ω×[0,∞) be a bounded solution to the evolution problem (1.2). Let
V (x) be the classical solution to (1.3) satisfying (1.5). Then there exist posi-
tive constants ε = ε(V, p) and C = C(V, p) such that whenever ‖h(t)‖L∞ ≤ ε
for all t ≥ 0 exactly one of the following alternatives holds:

(1) the relative error h(t) := v(t)
V − 1 decays algebraically or slower

(3.2) C ‖h(t)‖L∞ ≥ ‖h(t)‖L2
p+1
≥ (Ct)−1 ∀ t� 1;

(2) the relative error h decays exponentially or faster,

(3.3) C−1 ‖h(t)‖L2
p+1
≤ ‖h(t)‖L∞ ≤ Ce

−λt‖h(0)‖L2
p+1

∀ t≥ 1,
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where λ = λK > 0 is the first positive eigenvalue of linearized operator
L in (2.1).

Moreover, whenever (3.3) holds for some λ ≥ λK and any C =
C(V, p, λ), if J ∈ N0 is given such that λJ < 2λ and λJ < λJ+1 =: µ,
and ϕ0, ϕ1, . . . , ϕJ are corresponding eigenfunctions chosen in such a
way that they can be extended to a complete L2

p+1 orthonormal basis,
then there are constants Ci ∈ R such that t ≥ 1 yields

(3.4)

∥∥∥∥∥h(t)−
J∑
i=0

Cie
−λitϕi

∥∥∥∥∥
L2
p+1

≤ C̃‖h(0)‖L2
p+1
×


e−2λt if µ > 2λ,

te−2λt if µ = 2λ,

e−µt if µ < 2λ,

for some C̃ = C̃(V, p, λ, C). Finally, Ci = 0 for any λi ∈ [0, λ) so, in
particular, for any i < K.

Remark 3.2. (1) The result of Bonforte-Figalli in [BF21] shows (3.3)
when K = 0 (meaning ker LV is trivial). This assumption prevents
the first alternative (3.2).

(2) As Bonforte and Figalli argued, we can relax the boundedness as-
sumption on v in Theorem 3.1 since initial conditions

v0 ∈

 L1(Ω) if m ∈ (m0, 1) = (1− 2
n , 1)⋃

q>n
2

(1−m)

Lq(Ω) if m ∈ (m1−n
2
,m0] = (n−2

n+2 , 1−
2
n ]

lead to solutions which remain bounded after any short time [DKV91].
(3) Due to Bonforte, Grillo and Vazquez result (3.1), the smallness

assumption on our initial data is no restriction either.
(4) Notice the factor t appearing in the bound (3.4) when µ = 2λ accounts

for the possibility of the kind of eigenvalue resonances described in
[Ang88].

As remarked above, triviality of the kernel, K = 0, implies exponential
decay. However, we can also show that in certain situations, exponential
decay also occurs when K > 0. For example, some kernel of L can be
obtained as a tangent variation among stationary states (as for the non-
rotationally symmetric limit states V found by Akagi and Kajikiya on thin
annuli [AK14]): if there is a one-parameter family (Vs)s∈(−s0,s0) of solutions

to (1.3) with V0 = V and ∂sV (0) 6= 0, then L(∂sV (0)
V ) = 0. If all zero modes

are accounted for by such continuous symmetries in the sense of Definition 3.3
below, exponential decay occurs in spite of the fact that K > 0. To formulate
this more precisely, consider the whole family S ⊂ H1(Ω) of weak solutions
V to the Dirichlet problem (1.3), i.e. Sobolev functions for which ϕ ∈ C1(Ω̄)
implies

(3.5)

∫
Ω
∇ϕ · ∇V dx =

∫
Ω
ϕV pdx.



8 BEOMJUN CHOI, ROBERT J. MCCANN, AND CHRISTIAN SEIS

In Lemma 5.1, we shall eventually infer S ⊂ C3,α(Ω) for some α ∈ (0, 1) and
that V/W ∈ L∞(Ω) for all V,W ∈ S. The latter implies that the sets

(3.6) Br(V ) := {W ∈ S : ‖WV − 1‖∞ < r}
form the base {Br(V )}r>0,V ∈S for a topology on S, called the relatively-
uniform topology. We call V ∈ S an ordinary limit if S forms a manifold
of dimension K = dim kerLV near V , which the error relative to V embeds
differentiably into Lp+1. More explicitly, call h a stationary relative error if it
is a time-independent solution to (2.1), or equivalently satisfies the nonlinear
(singularly) elliptic equation

(3.7) LV h = M(h), where M(h) = (1 + h)p − 1− ph;

here M(h) = N(h) = MV (h) since h is stationary.

Definition 3.3 (Ordinary limit). We say that V is an ordinary limit if there
exists a constant δ ∈ (0, 1), an L2

p+1-open neighborhood U of 0 in kerLV and

a C1 diffeomorphism

ΦV : (U , ‖ · ‖L2
p+1

)→ ({h ∈ L∞ ∩ Ḣ1
2 : LV h = M(h), ‖h‖L∞ ≤ δ}, ‖ · ‖L2

p+1
),

with the properties that

ΦV (0) = 0, (dΦV )0 = id.

In this definition, the identity map is the one on kerLV .

The point of this definition is the following theorem:

Theorem 3.4 (Second dichotomy: convergence to ordinary limits is fast).
Under the hypotheses of Theorem 3.1, if a solution to (1.2) converges to an
ordinary limit V ∈ S, then convergence takes place exponentially fast: i.e.,
(3.3) holds.

Here are some preliminary (rather formal) observations.

Remark 3.5 (Ordinary limits have integrable kernels). (1) If h(s) is a smooth
curve with LV h(s) = M(h(s)) and h(0) = 0, then ψ = ∂sh(0) ∈ kerLV .

(2) If ψ ∈ kerLV consider h(s) = ΦV (sψ) for s small. Then

LV h(s) = M(h(s)), h(0) = 0, ∂sh(0) = ψ.

This remark shows the kernel of LV satisfies the next definition if V ∈ S
is an ordinary limit.

Definition 3.6 (Integrable kernel). The kernel of LV is called integrable
if for each ϕ ∈ kerLV , there is a one-parameter family {Vs}s∈(−ε,ε) ⊂ S of

solutions to (1.3), with V0 = V and ∂sV (0)
V = ϕ.

In the context of minimal surfaces and geometric evolution equations,
analogous concepts of kernel integrability date back at least to Allard-
Almgren [AFA81] and Simon [Sim85] respectively. Simon used analyticity
to show a converse to Remark 3.5. Inspired by this, it is natural to expect
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integrability of the kernel of LV to imply that V is an ordinary limit —
though we have not verified this in the present context. Note that a limit
V can fail to be ordinary in one of three ways: either (a) S can fail to be
a manifold nearby; or (b) S can be a manifold locally which the relative
error fails to embed differentiably into L2(V p+1); or (c) locally S can be
a differentiably embedded manifold whose dimension is strictly less than
that of kerLV . It is natural to expect that limits which fail to be ordinary
are rare: To the extent that the behaviour of S mimics the stratification
and singularities of an analytic variety, we imagine that (a) occurs only on
a set having local codimension one in S. Based on the regularity results
we establish below, we are skeptical that (b) ever occurs. And inspired
by the genericity results of, e.g., Saut and Teman [ST79], we conjecture
that (c) is non-generic in the sense that there is a dense Gδ in S on which
the kernel of the linearized operator has the same dimension as S; i.e. the
extra zero modes associated with non-ordinary limits are coincidences whose
eigenvalues become non-zero upon perturbation. (A weaker conjecture is that
a perturbation of Ω as well as V preserving the dimension of S is required
to restore ordinariness.) It is these expectations that motivate our choice of
the term ‘ordinary’.

We finally translate the leading order asymptotics that we found for
the relative error back to the original fast diffusion equation (1.1) and its
convergence towards the separation-of-variables solution

(3.8) W (x, τ) = ((1−m)(T − τ))
1

1−mV (x)
1
m .

Theorem 3.7 (Quantitative approach to self-similarity in original variables).
For 0 < m ∈ (m1−n

2
, 1), let Ω ⊂ Rn be a bounded smooth domain and

w(x, τ)≥ 0 on (x, τ) ∈ Ω × [0,∞) be a bounded solution to the evolution
(1.1) converging towards the separation-of-variables solution W (x, τ) given
by (3.8). Then there exists C = C(p, V ) such that for ‖ wmWm − 1‖L∞(Ω×[0,T ])

and T − τ > 0 sufficiently small, after multiplication by (T − τ)−
1

1−m exactly
one of the following alternatives holds:

(1) the difference w −W decays logarithmically or slower,

(T − τ)−
1

1−m ‖w(τ)−W (τ)‖L1
1
≥ 1

C log2(1− τ
T )

;

(2) or the difference w −W decays algebraically or faster,

(T − τ)−
1

1−m ‖w(τ)−W (τ)‖L∞≤ C‖
wm(0)

Wm(0)
− 1‖L2

p+1
(1− τ

T
)
mλK
1−m .

Remark 3.8. Analogous estimates hold true for the relative error w(τ)
W (τ) − 1.

Proof, Case 1. We start with the logarithmic decay estimate for which we
assume that the first case in Theorem 3.1 applies. Then

1

t
. ‖h(t)‖L2

p+1
= ‖v(t)− V ‖L2

p−1
. ‖v(t)− V ‖

1
2

L1
p
,
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where we have used in the second inequality that (v−V )2 = (v+V )(v−V ) =
(h+ 2)V (v−V ) . V |v−V | by the uniform boundedness of h. Hence, by the
definitions of w and W and the relation between t and τ , the latter estimate
is equivalent to

1

log2(1− τ
T )
. (T − τ)−

m
1−m ‖w(τ)m −Wm(τ)‖L1

p
.

We now use the elementary estimate |am − bm| ≤ m
(
am−1 + bm−1

)
|a − b|

for a, b ∈ R+ to bound

|w(τ)m −W (τ)m|V p−1 .
(
w(τ)m−1 +W (τ)m−1

)
V p−1|w(τ)−W (τ)|

. (T − τ)−1

(
V p−1

v(t)p−1
+ 1

)
|w(τ)−W (τ)|.

Since V/v = 1/(h+1) is uniformly bounded by hypothesis, the above analysis
gives

1

log2(1− τ
T )
. (T − τ)−

1
1−m ‖w(τ)−W (τ)‖L1

1
,

as desired.
Case 2. We finally convert the exponential decay estimate on the relative

error into an estimate for the fast diffusion equation (1.1). From the second
case in Theorem 3.1, the definitions of W and w and the relation between t
and τ we infer

‖h(t)‖L∞ . ‖
wm(0)

Wm(0)
− 1‖L2

p+1
e−λKt . (1− τ

T
)
mλK
1−m

We shall now invoke the elementary estimate |a − 1| . |am − 1| which
holds true for a close to 1 to conclude a control on the relative error,

‖ w(τ)

W (τ)
− 1‖L∞ . ‖

wm(0)

Wm(0)
− 1‖L2

p+1
(1− τ

T
)
mλK
1−m

which yields the desired statement in view of the scaling of W and the
boundedness of V ,

‖w(τ)−W (τ)‖L∞ ≤ ‖W (τ)‖L∞‖
w(τ)−W (τ)

W (τ)
‖L∞

. (T − τ)
1

1−m ‖ w(τ)

W (τ)
− 1‖L∞ .

This concludes the proof of the theorem. �

4. Proof of first dichotomy (apart from smoothing estimates)

We start with an L2 semigroup estimate which is at the heart of our
analysis.
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Lemma 4.1 (Energy growth control under nonlinear evolution). Let h be a
solution to the nonlinear equation (2.1)–(2.2) with initial datum h0 ∈ L2

p+1,

and assume that ‖h‖L∞ ≤ ε for some ε > 0. Then there exists C > 0 such
that for ε > 0 small enough and all t > 0, the following holds:

‖h(t)‖2L2
p+1

+

∫ t

0
‖∇h‖2L2

2
dt ≤ eCt‖h0‖2L2

p+1
.

Proof. It will be convenient to consider the purely spatial form (2.3) of the
nonlinearity N(u) = MV (u) when working with (2.1)–(2.2). Then setting
dµp(x) := V (x)pdx, testing (2.1) with hV p+1 and integrating by parts, we
arrive at the identity

1

2

d

dt

∫
h2 dµp+1 +

∫
|∇h|2 dµ2

=(p− 1)

∫
h2 dµp+1 +

∫
h

(1 + h)p−1
((1 + h)p − 1− ph) dµp+1

+

∫ ((
1

1 + h

)p−1

− 1

)
|∇h|2 dµ2 + (p− 1)

∫
h

(
1

1 + h

)p
|∇h|2 dµ2

+ (p− 1)

∫ ((
1

1 + h

)p−1

− 1

)
h2 dµp+1.

Because |h| ≤ ε < 1, the right-hand side can be controlled by quadratic
expressions, more precisely,

d

dt

∫
h2 dµp+1 +

∫
|∇h|2 dµ2 .

∫
h2 dµp+1 + ε

∫
|∇h|2 dµ2.

