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Abstract. Monge’s problem refers to the classical problem of optimally transporting mass:
given Borel probability measurgs™ # p~ on R™, find the measure preserving map

s(z) between them which minimizes the average distance transported. Here distance can be
induced by the Euclidean norm, or any other uniformly convex and smoothd@rng) =

lz — y|| onR™. Although the solution is never unique, we give a geometrical monotonicity
condition singling out a particular optimal mafx). Furthermore, a local definition is given

for the transport cost density associated to each optimal map. All optimal maps are then
shown to lead to the same transport denaity L' (R™).

Mathematics Subject Classification (2008%Q20, 28A50

1 Introduction

Let us begin by recalling a modern formulation of Monge’s problerniih [6].
First published in 1781, we refer to Evans [8], Rachev aiiddRendorf [23], and
Villani [29], for discussions of the problem, its history, and applications.

Problem 1.1 (Monge) Fix a normd(z,y) = ||z — y|| on R", and two com-
pactly supported densities — non-negative Borel functiphsf~ € L'(R") —
satisfying the mass balance condition

fHa)yde= | f(y)dy. @
R" R"
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In the setS(f*, f~) of Borel mapsr : R" — R" which push the measure