If ε is sufficiently small, the gradient terms can be absorved into the right
hand side, and the resulting estimate can be solved with the help of a
standard Gronwall argument. This proves the lemma. �

The proof of our first dichotomy, Theorem 3.1, is based on two main
ingredients. On the one hand, our argument will rely on a fundamental
dynamical systems result that is due to Merle and Zaag [MZ98], and which
in turn improves on an earlier related result by Filippas and Kohn [FK92].
On the other hand, we have to exploit some smoothing properties of the
parabolic equation.

The Merle–Zaag lemma is concerned with a system of weakly coupled first
order ordinary differential equations featuring stable, neutral and unstable
solutions. It states that under the assumption that the unstable modes
fail to grow, the long time asymptotics are dominated by precisely one of
the other two modes. This lemma provides an effective way to extract the
quantized behaviour of the solution prescribed by the discrete spectrum
of its limit. It plays a pivotal role in recent progress on classifications
of ancient solutions (solutions defined for (−∞, T ]) to parabolic equations
[ADS20, ABDŠ, BC19, CM] and entire solutions to elliptic equations [CCK21]
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arising from geometry. In classifications of ancient flows, the lemma is applied
backward in time (i.e. t = −s). One advantage in backward problems is
that there are only finitely many stable eigenfunctions (imagine, for instance,
the laplacian ∆ has only finitely many positive eigenfunctions); this makes
the classifications possible. Meanwhile in the forward problem, there are
infinitely many stable eigenfunctions. The lemma is used to investigate the
asymptotic behavior of solutions. To obtain the stated dependencies of the
constants in our first dichotomy requires a refinement of the Merle-Zaag
Lemma due to K. Choi et al:

Lemma 4.2 (Choi-Haslhofer-Hershkovits refinement [CHH, Lemma 4.6]).
Let X(s), Y (s), and Z(s) be non-negative absolutely continuous functions
on [0,∞) satisfying X + Y + Z > 0,

dX

ds
−X ≥ −ε(Y + Z),

|dY
ds
| ≤ ε(X + Y + Z), and

dZ

ds
+ Z ≤ ε(X + Y )

for each ε ∈ (0, 1
100) and a.e. s ∈ [s0(ε),∞). If

lim
s→∞

(X + Y + Z)(s) = 0

then X ≤ 2ε(Y + Z) for s ≥ s0(ε) and either

X(s) + Z(s) = o(Y (s)) as s→∞

or

X(s) + Y (s) ≤ 100εZ(s) for s ≥ s0(ε).

Proof. A proof is given in Appendix B of [CM]. �

For later use we also recall a quantitative adaptation of the Merle Zaag
lemma to a compact time interval proved by Choi and Sun in [CS20]. In
Section 6 their result will be motivated and used to prove our second di-
chotomy.

Lemma 4.3 (Choi-Sun refinement [CS20, Lemma B.2]). Suppose X(s),
Y (s), and Z(s) are non-negative absolutely continuous functions on some
interval [−L,L] such that 0 < X + Y + Z < η for some η > 0. Suppose that
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there exist two constants σ > 0 and Λ > 0 such that
dX

ds
− ΛX ≥ −σ(Y + Z),

|dY
ds
| ≤ σ(X + Y + Z),

dZ

ds
+ ΛZ ≤ σ(X + Y ),

for any s ∈ [−L,L]. Then there exists σ0 = σ0(Λ) such that if 0 < σ < σ0 it
holds

X + Z ≤ 8σ

Λ
Y + 4ηe−

ΛL
4 for any s ∈ [−L/2, L/2].

The next proposition provides the crucial control that we need to estimate
the nonlinear terms in the relative error dynamics (2.1) quadratically:

Proposition 4.4 (Spatially uniform control of time derivatives). Let k ∈ N0

and t > 0 fixed. Then if ‖h‖L∞ ≤ ε with ε sufficiently small, there exists a
constant C = C(t, k,m, V ) such that

‖∂kt h(t)‖L∞ ≤ C‖h0‖L2
p+1
.

We postpone the proof and a discussion of this proposition to the next
subsection and show first how to deduce our first dichotomy from Lemmas
4.1–4.2 and Proposition 4.4.

Proof of Theorem 3.1. In this proof, for the sake of convention, we omit the
subscript L2

p+1 = L2(V p+1) and use ‖f‖ := ‖f‖L2
p+1

. Positive constants

ε = ε(V, p) and C = C(V, p) are not fixed yet, ε may become smaller, and C
may become larger until they are fixed.

Let us denote by Ps, Pc and Pu the orthogonal projections of L2
p+1 onto

the stable, center, and unstable eigenspaces Es, Ec and Eu, respectively.
Moreover, we write hs = Psh, hc = Pch, and hu = Puh for the projected
solutions. A straightforward computation reveals that

(4.1)

d

dt
‖hu‖ ≥ −λ−1‖hu‖ − ‖N(h)‖,∣∣∣∣ ddt‖hc‖

∣∣∣∣ ≤ ‖N(h)‖,

d

dt
‖hs‖ ≤ −λK‖hs‖ + ‖N(h)‖,

where we recall λ−1 and λK are the negative and positive eigenvalues of
L= LV closest to zero. As an example, for the case of the evolution on the
stable subspace, we observe that

(4.2) ∂ths + Lhs = PsN(h),

and testing with hsV
p+1 gives

1

2

d

dt
‖hs‖2 + 〈hs, Lhs〉 = 〈hs, N(h)〉.
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The third estimate in (4.1) now results from the lower bound on the stable
eigenvalues and the Cauchy–Schwarz inequality. The first and the second
estimates are derived analogously.

In order to estimate the nonlinearities in (4.1), we note that for |h| ≤ ε,
(provided that ε is sufficiently small) there is C1 = C1(p) such that

(4.3)
|N(h)| ≤ C1|h| (|h|+ |∂th|)

≤ C1|h| (|h|+ C ‖h(t− 1)‖)
by Taylor expansion followed by the smoothing estimates of Proposition 4.4
for t ≥ 1. By virtue of Bonforte, Grillo and Vázquez’ [BGV12] uniform
bound on the relative error (3.1), for any small ε̂ > 0 there exists a time
t0(ε̂) such that

(4.4) ‖N(h(t))‖ ≤ ε̂‖h(t)‖ for any t ≥ t0(ε̂).

Plugging this estimate into (4.1), we observe that if h 6= 0, then hs, hc and hu
satisfy the hypothesis Lemma 4.2 with s = λt where λ := 1

2 min(|λ−1|, |λK |).
Therefore, unless h is stationary (and thus trivial), either

(4.5) ‖hu‖ + ‖hs‖ = o(‖hc‖)
or

(4.6) ‖hu‖ + ‖hc‖ ≤
100ε̂

λ
‖hs‖ for t ≥ t0(ε̂).

Note in particular, the second alternative (4.6) implies ‖hu‖+‖hc‖ = o(‖hs‖).
We discuss the implications of each case individually, starting from the latter
case (4.6).
Case 2. First, by choosing ε = ε(V, p) sufficiently small, we may assume
‖hu‖ + ‖hc‖ ≤ 1

2‖hs‖ for all t ≥ 1. Here, note that t ≥ 1 is needed as
Proposition 4.4 is applied to estimate N(h). Moreover, by the same argument
we used to derive (4.4), there is C2 = C2(V, p) such that

‖N(h(t))‖ ≤ C2ε‖h(t)‖ for t ≥ 1.

Combining above, the estimate of the nonlinearity (4.4) becomes

‖N(h(t))‖ ≤ C2ε‖h(t)‖ ≤ 2C2ε‖hs(t)‖,
for t ≥ 1. The third estimate in (4.1) thus turns into the differential inequality

d

dt
‖hs‖ ≤ −(λK − 2C2ε)‖hs‖,

for t ≥ 1, which yields via a Gronwall argument

‖hs(t)‖ ≤ e−(λK−2C2ε)(t−1)‖hs(1)‖.
By another application of (4.6) and the semigroup estimate from Lemma 4.1,
this estimate can be translated into the full solution

(4.7) ‖h(t)‖ . e−(λK−2C2ε)t‖h0‖.
To improve this inequality by removing the ε, fix ε small so that 2C2ε <

1
2λK , and refine the estimate of the nonlinearity with the help of the quadratic
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bound (4.3), the smoothing estimates from Proposition 4.4 and the previous
estimate (4.7),

‖N(h(t))‖ . (‖h(t)‖L∞ + ‖∂th(t)‖L∞) ‖h(t)‖
. ‖h(t− 1)‖‖h(t)‖

. e−2(λK−2C2ε)t‖h0‖2,

for t ≥ 1. Substitution into the third estimate of (4.1) finally establishes a
differential inequality, which yields

‖h(t)‖ . e−λKt‖h0‖,

via (4.6), for all t ≥ 0 (recalling ‖h1‖ . ‖h0‖ from Lemma 4.1). By another
application of Proposition 4.4, this estimate can be upgraded towards a
uniform convergence result,

‖h(t)‖L∞ . e−λKt‖h0‖,

for t ≥ 1. Having established (3.3), it remains to identify the leading order
expansion (3.4). Let us begin by noting that whenever (3.3) holds for some
λ ≥ λK and any C, repeating the previous estimate on the nonlinearity
yields the improvement

(4.8) ‖N(h(t))‖≤ C̃e−2λt‖h0‖2

for t ≥ 1, where C̃ = C̃(V, p, λ, C). Since the nonlinearity is quadratic, modes
corresponding to eigenvalues in the interval [0, 2λ) are accessible via a simple
ODE argument. For any i, the projection yi = 〈h, ϕi〉 satisfies the differential
inequality ∣∣∣∣ ddtyi + λiyi

∣∣∣∣ ≤ ‖N(h)‖,

which can be rewritten as∣∣∣∣ ddt(eλityi)
∣∣∣∣ . e−(2λ−λi)t,

as a consequence of (4.8). Integration in time thus yields for any T ≥ t≥ 1
that ∣∣∣eλityi(t)− eλiT yi(T )

∣∣∣ . e−(2λ−λi)t,

where we have used the fact that λi < 2λ. This bounds implies that
T 7→ eλiT yi(T ) is a Cauchy sequence, so that, sending T →∞, we find

(4.9) 〈h(t), ϕi〉 = yi(t) = Cie
−λit +O(e−2λt)

for some Ci ∈ R.
We now estimate with the help of the decomposition h = hs + hc + hu,

the triangle inequality and the fact that the eigenfunctions ϕ0, . . . , ϕJ are
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orthonormal that

(4.10) ‖h−
J∑
i=0

Cie
−λitϕi‖ ≤

J∑
i=0

|yi−Cie−tλi |+‖hs−
J∑
i=0

yiϕi‖+‖hc‖+‖hu‖.

We have just seen that the first term on the right-hand side is . e−2λt.
Recalling the spectral decomposition of L and (4.2), the next contribution,

z = ‖hs −
∑J

i=1 yiϕi‖ satisfies the differential inequality

(4.11)
d

dt
z + µz ≤ ‖N(h)‖.

Similarly to the argumentation above, we rewrite (4.11) as

d

dt
(eµtz) . e−(2λ−µ)t,

and deduce that

(4.12) z(t) .


e−2λt if µ > 2λ,

te−2λt if µ = 2λ,

e−µt if µ < 2λ,

via integration.
Finally, regarding the remaining terms in (4.10), the first two estimates in

(4.1) imply that
d

dt
‖hc‖+

d

dt
‖hu‖ & −e−2λt,

and thus, an integration from t to ∞ gives, thanks to the fact that ‖hc‖ +
‖hu‖ → 0 as t→∞,

(4.13) ‖hc(t)‖ + ‖hu(t)‖ . e−2λt.

Therefore, substituting (4.9), (4.12), and (4.13) into (4.10), we deduce
that ∥∥∥∥∥h(t)−

J∑
i=0

Ciϕie
−λit

∥∥∥∥∥ .

e−2λt if µ > 2λ,

te−2λt if µ = 2λ,

e−µt if µ < 2λ

as desired. If Ci 6= 0 for some λi ∈ [0, λ), then (3.4) contradicts (3.3); thus
λi ≥ λ as asserted.
Case 1. In case the neutral modes are dominating (4.5), an estimate
analogously to the one in Case 2 above gives rise to the bound

‖N(h(t))‖ ≤ 2C2ε‖hc(t)‖,

provided that t ≥ tc for some tc large enough. By plugging this into the
middle equation of (4.1), we find

d

dt
‖hc‖ ≥ −2C2ε‖hc‖,
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and thus, via (4.5),

‖h(t+ 1)‖ ≥ ‖hc(t+ 1)‖ & ‖hc(t)‖ & ‖h(t)‖,
for any t ≥ tc. With this information at hand, we may reconsider our previous
bound on the nonlinearity. This time, making use of the pointwise estimate
in (4.3) and the smoothing properties from Proposition 4.4, we have

‖N(h(t))‖ . ‖h(t− 1)‖‖h(t)‖ . ‖h(t)‖2 . ‖hc(t)‖2,
for any t ≥ tc, for some (possibly larger) tc. The second estimate in (4.1)
now turns into the growth condition

d

dt
‖hc(t)‖ & −‖hc(t)‖2,

which yields the lower bound

‖h(t)‖ ≥ ‖hc(t)‖ &
1

t
,

if t ≥ tc for some tc.
This concludes the proof of Theorem 3.1. �

5. Smoothing estimates

In this section, we use parabolic regularity techniques to prove Propo-
sition 4.4. We remark that optimal (boundary) regularity estimates were
derived recently by Jin and Xiong for the rescaled solution v of (1.2) rather
than the relative error h [JX19]. However, from Theorem 5.1 in their paper
we easily infer that

(5.1) ∂kt h ∈ C0((τ,∞)× Ω),

for any k ∈ N and τ > 0. This insight will simplify the derivation of our
regularity estimates substantially.

Smoothing features are typical for parabolic equations and they remain true
in the time and tangential directios for the singular parabolic equation under
consideration, see (5.1) and Corollary 5.12. In transversal direction, regularity
is limited (if p is not an integer) [JX19]. Indeed, simple scaling arguments for
the elliptic problem suggest that V (x) ∼ a dist(x, ∂Ω)+bdist(x, ∂Ω)p+2 close
to the boundary, and the same behavior can be expected for the parabolic
problem (1.2).

For deriving the smoothing estimates in Proposition 4.4, we notice that
the leading order contribution in the nonlinearity (2.2) is of the order
|h||∂th| . ε|∂th|, and plays thus the role of a perturbation term in reg-
ularity estimates. Moreover, the equation is invariant under differentiation
in time and in tangential coordinates near the domain boundary (at least
with regard to the leading order contributions), and thus, regularity in these
variables is propagated and even further increased by parabolicity. We deal
with higher-order derivatives of the nonlinearity by applying suitable inter-
polations, so that eventually, derivatives of the nonlinearity will play the role
of perturbations similarly to the nonlinearity itself as discussed above. Of



18 BEOMJUN CHOI, ROBERT J. MCCANN, AND CHRISTIAN SEIS

course, smoothing proceeds instantaneously but not uniformly in time. For
this reason, the estimates in or behind Proposition 4.4, Equation (5.1) or
Corollary 5.12 deteriorate as t→ 0.

Before addressing the dynamical problem, we need to estimate the first
three derivatives for weak solutions of the nonlinear elliptic problem (1.3),
starting from the known result (5.2). Later we’ll see that higher-order
tangential derivatives of this solution can also be estimated near the domain
boundary.

Lemma 5.1 (Regularity of asymptotic profile). For any α ∈ (0, 1) with
α ≤ p− 1, if V ∈ H1(Ω) satisfies (3.5) for all ϕ ∈ C1(Ω̄), then V ∈ C3,α(Ω)
and for any x ∈ Ω,

dist(x, ∂Ω) . V (x) . dist(x, ∂Ω),(5.2)

and |∇V (x)|, |∇2V (x)|, |∇3V (x)| . 1(5.3)

hold. Furthermore, there exists an r & 1 such that

(5.4) |∇V (x)| & 1,

for any x ∈ Ω with dist(x, ∂Ω) ≤ r.

Proof. For a fixed V ∈ S, the first estimate is established, for instance,
in Theorem 1.1 in [DKV91] (on the level of the evolutionary problem) or
Theorem 5.9 in [BGV13]; the form of (5.2) makes it clear that the constants
depend continuously on V in the relatively-uniform topology on S. The
second and the third estimate follow from maximal regularity estimates and
Sobolev embeddings. Indeed, since V ∈ L∞(Ω) thanks to (5.2), we must
have that V ∈ W 2,q(Ω) for any q ∈ (1,∞) based on Calderón–Zygmund
estimates for the elliptic problem (1.3), see, e.g., Chapter 11 in [Kry08], and
thus V ∈ C1,α(Ω̄) for any α ∈ (0, 1) by Sobolev embeddings. It follows that
∂iV

p = pV p−1∂iV ∈ C0,α(Ω̄) provided that α ≤ p− 1, and thus one spatial
derivative of the equation shows V ∈ C3,α(Ω̄) by Schauder estimates, see,
e.g., Chapter 6 in [GT01].

The statement in (5.4) is a consequence of the above. Indeed, according to
(5.2), at the boundary V grows linearly in the direction of the inner normal.
By the estimates (5.3), we must thus have (5.4) in a neighborhood of the
boundary. �

Our first step in the derivation of the smoothing estimates is a maximal
regularity estimate for the linearization of (2.1). More precisely, we consider
the inhomogeneous linear equation

(5.5) ∂th− V −1−p∇ · (V 2∇h) = (p− 1)h+ f,

with zero initial data. For general initial data h0 ∈ L2
p+1 and inhomo-

geneities f ∈ L1((0, T );L2
p+1), a solution is always understood in the weak

sense. A weak solution of (5.5) refers to a function h ∈ L∞((0, T );L2
p+1) ∩
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L2((0, T ); Ḣ1
2 ) in the spaces provided by Lemma 4.1 such that

(5.6)

−
∫∫

(0,T )×Ω
h∂tϕdµp+1dt+

∫∫
(0,T )×Ω

∇ϕ · ∇h dµ2dt

=

∫∫
(0,T )×Ω

((p− 1)h+ f)ϕdµp+1dt+

∫
Ω
ϕ|t=0 h0 dµp+1,

for any ϕ ∈ C1
c ([0, T ) × Ω̄) of compact support. It should be stressed

that we do not impose spatial boundary conditions on h in the parabolic
problem (5.5), which turns out to be well-posed (only) in this case. This is
a consequence of the observation that by (formally) integrating by parts in
the gradient term in the weak formulation (5.6), the boundary term vanishes
thanks to the Dirichlet boundary conditions satisfied by V , see (1.3).

Existence of weak solutions can be derived via standard methods, for
instance, via Galerkin approximations based on an L2

p+1 orthonormal basis
consisting of eigenfunctions of the linear operator L= LV . Moreover, from
standard energy estimates (derived similarly to those in Lemma 4.1), we
infer the uniqueness of weak solutions.

What is a crucial tool in our theory is a maximal regularity estimate
for the linear equation (5.5), that we consider, for convenience, with L2

2p

inhomogenity and zero initial data, see Proposition 5.5 below.
In the interior of Ω, maximal regularity for the parabolic problem (5.5)

follows by standard theory, see, e.g., Chapter 7.1 in [Eva10], because the
diffusivity coefficients are strictly positive in the interior as a consequence of
(5.2). We shall thus focus on the boundary from here on and we fix x0 ∈ ∂Ω.
Let η denote a cut-off function on Rn interpolating smoothly between η = 1
in Br(x0) and η = 0 outside of B2r(x0).

A short computation reveals that the localized solution H = ηh satisfies
the problem

(5.7) ∂tH − V −1−p∇ · (V 2∇H) = F +G,

where F and G are given by

F = ηf, G = −2V 1−p∇η · ∇h− V 1−ph∆η − 2V −ph∇V · ∇η.
The following lemma guarantees that G belongs to L2(L2

2p) provided that

h ∈ L2(L2
p+1) ∩ L2(Ḣ1

2 ), which is assumed for our weak solutions.

Lemma 5.2 (Weighted Poincaré / Hardy type inequality). All h ∈ L2
p+1∩Ḣ1

2

satisfy
‖h‖L2 . ‖h‖L2

p+1
+ ‖∇h‖L2

2
.

In particular, it holds that

‖h‖L2
p+1
. ‖h‖L2

2p
+ ‖∇h‖L2

2
.

The proof of the first statement is based on an interpolation argument
and the properties of the limit V . The latter then follows via Hölder’s and
Young’s estimate.
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Proof. We start considering the first estimate. Because C∞(Ω̄) is dense in

L2
p+1 ∩ Ḣ1

2 , cf. Lemma 2 in [Sei14], it is enough to establish the estimate
for smooth functions. We first notice that an integration by parts and the
defining properties of V in (1.3) yield∫

h2|∇V |2 dx = −
∫
h2V∆V dx− 2

∫
h∇h · V∇V dx

=

∫
h2V p+1 dx− 2

∫
h∇h · V∇V dx.

Making use of the elementary inequality ab ≤ a2 + b2/4 thus gives

‖h|∇V |‖L2 . ‖h‖L2
p+1

+ ‖∇h‖L2
2
.

The first statement of the lemma is now a consequence of the fact that
1 . V p+1 + |∇V |, which holds true thanks to Lemma 5.1.

For the second statement, we apply Hölder’s inequality, and the previous
bound to estimate

‖h‖L2
p+1
≤ ‖h‖

p+1
2p

L2
2p
‖h‖

p−1
2p

L2 . ‖h‖
p+1
2p

L2
2p
‖h‖

p−1
2p

L2
p+1

+ ‖h‖
p+1
2p

L2
2p
‖∇h‖

p−1
2p

L2
2
.

The desired result is then a consequence of Young’s inequality ab . aq + bq
′

for any Hölder conjugates q and q′. �

We shall now flatten the boundary. Upon a rotation of the coordinate
system, we may assume that the boundary inside Br(x0) can be written as a
graph of a function γ, for instance,

Ω ∩B2r(x0) =
{
x = (x′, xn) ∈ B2r(x0) : xn > γ(x′)

}
.

We set x̂ = φ(x) = (x′, xn − γ(x′)), which defines a diffeomorphism in the
support of η, and maps the boundary ∂Ω into the hypersurface Rn−1 × {0}.
In terms of Ĥ(t, x̂) = H(t, x), V̂ (x̂) = V (x), F̂ (t, x̂) = F (t, x), and Ĝ(t, x̂) =
G(t, x) the localized equation (5.7) becomes

(5.8) ∂tĤ − V̂ −1−p∇̂ · (V̂ 2A∇̂Ĥ) = F̂ + Ĝ,

where

A =

(
I −∇′γ

−(∇′γ)T 1 + |∇′γ|2
)
.

Notice that the transformed equation (5.8) has to be considered on the
halfspace Rn

+.
The advantage of (5.8) over the (5.5) is that in the new variables, the

weight and its tangential derivatives can be estimated by the distance to the
flattened boundary.

Lemma 5.3 (Derivatives of asymptotic profile parallel to flattened bound-
ary). For any x̂ ∈ φ(Ω ∩B2r(x0)) and k ∈ N, both

x̂n . V̂ (x̂) . x̂n
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and

(5.9) |Dk
x̂′ V̂ (x̂)| . x̂n,

hold. Moreover, V̂ /x̂n belongs to C2,α for some α ∈ (0, 1) with α ≤ p− 1.

Proof. We start by noticing that the boundary estimate (5.2) translates into

(5.10) x̂n . V̂ (x̂) . x̂n

under the change of variables. Indeed, since

dist(x, ∂Ω)2 = inf
y′∈Rn−1

(
|x′ − y′|2 + (xn − γ(y′))2

)
,

on the one hand, by choosing y′ = x′, we immediately deduce that

dist(x, ∂Ω) ≤ xn − γ(x′) = x̂n.

On the other hand, as the minimizer y′ solves the optimality condition
x′ − y′ = (xn − γ(y′))∇′γ(y′), we find

x̂n ≤ |xn − γ(y′)|+ ‖∇′γ‖L∞ |x′ − y′| ≤
(
1 + ‖∇′γ‖L∞

)
dist(x, ∂Ω).

Thus dist(x, ∂Ω) is comparable to x̂n, which implies (5.10) via (5.2).
We have to show that this estimate remains true for tangential derivatives.

Since Lemma 5.1 asserts V̂ ∈ C3,α, (5.9) follows directly for k ∈ {0, 1, 2}
via Taylor expansion because the homogeneous boundary conditions are
invariant under differentiation in tangential direction. For larger values of
k, we have to transform the elliptic equation (1.3) into a problem on the
half-space. In a similar way as we transformed the parabolic equation, we
find that

−∇̂ · (A∇̂(η̂V̂ )) = η̂V̂ p +B · ∇V̂ + CV̂ ,

for some smooth and bounded functions B and C on Rn
+ that depend only

on the regularity and the shape of the boundary ∂Ω. Differentiating with
respect to tangential variables xi for any i < n, we find

−∇̂ · (A∇̂(η̂∂x̂i V̂ )) = f

with f ∈ C1,α, since e.g. Lemma 5.1 shows ∂x̂i(V̂
p) = pV̂ p ∂x̂i V̂

V̂
to be the

product of a C3,α function with a ratio in which the C2,α numerator and C3,α

denominator both vanish linearly at the halfspace boundary. On any smooth
bounded subdomain of the halfspace containing φ(Ω ∩ B2r(x0)), Schauder

theory (e.g., Chapter 6 in [GT01]), then implies η̂∂x̂i V̂ ∈ C3,α so that (5.9)
holds for k = 3. For larger k, choosing a sequence η̂k−1 > η̂k of nested cutoffs
satisfying the same hypotheses as η̂3 = η̂, and a multi-index β ∈ Nn−1

0 × {0}
consisting of |β| = k − 2 tangential derivatives yields

−∇̂ · (A∇̂(η̂kD̂
βV̂ )) = fβ.

Induction on k gives fβ ∈ C1,α hence η̂kD̂
βV̂ ∈ C3,α and (5.9) for all k; this

induction relies on the decay already established for the derivatives of V
which appear in the p-homogeneous nonlinearities, (and the fact that of the
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k − 1 derivatives of V that contribute elsewhere to fβ, all but two are in
tangential directions).

Finally, the third statement of the lemma follows from Lemma 5.1 and
Taylor expansion. �

It follows immediately from the preceding lemma that the problem in (5.8)
can be further rewritten as

(5.11) ∂tĤ − x̂−1−p
n ∇̂ · (x̂2

nÃ∇̂Ĥ) = F̃ + G̃,

for some new elliptic Ã, and where G̃ is the sum of Ĝ and other lower-order
terms of the same class. The weak formulation in (5.5) now turns into

(5.12)

−
∫∫

(0,T )×Rn
+

Ĥ∂tϕ̂ dµ̂p+1dt+

∫∫
(0,T )×Rn

+

∇̂ϕ̂ · Ã∇̂Ĥ dµ̂2dt

=

∫∫
(0,T )×Rn

+

ϕ̂(F̂ + G̃) dµ̂p+1dt+

∫
Rn

+

Ĥ0 ϕ̂|t=0 dµ̂p+1,

for any ϕ̂ ∈ L2(L2
2) ∩ L2(Ḣ1

2 ) ∩ Ḣ1(L2
p+1) vanishing near the endpoint T .

We now prove maximal regularity for the problem in (5.11).

Lemma 5.4 (Maximal regularity for linearized inhomogeneous halfspace

problem). Let F̃ and G̃ be given in L2(L2
2p) and let Ĥ ∈ L2(L2

p+1) ∩ L2(Ḣ1
2 )

be a weak solution of (5.11) with zero initial data. Then Ĥ ∈ L2(Ḣ1) ∩
L2(Ḣ2

2 ) ∩ Ḣ1(L2
2p) ∩ C0(L2

p+1) with

‖∇̂Ĥ‖L∞(L2
p+1) + ‖∂tĤ‖L2(L2

2p) + ‖∇̂Ĥ‖L2(L2) + ‖∇2Ĥ‖L2(L2
2)

. ‖F̃‖L2(L2
2p) + ‖G̃‖L2(L2

2p) + ‖∇̂Ĥ‖L2(L2
2) + ‖Ĥ‖L2(L2

2p).

Proof. In order to simplify the notation, we drop the hats and tildes from
here on. Moreover, we set G = 0. We will here only give formal arguments.
The estimates can be derived rigorously by approximating F smoothly and
using suitable finite difference quotient approximations for the test functions,
see, e.g., Chapter 6.3 in [Eva10].

In a first step, we use (an approximation with smooth cut-offs in time
of) ϕ = −χ(0,T )∂

2
kH for some k ∈ {1, . . . , n− 1} as a test function in (5.12),

where χ(0,T ) is the characteristic function for the time interval, and we obtain∫∫
(0,∞)×Rn

+

H∂2
k∂t(χ(0,T )H) dµp+1dt−

∫∫
(0,T )×Rn

+

∇(∂2
kH) ·A∇H dµ2dt

= −
∫∫

(0,T )×Rn
+

∂2
kHF dµp+1dt.
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Multiple integrations by parts then yield
(5.13)
1

2

∫ T

0

d

dt

∫
Rn

+

(∂kH)2 dµp+1dt+

∫∫
(0,T )×Rn

+

∇∂kH ·A∇∂kH dµ2dt

= −
∫∫

(0,T )×Rn
+

∂2
kHF dµp+1dt−

∫∫
(0,T )×Rn

+

∇∂kH · (∂kA)∇H dµ2dt,

and invoking the ellipticity of the matrix A, the Cauchy–Schwarz inequality
and recalling that H was assumed to have zero initial data yields

‖∂kH‖L∞(L2
p+1) + ‖∇∂kH‖L2(L2

2) . ‖∂2
kH‖

1
2

L2(L2
2)
‖F‖

1
2

L2(L2
2p)

+ ‖∇H‖L2(L2
2).

Via the elementary estimate ab . εa2 + ε−1b2, we can control the second
order term on the right-hand side. We have thus derived the desired control
over the second order tangential and mixed derivatives, namely

‖∂kH‖L∞(L2
p+1) + ‖∇∂kH‖L2(L2

2) . ‖F‖L2(L2
2p) + ‖∇H‖L2(L2

2).

Moreover, an application of Lemma 5.2 provides also the control over the
first order tangential derivatives, because p+ 1 > 2 implies:

‖x−pn ∂kH‖L2
2p

= ‖∂kH‖L2 . ‖∂kH‖L2
p+1

+ ‖∇∂kH‖L2
2
.

Notice that a replacing the time interval (0, T ) in (5.13) by (t, t+ ε) shows
also the continuity of ‖∂kH‖L2

p+1
in time.

In order to control the transversal derivatives, it is now enough to focus
on the xn variable, and thus study the one-dimensional problem

∂tH − x−1−p
n ∂n(x2

nAnn∂nH) = F,

because all the other terms that appear in (5.11) are now known to belong
to L2

2p. In order to simplify the notation further, we drop the subscripted n’s
in the rest of the proof. Furthermore, the problem becomes more accessible
if we freeze the diffusivity function A at an arbitrary point x∗. That is, we
study the equation

∂tH −A∗x−1−p∂x(x2∂xH) = F − x−1−p∂x(x2(A∗ −A)∂xH),

where we have set A∗ = A(x∗). Thanks to the regularity of A, it holds that
|A∗ −A(x)| . δ for x and x∗ in the interval (0, δ). We should thus localize
the problem further by smuggling in a cut-off function η satisfying η = 1 in
(0, δ) and vanishing outside of (0, 2δ). This way, we are led to considering

∂t(ηH)−A∗x−1−p∂x(x2∂x(ηH))

= ηF + (A−A∗)x−1−p∂x(x2∂x(ηH))− 2x1−p∂xηA∂xH

− 2x−p∂xηAH + x1−pη∂xA∂xH − x1−p∂2
xηAH,
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and we write F̃ for the right-hand side for brevity and set H̃ = ηH. Now, if
we can show that

(5.14) ‖∂tH̃‖L2
2p

+ ‖∂xH̃‖L2 + ‖∂2
xH̃‖L2

2
. ‖F̃‖L2

2p
,

the statement follows if δ is sufficiently small, because

‖F̃‖L2
2p
. ‖F‖L2

2p
+ δ‖∂xH̃‖L2 + δ‖∂2

xH̃‖L2
2

+
1

δ
‖∂xH‖L2

2
+

1

δ
‖H‖L2 ,

by the regularity of A and the properties of the cut-off function. In view of
the interpolation Lemma 5.2, the L2 norm on H can be replaced by the L2

2p

as in the statement of the lemma.
We have now reduced the multi-dimensional problem with variable coeffi-

cients (5.11) to a one-dimension problem with constant coefficient,

∂tH̃ −A∗x−1−p∂x(x2∂xH̃) = F̃ .

We have to do one more transformation in order to arrive at a problem that
is better behaved. Indeed, if we change variables x̌ = xp+1, ť = A∗(p+ 1)2t,

Ȟ(ť, x̌) = H̃(t, x) and F̌ (ť, x̌) = F̃ (t, x) the above equation turns into

∂ťȞ − x̌−σ∂x̌(x̌σ+1∂x̌Ȟ) = F̌ ,

where σ = 1
p+1 . This is precisely the linear version of the parabolic equation

that characterizes the porous medium dynamics in a neighborhood of the
Barenblatt solution as studied earlier in [Koc99, Kie16, Sei15]. It is well-
understood: Calderón–Zygmund and Muckenhoupt theory is available and
provides estimates

‖∂ťȞ‖L2
q

+ ‖∂x̌Ȟ‖L2
q

+ ‖∂2
x̌Ȟ‖L2

q+2
. ‖F̌‖L2

q
,

for any q ∈ (−1, 2(σ + 1)− 1), see the proofs of Proposition 3.23 in [Kie16]
or Proposition 4.23 in [Sei15]. Our choice is q = p

p+1 , which is equivalent to

(5.14).
�

We summarize our findings as follows:

Proposition 5.5 (Linear inhomogenous a priori estimates). Let h be a
weak solution to the linear equation (5.5) with zero initial datum and f ∈
L2(L2

2p)∩L1(L2
p+1). Then for all T > 0, the following holds:

(5.15)
‖∇h‖L∞((0,T );L2

p+1) + ‖∂th‖L2((0,T );L2
2p) + ‖∇h‖L2((0,T );L2) + ‖∇2h‖L2((0,T );L2

2)

. ‖f‖L2((0,T );L2
2p) + ‖h‖L2((0,T );L2

2p).

Proof. Since Ω ⊂ Rn is bounded, its boundary can be covered by finitely
many open balls, sufficiently small that within each of them, the boundary
can be expressed as a graph over any of its tangent planes. The complement
of these open sets in Ω can be covered by one additional open set compactly
contained in the interior of Ω. Choosing a partition of unity subordinate
to this covering, we flatten the boundary in each of the covering balls and
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apply Lemma 5.4. The analogous estimates in the interior of Ω follow from
standard parabolic estimates and the boundedness of log V . Combining these
estimates in the original variables using the partition of unity, the proposition
follows from a linear analog of Lemma 4.1. �

This maximal regularity result can be easily combined with the energy
estimate for the nonlinear problem.

Lemma 5.6 (Nonlinear smoothing 1). Let h be a solution to the nonlinear
equation (2.1) with initial datum h0 ∈ L2

p+1 and assume that ‖h‖L∞ ≤ ε
for some ε > 0 small enough. Then, for any 0 < τ < 1 < T there exists
C = C(τ, T, n, p, V ) such that
(5.16)
‖∂th‖L2((τ,T );L2

2p)) + ‖∇h‖L2((τ,T );L2(L2)) + ‖∇2h‖L2((τ,T );L2
2)) ≤ C‖h0‖L2

p+1
.

Proof. We denote by ζ a smooth cut-off function that is 1 in the time interval
[τ, T ] and zero in [0, τ/2]. We localize the evolution (2.1) with the help of
this function

(5.17) ∂t(ζh)− V −1−p∇ · (V 2∇(ζh)) = (p− 1)ζh+ h∂tζ + ζN(h),

and apply the maximal regularity estimate from Proposition 5.5 to the effect
that

‖∂t(ζh)‖L2(L2
2p) + ‖∇(ζh)‖L2(L2) + ‖∇2(ζh)‖L2(L2

2)

. ‖ζh‖L2(L2
2p) + ‖h∂tζ‖L2(L2

2p) + ‖ζN(h)‖L2(L2
2p).

Thanks to the particular structure of the nonlinearity (2.2), the third term
on the right hand side can be estimated by

‖ζN(h)‖L2(L2
2p) . ‖h∂tζ‖L2(L2

2p) + ‖ζh‖L2(L2
2p) + ε‖∂t(ζh)‖L2(L2

2p).

Using the fact that L2
p+1 embeds continuously into L2

2p by the virtue of (5.2),
the above estimates combine with the pointwise bounds from Lemma 4.1 to
give

‖∂t(ζh)‖L2(L2
2p) + ‖∇(ζh)‖L2(L2) + ‖∇2(ζh)‖L2(L2

2)

≤ C
(
ε‖∂t(ζh)‖L2(L2

2p) + ‖h0‖L2
p+1

)
.

Choosing ε small enough and invoking the properties of the cut-off function
yields the statement of the lemma. �

Before turning to higher-order derivatives, we use integration by parts to
establish a class of interpolation inequalities which will allow us to control
the effects of the nonlinearity.

Lemma 5.7 (Interpolation). Let ψ ∈ C∞c (Rn) be given, q ≥ 2 and k, ` ∈ N
with k > `. Then it holds

‖ψ|D`h|
k
` ‖Lq . ‖h‖

k−`
`

L∞

k−1∑
m=0

‖DmψDk−mh‖Lq .
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Proof. To keep the notation as simple as possible, we perform a rather
symbolic calculation. That is, we write ∂m for some partial derivative of
mth order, ∂m = ∂αx with |α| = m. In our argument, the precise value of α
is not of importance.

We start with an integration by parts to notice that∫
|ψ|q|∂`h|

kq
` dx

=

∫
|ψ|q∂`h∂`h|∂`h|

kq−2`
` dx

.
∫
|ψ|q|∂`−1h||∂`+1h||∂`h|

kq−2`
` dx+

∫
|ψ|q−1|∂ψ||∂`−1h||∂`h|

kq−`
` dx

.

(∫
|ψ|q|∂`−1h|

kq
`−1 dx

) `−1
kq
(∫
|ψ|q|∂`+1h|

kq
`+1 dx

) `+1
kq
(∫
|ψ|q|∂`h|

kq
` dx

) kq−2`
kq

+

(∫
|ψ|q|∂`−1h|

kq
`−1 dx

) `−1
kq
(∫
|ψ|q|∂`h|

kq
` dx

) kq−k−`+1
kq

(∫
|∂ψ|q|∂`h|

(k−1)q
` dx

) 1
q

,

where the last estimates follow from Hölder’s inequality. Here, we employ
the convention that(∫

|ψ|q|∂`−1h|
kq
`−1 dx

) `−1
kq

= ‖h‖L∞ for ` = 1.

Applying Young’s inequality in the form ab . εa
1
θ + Cε,θb

1
1−θ for some

arbitrarily small ε and θ ∈ (0, 1) to the right hand side yields∫
|ψ|q|∂`h|

kq
` dx .

(∫
|ψ|q|∂`−1h|

kq
`−1 dx

) `−1
2`
(∫
|ψ|q|∂`+1h|

kq
`+1 dx

) `+1
2`

+

(∫
|ψ|q|∂`−1h|

kq
`−1 dx

) `−1
k+`−1

(∫
|∂ψ|q|∂`h|

(k−1)q
` dx

) k
k+`−1

.

It remains to apply an iteration procedure. For this purpose, we set for
k ≥ `+m,

A(k, `,m) :=

(∫
|Dmψ|q|D`h|

(k−m)q
` dx

) `
(k−m)q

,

B(`,m) := A(`+m, `,m),

C(k, `) := A(k, `, 0)

and notice that A0 := A(k, 0,m) = ‖h‖L∞ . Upon rescaling h, we may assume
from here on that A0 = 1. (We may always assume A0 6= 0 as otherwise the
lemma is vacuously true.) With this notation, the previous estimate becomes

(5.18) C(k, `) . C(k, `− 1)
1
2C(k, `+ 1)

1
2 +C(k, `− 1)

`
k+`−1A(k, `, 1)

k−1
k+`−1 ,
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and the statement of the lemma can be rephrased as

(5.19) C(k, `)
k
` .

k−1∑
m=0

B(k −m,m),

for every k and 1 ≤ ` ≤ k − 1.
The proof will be a double-induction on (k, `). We start by noticing that

for k = 2 and ` = 1, our objective (5.19) is nothing but the estimate (5.18)
just proven. Suppose k ≥ 3 is fixed and that (5.19) holds true for k − 1 and
any ` ≤ k − 2. Our goal is to show (5.19) for fixed k and all 1 ≤ ` ≤ k − 1.

We first need some auxiliary inequalities. Note for ϕ = Dψ, it holds that

A(k, `,m) =

(∫
|Dm−1ϕ|q|D`h|

((k−1)−(m−1))q
` dx

) `
((k−1)−(m−1))q

=: Ã(k − 1, `,m− 1)

and since the estimate in (5.18) is independent of the choice ψ, the inductive
hypothesis (5.19) allows us to estimate

Ã(k − 1, `, 0)
k−1
` =: C̃(k − 1, `)

k−1
` .

k−1−1∑
m=0

B̃(k − 1−m,m)

:=
k−1−1∑
m=0

Ã(k − 1, k − 1−m,m)

or

A(k, `, 1))
k−1
` .

k−1∑
m=1

B(k −m,m),

for any ` ≤ k − 2. Plugging this bound into (5.18) gives

(5.20)

C(k, `) . C(k, `− 1)
1
2C(k, `+ 1)

1
2

+ C(k, `− 1)
`

k+`−1

(
k−1∑
m=1

B(k −m,m)

) `
k+`−1

.

We claim that this estimate implies

(5.21) C(k, `)
k
` . C(k, `+ 1)

k
`+1 +

k−1∑
m=1

B(k −m,m)

for any 1 ≤ ` ≤ k − 1. Indeed, the case ` = 1 follows directly from (5.20)
because C(k, 0) = A0 = 1. The general case follows by induction: We
suppose that (5.21) is proved for 1, 2, . . . , `− 1 and we aim at establishing it
for `. For this purpose, we use Young’s inequality in (5.20) to the effect that

C(k, `)
k
` . εC(k, `− 1)

k
`−1 + C(k, `+ 1)

k
`+1 +

k−1∑
m=1

B(k −m,m),
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for some arbitrary ε. Invoking the hypothesis that (5.21) holds true for `− 1,
we then deduce

C(k, `)
k
` . εC(k, `)

k
` + C(k, `+ 1)

k
`+1 +

k−1∑
m=1

B(k −m,m),

which gives (5.21) for ` if ε is chosen small enough.
It remains to iterate (5.21) to find

C(k, `)
k
` . C(k, k) +

k−1∑
m=1

B(k −m,m) =

k−1∑
m=0

B(k −m,m),

which is what we aimed to prove, cf. (5.19). �

We will now perform an intermediate step towards higher-order regularity
estimates by lifting the norms on the left-hand side in (5.16) to the next
order in time. Higher-order time derivatives will be considered subsequently
simultaneously with suitable higher-order spatial derivatives. The intermedi-
ate step that we take in the following lemma is necessary in order to control
lower-order error terms that appear later as a result of a transformation of
the equation close to the boundary, see (5.22) below.

Lemma 5.8 (Nonlinear smoothing 2). Let h be a solution to the equation
(2.1) with initial datum h0 ∈ L2

p+1 and assume that ‖h‖L∞ ≤ ε for some
ε > 0. Then if ε is small enough and 0 < τ < 1 < T , it holds that

‖∂2
t h‖L2((τ,T );L2

2p)) +‖∇∂th‖L2((τ,T );L2(L2)) +‖∇2∂th‖L2((τ,T );L2
2)) . ‖h0‖L2

p+1
.

Proof. Regularity in time was proved already by Jin and Xiong, see (5.1)
above. In order to get control over the mixed derivatives, we proceed carefully
by considering finite difference quotients dsth(t) = s−1(h(t+ s)− h(s)). We
consider the same cut-off function in time as in the proof of Lemma 5.6. Then
localizing the nonlinear equation and “differentiating” (5.17) with respect to
time, we obtain

∂td
s
t (ζh)− V 1−p∇ · (V 2∇dst (ζh))

= (p− 1)dst (ζh) + dsth∂tζ + hdst∂tζ + ζdstN(h) +N(h)dstζ.

Regarding the nonlinear terms, we notice that

|N(h)| . |h|2 + |h||∂th|

and

|dstN(h)| . |h||dsth|+ |dsth||∂th|+ |h||∂tdsth|.
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Therefore, using |h| ≤ ε ≤ 1 and making use of the maximal regularity
estimate for the linear problem, Proposition 5.5, we find that

‖∂tdst (ζh)‖L2(L2
2p) + ‖∇dst (ζh)‖L2(L2) + ‖∇2dst (ζh)‖L2(L2

2)

. ‖χspt ζh‖L2(L2
2p) + ‖χspt ζd

s
th‖L2(L2

2p)

+ ‖ζdsth∂th‖L2(L2
2p) + ε‖dst∂t(ζh)‖L2(L2

2p).

If ε is sufficiently small, the last term on the right-hand side can be absorbed
into the left-hand side. Moreover, the (remaining) expressions on the right-
hand side are bounded uniformly in s by the virtue of Jin and Xiong’s
regularity statement (5.1). We may thus pass to the limit s→ 0 and find

‖∂2
t (ζh)‖L2(L2

2p) + ‖∇∂t(ζh)‖L2(L2) + ‖∇2∂t(ζh)‖L2(L2
2)

. ‖χspt ζh‖L2(L2
2p) + ‖χspt ζ∂th‖L2(L2

2p) + ‖ζ(∂th)2‖L2(L2
2p).

Now, applying the interpolation Lemma 5.7 in the form

‖ζ|∂th|2‖L2(L2
2p) . ‖h‖L∞‖ζ∂2

t h‖L2(L2
2p) + ‖h‖L∞‖∂tζ∂th‖L2(L2

2p),

and using again that |h| ≤ ε ≤ 1 leads us to the estimate

‖∂2
t (ζh)‖L2(L2

2p) + ‖∇∂t(ζh)‖L2(L2) + ‖∇2∂t(ζh)‖L2(L2
2)

. ‖χspt ζh‖L2(L2
2p) + ‖χspt ζ∂th‖L2(L2

2p),

provided that ε is sufficiently small. Since µ2p . µp+1 by the virtue of Lemma
5.1, we can now apply Lemmas 4.1 and 5.6 and deduce the statement of the
lemma by the properties of the cut-off function. �

Similarly to the derivation of the maximal regularity estimate in Proposi-
tion 5.5, the derivation of higher-order regularity estimates requires attention
only in a neighborhood of the boundary. Indeed, in the interior the equation
is parabolic with smooth coefficients, and thus, higher-order estimates in the
interior just follow by standard iterative arguments based on the maximal
regularity estimate from Proposition 5.5. As before, we shall thus focus on
the boundary from here on. We choose essentially the same notation as in
the proof of Proposition 5.5 and we fix x0 ∈ ∂Ω arbitrarily and let η denote
a cut-off function on Rn interpolating smoothly between η = 1 in Br(x0)
and η = 0 outside of B2r(x0). Moreover, as in the proofs of Lemmas 5.6 and
5.8, we have to introduce a cut-off function ζ defined on [0,∞) that satisfies
ζ = 0 in [0, τ/2] and ζ = 1 in [τ, T ] for some 0 < τ < 1 < T . Treating the
nonlinearity N(h(x)) =: f(x) as an inhomogeneity and smuggling ζη into
the equation, we find that H = ζηh satisfies

(5.22) ∂tH − V −1−p∇ · (V 2∇H) = (p− 1)H + F +G,

where

F = ζηf, G = −2V 1−pζ∇η · ∇h− V 1−pζh∆η − 2ζV −ph∇V · ∇η + ζ ′ηh.
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We now apply the same diffeomorphism φ that we used in order to transform
the elliptic problem (5.7) into the half-space problem (5.11), and arrive at

(5.23) ∂tĤ − V̂ −1−p∇̂ · (V̂ 2A∇̂Ĥ) = (p− 1)Ĥ + F̂ + Ĝ.

We will now derive control on higher-order derivatives for equation (5.23).
As before, we interpret the weighted Lebesgue norms with respect to the
simpler weight x̂n and we consider Lr(L2

q) = Lr((0, T );L2(µ̂q)) with measure

dµ̂q = x̂qn dx̂ and typically r = 2. Moreover, we write z = (t, x̂′) for the

time and flattened tangential variables, whereas ∇̂ denotes the full spatial
gradient (tangential and normal) in flattened coordinates.

Lemma 5.9 (Tangential smoothing by the linear inhomogeneous evolution).

Let Ĥ be a solution to the transformed equation (5.23). For any k ∈ N and
α′ ∈ Nn

0 with |α′| = k, it holds that

(5.24)

‖Dk
z∂tĤ‖L2(L2

2p) + ‖Dk
z ∇̂Ĥ‖L2(L2) + ‖Dk

z ∇̂2Ĥ‖L2(L2
2)

.
k∑
`=0

‖D`
zF̂‖L2(L2

2p) +

k∑
`=0

‖D`
zĜ‖L2(L2

2p).

Proof. As Ĝ can be considered as an inhomogeneity, we can set Ĝ = 0 for
notational convenience.

We can proceed as in the proof of Proposition 5.5 and show that (5.15)
holds true on the half-space, that is, we have

(5.25) ‖∂tĤ‖L2(L2
2p) + ‖∇̂Ĥ‖L2(L2) + ‖∇̂2Ĥ‖L2(L2

2) . ‖F̂‖L2(L2
2p).

Note that the implicit constant in this estimate might be time-dependent
and blow up for infinite times. Now, we differentiate (5.23) in time and
tangential direction. For m ∈ N0 and α′ ∈ Nn−1

0 , it holds that

∂t∂
m
t ∂

α′
x̂′ Ĥ − V̂ −1−p∇̂ · (V 2A∇̂∂mt ∂α

′
x̂′ Ĥ)

= (p− 1)∂mt ∂
α′
x̂′ Ĥ + ∂mt ∂

α′
x̂′ F̂

+ x̂1−p
n

∑
1≤|β|≤|α′|+1

βn≤2

aβ∂
m
t ∂

β
x̂ Ĥ + x̂−pn

∑
1≤|β|≤|α′|
βn≤1

bβ∂
m
t ∂

β
x̂ Ĥ,

for some continuous and bounded functions aβ, bβ on R. We can now apply
the maximal regularity estimate (5.25) and find (5.24) via iteration and

thanks to the fact that x̂n . 1 in the support of Ĥ. �

Now, we translate the above estimate to the nonlinear setting. That is,
we consider f = f0 + f1, with

f0 = (1 + h)p − 1− ph, f1 =
(
(1 + h)p−1 − 1

)
∂th,

and we write F̂i(t, x̂) = ζ(t)η̂(x̂)f̂i(x̂) = ζ(t)η(x)fi(x) for the transformed and

truncated quantities. Moreover, we write ĥ(t, x̂) = h(t, x). The nonlinearities
are bounded as follows.
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Lemma 5.10 (Spacetime localized boundary estimates for the nonlinearity).

Suppose that ‖ĥ‖L∞ ≤ ε for some ε� 1. Then, for any k ∈ N0 there exists
a constant ν ∈ (0, 1) such that

‖Dk
z F̂i‖L2(L2

2p) . ε
ν

k∑
m=0

‖Dk−m
z (ζη̂)Dm+i

z ĥ‖L2(L2
2p) ∀i ∈ {0, 1}.

Proof. We drop the hats for notational convenience. We start considering
the estimate for F0, and notice that

∂αz F0 =
∑
β≤α

(
α

β

)
∂α−βz ψ ∂βz f0,

by the multi-dimensional Leibniz rule, where we have set ψ = ζη. We inspect
the nonlinearity and find by Young’s inequality and an iterative argument
that

|∂βz f0| . |h||∂βz h|+
∑
γ≤β

1≤|γ|≤|β|−1

|∂γz h|
|β|
|γ| ,

provided that ε is sufficiently small and |β| ≥ 1. Therefore, summing over
any multi-indices α with |α| = k and integrating in space and time, we have
that

‖Dk
zF0‖L2(L2

2p) . ‖h‖L∞‖ψDk
zh‖L2(L2

2p) +

k−1∑
`=1

‖ψ|D`
zh|

k
` ‖L2(L2

2p)

+

k−1∑
m=0

‖h‖L∞‖Dk−m
z ψDm

z h‖L2(L2
2p)

+
k−1∑
m=2

m−1∑
`=1

‖Dk−m
z ψ|D`

zh|
m
` ‖L2(L2

2p).

Let’s discuss the right-hand side term by term. The first term is exactly of
the kind we are looking for. For the second one, we apply Lemma 5.7 and
find,

k−1∑
`=1

‖ψ|D`
zh|

k
` ‖L2(L2

2p) . ε
ν
k−1∑
m=0

‖Dm
z ψD

k−m
z h‖L2(L2

2p),

for some ν > 0. The remaining terms are bounded by the same quantity.
The treatment of f1 is similar. This time, derivatives of the nonlinearity

are bounded as follows,

|D`
zf1| . |h||D`

z∂th|+
`−1∑
m=0

`−m∑
n=1

|Dn
z h|

`−m
n |Dm

z ∂th|,
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as can be observed by Young’s inequality and an iterative argument. With
the help of the Leibniz rule, we thus obtain

‖Dk
zF1‖L2(L2

2p) . ‖h‖L∞‖ψDk
z∂th‖L2(L2

2p) +

k−1∑
`=0

‖h‖L∞‖Dk−`
z ψD`

z∂th‖L2(L2
2p)

+

k−1∑
m=0

k−m∑
n=1

‖ψ|Dn
z h|

k−m
n Dm

z ∂th‖L2(L2
2p)

+

k−1∑
`=0

`−1∑
m=0

`−m∑
n=1

‖Dk−`
z ψ|Dnh|

`−m
n Dm

z ∂th‖L2(L2
2p),

and absorbing ∂t into Dz and an application of the Hölder inequality fur-
thermore yields

‖Dk
zF1‖L2(L2

2p)

.‖h‖L∞
(
‖ψDk+1

z h‖L2(L2
2p) +

k−1∑
`=1

‖Dk−`
z ψD`+1

z h‖L2(L2
2p)

)

+
k−1∑
m=0

k−m∑
n=1

‖ψ|Dn
z h|

k+1
n ‖

k−m
k+1

L2(L2
2p)
‖ψ|Dm+1

z h|
k+1
m+1 ‖

m+1
k+1

L2(L2
2p)

+
k−1∑
`=0

`−1∑
m=0

`−m∑
n=1

‖Dk−`
z ψ|Dn

z h|
`+1
n ‖

`−m
`+1

L2(L2
2p)
‖Dk−`

z ψ|Dm+1
z h|

`+1
m+1 ‖

m+1
`+1

L2(L2
2p)
.

We now invoke Lemma 5.7 to the effect that

‖Dk
zF1‖L2(L2

2p) . ε
ν

k∑
m=0

‖Dm
z ψD

k+1−m
z h‖L2(L2

2p),

for some ν > 0. �

With these preparations, we are in the position to extend the L2 estimates
from Lemmas 4.1, 5.6, and 5.8 to z-derivatives of any order where z = (t, x̂′)

denotes the tangential and time variables and ∇̂ denotes the full spatial
gradient (tangential and normal) in flattened coordinates. For our purposes,
it is enough to bound the unweighted terms in these estimates.

Proposition 5.11 (Tangential nonlinear smoothing in Hilbert norms). Let

Ĥ be the solution to the transformed equation (5.23) and suppose that

‖Ĥ‖L∞ ≤ ε for some ε small enough. Let 0 < τ < 1 < T be given. Then, for
any k ∈ N0, it holds that

‖Dk
z ∇̂Ĥ‖L2(L2) + ‖Dk

z ∇̂2Ĥ‖L2(L2
2) . ‖h0‖L2

p+1
.
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Proof. We start by noting that the estimates from Lemmas 4.1, 5.6 and 5.8
easily translate into the localized setting, so that

(5.26)

‖Ĥ‖L∞((0,T );L2
p+1) + ‖∂tĤ‖L2((τ,T );L2

2p) + ‖∂2
t Ĥ‖L2((τ,T );L2

2p)

+ ‖∇̂Ĥ‖L2((τ,T );L2) + ‖∇̂∂tĤ‖L2((τ,T );L2) + ‖∇̂2Ĥ‖L2((τ,T );L2
2)

+ ‖∇̂2∂tĤ‖L2((τ,T );L2
2) . ‖h0‖L2

p+1
.

In order to derive estimates on derivatives of the next order, we invoke
Lemma 5.9 with k = 1,

(5.27)
‖Dz∂tĤ‖L2(L2

2p) + ‖Dz∇̂Ĥ‖L2(L2) + ‖Dz∇̂2Ĥ‖L2(L2
2)

. ‖F̂‖L2(L2
2p) + ‖DzF̂‖L2(L2

2p) + ‖Ĝ‖L2(L2
2p) + ‖DzĜ‖L2(L2

2p).

Of course, our presentation here is a bit formal: Instead of considering
derivatives Dz, we should more carefully apply difference quotients to the
nonlinear equation. We have done so in Lemma 5.8 to deal with time
derivatives. Because of the known reguarity in time (5.1), passing to the
limit in the difference quotients don’t cause any problems, also in the nonlinear
terms. The strategy remains the same for higher order derivatives in time,
and we may generously simplify our presentation here by considering proper
time derivatives in the sequel.

When it comes to higher order derivatives in tangential direction, a result
analogous to (5.1) is missing, but will be derived by us in Corollary 5.12
below. We should thus be a bit more careful in our argumentation. For the
sake of a simpler presentation though, we shall keep the notation Dz and will
tacitly interpret it as difference quotients in the tangential variables. Only in
the discussion of the leading order nonlinear terms, we shall recall its actual
meaning. For all other terms we will be rather formal.

Let us start considering the lower-order terms. From the definition of Ĝ,
we deduce

‖Ĝ‖L2(L2
2p) + ‖DzĜ‖L2(L2

2p) . ‖χsptψĥ‖L2(L2) + ‖χsptψ∇̂h‖L2(L2
2)

+ ‖χsptψDzĥ‖L2(L2) + ‖χsptψDz∇̂ĥ‖L2(L2
2),

where we have set ψ = ζη̂.
We will now apply an interpolation to modify the weights on the right-hand

side. Let φ be a cut-off function that is 1 in the support of ψ and vanishes

outside of a small neighborhood ŝptψ of this support. Then it holds for any
regular function ξ that∫

φ2ξ2 dx̂ =

∫ (
dx̂n
dx̂n

)
φ2ξ2 dx̂

= −2

∫
x̂nφξ∂nξ dx̂− 2

∫
x̂nφ∂nφξ

2 dx̂.
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An application of the Cauchy–Schwarz inequalities then yields

‖χsptψξ‖L2(L2) . ‖χŝptψ
ξ‖L2(L2

2) + ‖χ
ŝptψ
∇̂ξ‖L2(L2

2).

This argument can be repeated by writing x̂qn = 1
q+1

d
dx̂n

x̂q+1
n and using that

µ̂q . µ̂2 for q ≥ 2, to derive

(5.28) ‖χsptψξ‖L2(L2) . ‖χŝptψ
ξ‖L2(L2

q)
+ ‖χ

ŝptψ
∇̂ξ‖L2(L2

2),

for any q ∈ 2N. By interpolation, this estimates extends to any q > 0.
Making use of this interpolation-type estimate with suitable choices of q

in the above estimate for Ĝ and estimating µ̂2p . µ̂p+1 . µ̂2 . 1 yields

‖Ĝ‖L2(L2
2p) + ‖DzĜ‖L2(L2

2p) . ‖χŝptψ
ĥ‖L2(L2

p+1) + ‖χ
ŝptψ
∇̂h‖L2(L2)

+ ‖χ
ŝptψ

∂tĥ‖L2(L2
2p) + ‖χ

ŝptψ
∂t∇̂ĥ‖L2(L2)

+ ‖χ
ŝptψ
∇̂2ĥ‖L2(L2

2),

We may now invoke (5.26) with suitable choices of τ , T and spatial cutoff r
to deduce that

‖Ĝ‖L2(L2
2p) + ‖DzĜ‖L2(L2

2p) . ‖h0‖L2
p+1
.

It remains to estimate the nonlinear terms in (5.27). We promised to be
more careful when considering higher order tangential difference quotients
and we should thus briefly discuss the rigorous treatment of the leading order
nonlinear terms. Because tangential derivatives leave the limit function V̂
invariant in terms of scaling, cf. Lemma 5.3, these are terms of the order
ψ|dsi ĥ||∂tĥ| and ψ|ĥ||∂tdsi ĥ|, where dsi is the difference quotient operator

in direction x̂i, see also Lemma 5.8. By using the smallness of Ĥ in the
assumption, the second of these terms can be absorbed into the left-hand side
before passing to the limit s→ 0. The other term can be split into the two
quadratic terms ψ(dsi ĥ)2 and ψ(∂tĥ)2, among which we only have to consider
the first one, because time regularity is already settled. Here, we notice that
this term is bounded uniformly in s, because ‖ψ(∂iĥ)2‖L2

2p
can be estimated

by ‖ĥ‖L∞‖ψ∂2
i ĥ‖L2

2
plus lower order terms via the interpolation Lemma 5.7

and by using µ̂2p . µ̂2 in the support of η̂. This term is controlled via
(5.26). There are no further regularity issues popping up when considering
higher order tangential derivatives. We shall continue with the rather formal
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discussion and summarize here that Lemma 5.10 implies

‖F̂‖L2(L2
2p) + ‖DzF̂‖L2(L2

2p)

. εν
(
‖ψĥ‖L2(L2

2p) + ‖ψDzĥ‖L2(L2
2p) + ‖ψD2

z ĥ‖L2(L2
2p)

+ ‖Dzψĥ‖L2(L2
2p) + ‖DzψDzĥ‖L2(L2

2p)

)
. ‖χsptψĥ‖L2(L2

2p) + ‖χsptψDzĥ‖L2(L2
2p) + εν‖D2

zĤ‖L2(L2
2p)

. ‖h0‖L2
p+1

+ εν‖Dz∂tĤ‖L2(L2
2p) + εν‖Dz∇̂Ĥ‖L2(L2),

where the last inequality is due to (5.26).

Plugging these estimates (for the lower-order terms involving Ĝ and the

nonlinearities involving F̂ ) into (5.27) thus yields

‖Dz∂tĤ‖L2(L2
2p) + ‖Dz∇̂Ĥ‖L2(L2) + ‖Dz∇̂2Ĥ‖L2(L2

2) . ‖h0‖L2
p+1
,

provided that εν is chosen small enough that the final terms above which it
multiplies can be absorbed into the left hand side.

This procedure can be iterated, with a suitable adaption of τ, T and the
radii r of the spatial cut-off functions η in each step to prove

‖Dk
z∂tĤ‖L2(L2

2p) + ‖Dk
z ∇̂Ĥ‖L2(L2) + ‖Dk

z ∇̂2Ĥ‖L2(L2
2) . ‖h0‖L2

p+1
,

inductively. This implies the desired bounds. �

Finally, we use generalized Sobolev embeddings to pass from L2 to L∞

estimates:

Corollary 5.12 (Tangential nonlinear smoothing in weighted uniform norms).

Let Ĥ be the solution to the transformed equation (5.23) and suppose that

‖Ĥ‖L∞ ≤ ε for some ε small enough. Let 0 < τ < 1 < T be given. Then, for
any k ∈ N0, it holds that

‖Dk
z Ĥ‖L∞(L∞) + ‖x̂nDk

z ∇̂Ĥ‖L∞(L∞) . ‖h0‖L2
p+1
.

Proof. The estimate basically follows from Proposition 5.11 via generalized
Sobolev embeddings using compact support in the z = (t, x′) ∈ Rn variables,
followed by (two) integrations in xn where we have a vanishing boundary
condition at one end xn = r only. Indeed, for m ∈ N with m > n/2, it holds
that

‖Dk
z Ĥ‖L∞(L∞) .

m∑
`=0

‖Dk+`
z Ĥ‖L2(L2) +

m∑
`=0

‖Dk+`
z ∂x̂nĤ‖L2(L2).

We now use the Hardy inequality

‖ξ‖L2(L2) . ‖∂x̂nξ‖L2(L2
2),
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whose proof is similar to that of (5.28), to eliminate the zero-order terms on
the right-hand side, thus,

‖Dk
z Ĥ‖L∞(L∞) .

m+1∑
`=0

‖Dk+`
z ∇̂Ĥ‖L2(L2).

Finally, we apply Proposition 5.11 to infer the desired control of the first term
in the statement of the lemma. The second term is bounded analogously, by
applying the same argument to x̂nD

k∇̂Ĥ in place of DkĤ. �

We are now well-prepared to prove Proposition 4.4.

Proofs of Proposition 4.4. As a consequence of Corollary 5.12 and the con-
struction of Ĥ, we find for any x0 ∈ ∂Ω, 0 < τ < 1 < T and any r > 0 small
enough that

‖∂kt h‖L∞((τ,T )×Br(x0)) . ‖h0‖L2
p+1
.

In particular, covering a small band along the domain boundary with a finite
number of balls, the latter extends to the band Ωr = {x ∈ Ω : dist(x, ∂Ω) ≤ r}
for some small r > 0,

‖∂kt h‖L∞((τ,T )×Ωr) . ‖h0‖L2
p+1
.

As mentioned earlier, similar (but simpler, thanks to the strict parabolicity)
arguments in the interior of the domain Ω yield analogous estimates on Ω\Ω̄r.
Both together prove the statement of the proposition. �

6. Proof of second dichotomy

In this final section, we turn to the proof of Theorem 3.4, which states
optimal exponential convergence of the relative error under the assumption
that V is an ordinary limit in the sense of Definition 3.3. Thanks to our
first dichotomy result — Theorem 3.1 — and Proposition 4.4, it is enough
to establish convergence at some exponential rate, which is the main result
of the present section.

Theorem 6.1 (Ordinary limits are approached exponentially fast). Under
the hypotheses of Theorem 3.1, if V is an ordinary limit of the dynamics
(1.2), the convergence takes place exponentially fast, i.e., there exists a rate
γ > 0 such that

‖h(t)‖L2
p+1

= O(e−γt) as t→∞.

The proof of exponential convergence relies on Choi and Sun’s refinement
— Lemma 4.3 — of the Merle-Zaag dynamical systems result recalled above.
It roughly says that if a solution is known to be small on a large time interval,
then, up to a possible error caused by the neutral modes, the stable and
unstable modes should be much smaller than an exponentially decaying term
in the middle of this time interval. (Note the unstable modes tend to decay
like the stable ones if time goes backward and this is why we need to go
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to the middle of time interval.) The main issue to take care of is thus the
control of the neutral modes.

The underlying idea for controlling the neutral modes is reducing the
amplitude of the neutral modes by changing the reference stationary solution
in the direction of the neutral modes. This can be effectively done if the limit
V is ordinary. This strategy goes back to the work of Allard and Almgren
[AFA81], who gave kernel integrability conditions guaranteeing that minimal
surfaces converge to their tangent cones sequentially and exponenentially
fast. See also Section 6 of Simon [Sim85], or the recent contributions of Choi,
Choi, Kim and Sun in various combinations [CS20] [CCK21].

In order to pursue this strategy, we have to prove that being an ordinary
limit is an open property among stationary solutions S. This crucial insight
requires some technical preparations.

Lemma 6.2 (Lower semicontinuity of kernel dimension at an ordinary limit).

Let V ∈ S be an ordinary limit and δ > 0 as in Definition 3.3. Let Ṽ ∈ S be
sufficiently close that h = V/Ṽ − 1 satisfies ‖h‖L∞ ≤ δ, so that h = ΦV (ψ)
for some ψ ∈ kerLV . Then it holds that

(6.1)
V

Ṽ
(dΦV )ψ(kerLV ) ⊂ kerLṼ .

Proof. Let 0 ∈ U ⊂ kerLV the neighbourhood provided by Definition 3.3.
We fix another element in the kernel, ζ ∈ kerLV , and choose s0 small enough
such that ψ + sζ ∈ U for any s ∈ (−s0, s0). Then hs = ΦV (ψ + sζ) defines a

family of stationary relative errors (3.7) with h0 = h, or equivalently, Ṽs =
V (hs + 1) ∈ S defines a stationary solution in terms of the original variables

with Ṽ0 = Ṽ . Changing the reference stationary solution h̃s = Ṽs/Ṽ − 1

solves h̃0 = 0 and

LṼ h̃s = M(h̃s).

We may now rewrite

h̃s =
V

Ṽ
(ΦV (ψ + sζ)− ΦV (ψ)) ,

and thanks to the regularity properties of the diffeomorphism ΦV , differenti-
ation in the previous two identities yields

LṼ

(
V

Ṽ
(dΦV )ψζ

)
= LṼ ∂s|s=0 h̃s = M ′(0) ∂s|s=0 h̃s = 0,

since M(h) = O(h2) as h → 0 in (3.7). The latter verifies the inclusion
(6.1). �

The next lemma guarantees that spectral gaps are preserved by nearby
stationary solutions.

Lemma 6.3 (Continuity of spectral gap and nullity). Let V ∈ S be an
ordinary limit and let the sequence {V`}`∈N ∈ S of stationary solutions
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converge to V relatively-uniformly, meaning h` = V`/V − 1 satisfies

‖h`‖L∞ → 0 as `→∞.
Let {φ`}`∈N denote a sequence of normalized eigenfunctions, i.e.,

LV`φ` = λ`φ`, and

∫
φ2
`V

p+1
` dx = 1,

for some λ` ∈ R. Suppose that the sequence of eigenvalues is bounded,
|λ`| ≤ Λ for some Λ > 0. Then there exists a subsequence {φ`k}k∈N and a
function φ ∈ L2(V p+1dx) such that

‖φ`k − φ‖L2(V p+1dx) → 0 as k →∞.
The limiting function φ is a normalized eigenfunction, i.e,

LV φ = λφ, and

∫
φ2V p+1 dx = 1,

for some λ ∈ R. Moreover, the following hold true:

(1) If λ` = 0 for all ` ∈ N, then λ = 0.
(2) If λ` > 0 for all ` ∈ N, then λ > 0.
(3) If λ` < 0 for all ` ∈ N, then λ < 0.

The lemma entails, in particular, that if |λ`| > 0 for all ` ∈ N, then

lim inf
`→∞

|λ`| ≥ min{−λu, λs},

where λu is the largest negative and λs is the smallest positive eigenvalue of
LV .

Proof. For the compactness assertion, we aim to bound sup` ‖φ`‖H1 . Ap-
plying Proposition 5.5 with h/t = φ` = f/(λ`t + 1) yields the unweighted
gradient bound

‖∇φ`‖L2 . (λ` + 1)‖φ`‖L2
2p

+ ‖φ`‖L2
p+1
. (λ` + 2)‖φ`‖L2

p+1
≤ Λ + 2.

Now the local independence (in the relatively-uniform topology) of constants
in . on V` ∈ S combines with Lemma 5.2 to imply the sequence φ` is
bounded in the Sobolev space H1(Ω). Via a Rellich compactness argument,
we conclude that {φ`}`∈N converges strongly subsequentially in L2 (and
then also in L2(V p+1dx)) and weakly in H1(V 2dx) towards some function
φ. Moreover, thanks to the Bolzano–Weierstraß theorem, we find that the
sequence of eigenvalues {λ`}`∈N converges subsequentially to some λ ∈ R.

Considering a common subsequence (indexed by `k) and passing to the
limit in the weak formulation of the eigenvalue equation,∫

∇φ`k · ∇fV
2
`k
dx = (λ`k + p− 1)

∫
φ`kfV

p+1
`k

dx,

where we also use the uniform convergence of the relative error hk, we find
that φ is a normalized eigenfunction of LV with eigenvalue λ.

It remains to derive the assertion on the sign of the limiting eigenvalues.
The first statement is trivial, while the proofs of two others are identical.
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Let’s thus focus on one of them, say the middle one. It is clear that the
limiting eigenvalue is nonnegative, λ ≥ 0 and we have to rule out that it is in
fact zero. For this purpose, we note that the eigenfunctions φ` are orthogonal
to the kernel,

(6.2)

∫
φ`ζ`V

p+1
` dx = 0 for any ζ` ∈ kerLV` .

We pick ζ ∈ kerLV and define ζ` ∈ kerLV` according to the inclusion (6.1)
derived in Lemma 6.2 by

ζ` =
1

h` + 1
(dΦV )ψ`ζ,

where ψ` ∈ kerLV is such that h` = ΦV (ψ`). It is straightforward to
verify that ζ` converges to ζ strongly in L2(V p+1dx) as ` → ∞. Indeed,
because of the imposed convergence of the relative error h` and since the
diffeomorphism ΦV vanishes only at the origin, we must have that ψ` → 0
strongly in L2(V p+1). Furthermore, by the continuity of the derivative dΦV ,
it holds that (dΦV )ψ` → id. Using once again the uniform convergenve of
the relative error, we conclude that ζ` → ζ in L2(V p+1dx).

We now pass to the limit in the orthogonality condition (6.2) with our
particular construction of the ζ`’s, which was arbitrary in the choice of ζ,
and find ∫

φζV p+1 dx = 0 for any ζ ∈ kerLV .

Hence, φ is a (nontrivial) eigenfunction of LV that is orthogonal to the kernel.
We conclude that λ > 0 as desired. �

The preceeding analysis allows us to conlude quite easily that the dimension
of the kernels of the linear operators remains constant if the reference
stationary solution is changed in a neighborhood of an ordinary limit V .

Lemma 6.4 (Invariance of the kernel dimension near ordinary limits). Let

V ∈ S be an ordinary limit and δ > 0 as in Definition 3.3. Let Ṽ ∈ S be
a stationary solution close to V in the sense that h = Ṽ /V − 1 satisfies

‖h‖L∞ ≤ δ̃, for some δ̃ ∈ (0, δ). Then δ̃ sufficiently small implies

dim kerLV = dim kerLṼ .

Proof. As a consequence of Lemma 6.2, and because (dΦV )ψ is an isomor-
phism, it is clear that

(6.3) K = dim kerLV ≤ dim kerLṼ .

We argue that both kernels have indeed the same dimension if δ̃ is suffi-
ciently small. We give an indirect argument and derive a contradiction by
assuming that there exists a sequence h` = V`/V − 1 satisfying ‖h`‖L∞ ≤ 1

`
and dim kerLV` ≥ K + 1. We pick K + 1 orthonormal (and thus linearly
independent) functions φ`,1, . . . , φ`,K+1 in kerLV` .
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By the virtue of Lemma 6.3, there exist subsequences (that we will not
relabel) and normalized functions φ1, . . . , φK+1 in kerLV such that

φ`,k → φk in L2(V p+1) as `→∞.

In particular, using in addition that {h`}`∈N is converging uniformly, we find
that φ1, . . . , φK+1 is orthonormal. Thus, the dimension of kerLV is at least
K + 1, which contradicts (6.3). �

Collecting these technical preparations, we are able to derive the aforemen-
tioned key feature: that ordinariness is a relatively-uniformly open property
in the set S of stationary limits.

Proposition 6.5 (Ordinary limits form an open subset of S). Let V ∈ S be

an ordinary limit. If Ṽ ∈ S is a stationary solution sufficiently close to V in
the relatively-uniform topology, then Ṽ is also an ordinary limit.

Proof. By combining the results from Lemmas 6.2 and 6.4, we see that

Ṽ

V
kerLṼ = (dΦV )ψ(kerLV ),

where ψ ∈ kerLV is such that h = ΦV (ψ). It follows that the mapping ΦṼ
defined by

ΦṼ (ψ̃) :=
V

Ṽ

[
ΦV

(
ψ + ((dΦV )ψ)−1( ṼV ψ̃)

)
− ΦV (ψ)

]
,

for ψ̃ ∈ kerLṼ , is a C1 diffeomorphism from a neighborhood of 0 ∈ kerLṼ
into the set of stationary solutions LṼ h̃ = M(h̃) and satisfies all the properties
listed in Definition 3.3, as can be readily verfied. Notice also that we have
see the construction of this diffeomorphism already in the proof of Lemma
6.2: If ζ ∈ kerLV is sufficiently small so that hζ = ΦV (ψ + ζ) is well-defined,

then Vζ = V (hζ + 1) is a stationary solution and the relative error h̃ζ with

respect to Ṽ ,

h̃ζ =
Vζ

Ṽ
− 1 =

V

Ṽ

(
hζ −

Ṽ

V
+ 1

)
=
V

Ṽ
(ΦV (ψ + ζ)− ΦV (ψ)) ,

solves the stationary error equation relative to the reference point Ṽ . �

We will now derive a building block for the proof of Theorem 6.1 which
exploits both the previous Proposition 6.5 and the Choi-Sun refinement of
the Merle–Zaag Lemma 4.3, to yield a suitable reduction of the neutral
modes as announced at the beginning of this section. The actual proof of
exponential convergence will follow subsequently by iteration.

Proposition 6.6 (Improvement by changing reference stationary solutions).
Let V ∈ S be an ordinary limit (1.3). There exist four constants ε0, δ0 ∈ (0, 1)
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and τ, C ∈ (1,∞) with the following property: Let V (1 + h(t)) solve the
dynamics (1.2) and stay near V ,

(6.4) sup
t≥0
‖h(t)‖L∞ ≤ δ0;

{V (1 + gs)}s≥0⊂ S be a family of stationary solutions to (1.3) also close to
V ,

(6.5) sup
s≥0
‖gs‖L∞ ≤ δ0;

and suppose V (1 + h(t)) is ε-close to V (1 + gs) on t ∈ [s, s+ 2],

(6.6) sup
t∈[s,s+2]

‖h(t)− gs‖L2
p+1
≤ ε

for all s ≥ 0 for some ε ≤ ε0.
Then there is another family of stationary solutions {V (1 + ĝs)}s≥τ so

that V (1 + h(t)) is ε
2 -close to V (1 + ĝs) on t ∈ [s, s+ 2]

(6.7) sup
t∈[s,s+2]

‖h(t)− ĝs‖L2
p+1
≤ ε

2

for all s ≥ τ . Moreover, for each s ≥ 0, ĝs+τ is close enough to gs that

(6.8) ‖gs − ĝs+τ‖L∞ ≤ Cε.

In the proof of Theorem 6.1 below, the exponential convergence rate
γ = log 2

τ is determined by the delay τ provided by the preceding proposition.

Proof. To simplify the notation, we write

‖f‖Ṽ = ‖f‖L2(Ṽ p+1)

for any Ṽ stationary solution (1.3). We start by noting that for two stationary

solutions Ṽ = V (1 + g̃) and V̂ = V (1 + ĝ) to (1.3) with ‖g̃‖L∞ , ‖ĝ‖L∞ ≤
δ0 < 1, there holds

‖f‖Ṽ ≤
(

1 + δ0

1− δ0

) p+1
2

‖f‖V̂ .

i.e., two norms are equivalent

‖f‖Ṽ . ‖f‖V̂
provided δ0 < 1/2. Throughout this proof, f . g denotes the inequality
f ≤ Cg for some constant C which may depend on n, m, and V but uniform
in small ε0, δ0, and large τ .

It suffices to show how ĝτ is chosen so to satisfy (6.7) and (6.8). For
other ĝs′+τ , s′ > 0, we may shift the time of original problem by s′, consider
V (1 + h(s′ + t)) and V (1 + gs′+s) in place of V (1 + h(t)) and V (1 + gs),
respectively, and re-apply the previous assertion. We now notice that by the
triangle inequality and the hypothesis in (6.6), we have that

‖gs+2 − gs‖V ≤ ‖gs+2 − hs+1‖V + ‖hs+1 − gs‖V ≤ 2ε,
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for any s ≥ 0, and thus by iteration,

(6.9) ‖g2k − g0‖V ≤ kε,

for any k ∈ N0. By another application of the triangle inequality on (6.6)
and (6.9), it holds that, for τ > 1,

(6.10) sup
t∈[0,2τ ]

‖h(t)− g0‖V . τε.

Let us denote Ṽ := V (1 + g0), a new stationary solution. If we write

the solution V (1 + h(t)) to (1.2) in terms of Ṽ and its relative quantity by

V (1 + h(t)) = Ṽ (1 + h̃(t)), then h̃(t) := h(t)−g0

1+g0
. Note that h̃(t) solves the

evolution equation for relative error

(6.11) ∂th̃+ LṼ h̃ = NṼ (h̃),

equation (2.1) with new refenence stationary solution Ṽ .
In view of (6.4), (6.5), (6.10), and the equivalence between ‖·‖V and ‖·‖Ṽ ,

observe that

(6.12) sup
t≥0
‖h̃(t)‖L∞ ≤

2δ0

1− δ0
and sup

t∈[0,2τ ]
‖h̃(t)‖Ṽ . τε.

If we choose δ0 sufficiently small, then the smoothing estimate in Proposition
4.4 applies to h̃(t), a solution to (6.11), and we have

(6.13) sup
t∈[1,2τ ]

‖h̃(t)‖L∞ + ‖∂th̃(t)‖L∞ . ετ.

(In fact, the constants ε and C in Proposition 4.4 depend on Ṽ , not V . Since

Ṽ = V (1 + g0) and ‖g0‖L∞ ≤ δ0, by assuming δ0 is small, we may assume ε
and C do not depend on the choice of g0.)

In the next step, we aim at applying a Merle–Zaag-type lemma to the
unstable, center, and stable modes of h̃. For this purpose, we introduce the
L2(Ṽ p+1dx) orthogonal projections P̃u, P̃u and P̃s onto the unstable, center,

and stable eigenspaces generated by LṼ , and write h̃u = P̃uh̃, h̃c = P̃ch̃ and

h̃s = P̃sh̃. Arguing similarly to the proof of Theorem 3.1, we derive the
system of ordinary differential equations

d

dt
‖h̃u‖Ṽ + λ̃u‖h̃u‖Ṽ ≥ −Cετ

(
‖h̃u‖Ṽ + ‖h̃c‖Ṽ + ‖h̃s‖Ṽ

)
,∣∣∣∣ ddt‖h̃c‖Ṽ

∣∣∣∣ ≤ Cετ (‖h̃u‖Ṽ + ‖h̃c‖Ṽ + ‖h̃s‖Ṽ
)
,

d

dt
‖h̃u‖Ṽ + λ̃s‖h̃u‖Ṽ ≤ Cετ

(
‖h̃u‖Ṽ + ‖h̃c‖Ṽ + ‖h̃s‖Ṽ

)
,

for all t ∈ [1, 2τ ], for some constant C > 0, where λ̃u is the largest negative

and λ̃s the smallest positive eigenvalue of LṼ . Note that ε0 > 0 and τ > 0
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are not fixed yet. Let us denote σ := Cετ . Suppose we choose ε0 and τ so
that

σ ≤ Cε0τ ≤ λ̃ :=
1

2
min{−λ̃u, λ̃s},

then the system implies

d

dt
‖h̃u‖Ṽ − λ̃‖h̃u‖Ṽ ≥ −σ

(
‖h̃c‖Ṽ + ‖h̃s‖Ṽ

)
,∣∣∣∣ ddt‖h̃c‖Ṽ

∣∣∣∣ ≤ σ (‖h̃u‖Ṽ + ‖h̃c‖Ṽ + ‖h̃s‖Ṽ
)
,

d

dt
‖h̃u‖Ṽ + λ̃‖h̃u‖Ṽ ≤ σ

(
‖h̃u‖Ṽ + ‖h̃c‖Ṽ

)
,

for any t ∈ [1, 2τ ]. By the virtue of Lemma 4.3 and the bound in (6.12),

there exits a constant σ0 dependent only on λ̃ such that if we further assume
Cε0τ ≤ σ0, it holds that

(6.14) ‖h̃u(t)‖Ṽ + ‖h̃s(t)‖Ṽ . ετ‖h̃c(t)‖Ṽ + ετe−
1
8
λ̃τ . (ετ)2 + ετe−

1
8
λ̃τ ,

for any t ∈ [3τ
4 ,

5τ
4 ]. Here, we applied the lemma on the interval t ∈ [ τ2 ,

3τ
2 ].

We remark that as a direct consequence of Lemma 6.3, λ̃ can be bounded
away from zero uniformly in Ṽ , more precisely, we can suppose that

(6.15) λ̃ >
1

2
min{−λu, λs}

if δ0 is chosen sufficiently small.
We still have to bound the center modes. For this, we make use of the

fact that, by the virtue of Proposition 6.5 and our hypothesis in (6.5), the

limit Ṽ = V (gs + 1) is ordinary. We denote by ΦṼ the diffeomorphism
between suitable subsets of kerLṼ and the set of stationary solutions relative

to Ṽ described in Definition 3.3. Thanks to the bound in (6.12) that

‖h̃c(τ)‖Ṽ ≤ ‖h̃(τ)‖Ṽ . ετ , for any small δ̂, if ε0τ is chosen sufficiently

small, there exists a function g̃τ = ΦṼ (h̃c(τ)) with ‖g̃τ‖L∞ ≤ δ̂ solving

LṼ (g̃τ ) = M(g̃τ ) (i.e., Ṽ (1 + g̃τ ) solves (1.3).) Moreover, since ΦṼ (0) = 0
and (dΦṼ )0 = id, we have that

(6.16)
‖g̃τ − h̃c(τ)‖Ṽ = ‖ΦṼ (h̃c(τ))− ΦṼ (0)− (dΦṼ )0(h̃c(τ))‖Ṽ

= o(‖h̃c(τ)‖Ṽ ) = o(ετ).

In order to observe that this estimate is stable under-order-one variations in
time, we recall that the center modes solve the (finite dimensional) system

∂th̃c = P̃cNṼ (h̃). An integration over some interval [τ, t] and the quadratic
estimate (4.3) on the nonlinearity give

‖h̃c(t)− h̃c(τ)‖Ṽ ≤
∫ t

τ
‖NṼ (h̃)‖Ṽ dt .

∫ t

τ

(
‖h̃‖L∞ + ‖∂th̃‖L∞

)
‖h̃‖Ṽ dt.
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We apply the bound in (6.12) and (6.13) to conclude

sup
t∈[τ,τ+2]

‖h̃c(t)− h̃c(τ)‖Ṽ . (ετ)2,

and thus, (6.16) can be generalized to

(6.17) sup
t∈[τ,τ+2]

‖g̃τ − h̃c(t)‖Ṽ = o(ετ).

Later when we show (6.8), it will be necessary to quantify the relation

between δ̂ and ετ . For this purpose, we notice that since g̃τ solves LṼ g̃τ =
M(g̃τ ), it satisfies the estimate ‖g̃τ‖L∞ . ‖g̃τ‖Ṽ , and the inequality is uniform

in Ṽ and depends only on the bound in (6.5). Indeed, this estimate can be
derived parallel to the smoothing estimates in Proposition 4.4. Therefore,
using the properties of the diffeomorphism ΦṼ again, we observe that

(6.18) ‖g̃τ‖L∞ . ‖g̃τ‖Ṽ = ‖ΦṼ (h̃c(τ))‖Ṽ . ετ.
Let us summarize what we have obtained so far. We showed there is small

δ0 > 0 and c0 > 0 such that if ε0τ < c0 and ε < ε0, then there is a stationary
solution Ṽ (1 + g̃τ ) with the estimates (6.14), (6.16), (6.17), and (6.18). We
shall now transform g̃τ into the solution ĝτ of (3.7) that we are looking for.
We thus set

(6.19) ĝτ = (g0 + 1)g̃τ + g0.

Recalling that h(t) and h̃(t) are related by the same transformation, h(t) =

(g0 + 1)h̃(t) + g0, and using the estimates (6.5), we have that

‖h(t)− ĝr‖V = ‖(gs + 1)(h̃(t)− g̃r)‖V . ‖h̃(t)− g̃r‖Ṽ .
It remains to use the estimates in (6.14) and (6.17) together with the triangle
inequality to deduce

sup
t∈[τ,τ+2]

‖h(t)− ĝτ‖V . (ετ)2 + ετe−
1
8
λ̃τ + o(ετ).

First choose τ large (independently from Ṽ thanks to (6.15)) and then ε0
sufficiently small to satisfy ε0τ < c0 and (6.7)

sup
t∈[τ,τ+2]

‖h(t)− ĝτ‖V ≤
1

2
ε

for any ε ≤ ε0.
Finally, (6.8) is an immediate consequence of (6.18) and the definition of

ĝτ in (6.19). �

We now have all the tools at hand to proceed to the proof of the exponential
convergence result.

Proof of Theorem 6.1. The idea is to iterate Proposition 6.6. By a translation
in time, we may assume

sup
t≥0
‖h(t)‖L∞ ≤ ε1
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for some ε1 ≤ min(δ0, ε0). Moreover, we choose ε1 small so that 2Cε1 < δ0

holds, where C <∞ is the constant in Proposition 6.6.
To start with, we consider the trivial solution family g0,s := 0 for s ≥

0, which trivially satisfies the hypothesis of Proposition 6.6 with ε = ε1.
Therefore there exists a family of stationary errors {ĝ0,s}s≥τ satisfying

sup
s≥τ
‖ĝ0,s‖L∞ ≤ Cε1

and

sup
t∈[s,s+2]

‖h(t)− ĝ0,s‖L2
p+1
≤ ε1

2

for all s ≥ τ . Hence, the translated family {g1,s}s≥0 where g1,s = ĝ0,s+τ

satisfies again the hypothesis of Proposition 6.6, this time with ε = ε1/2
and h(t) replaced by h(t+ τ). We perform a series of iterations, leading to
families {gk,s}s≥0 for any k ∈ N satisfying

(6.20) sup
t∈[s,s+2]

‖h(t+ kτ)− gk,s‖L2
p+1
≤ ε1

2k

and

(6.21) ‖gk−1,s − gk,s‖L∞ ≤
Cε1
2k−1

for all s ≥ 0. Notice that the latter and the fact that we started with the
trivial solution g0,s = 0 entails that

‖gk,s‖L∞ ≤
k∑
`=1

‖gk−`+1,s − gk−`,s‖L∞ ≤ 2Cε1

k∑
`=1

2−k ≤ 2Cε1 < δ0,

by our choice of ε1, which guarantees that condition (6.5) holds true in every
iteration step.

Moreover, the estimate (6.21) also implies that, for any fixed s, the
sequence gk,s converges geometrically in L∞ to some g∞,s ,

‖gk,s − g∞,s‖L∞ ≤
Cε1
2k

,

for any k ∈ N and s ≥ 0. We conclude via the triangle inequality and
estimate (6.20) that

‖h(t+ kτ)− g∞,s‖L2
p+1
≤ C12−k

for some new constant C1, any s ≥ 0 and any t ∈ [s, s+ 2]. Picking s = t = 0,
we deduce exponential convergence with rate γ = (log 2)/τ towards g∞,0,
which must actually vanish, g∞,0 = 0, because h(t) is decaying to zero by
the virtue of the Bonforte–Grillo–Vázquez theorem [BGV12], cf. (1.5). This
finishes the proof of the second dichotomy. �
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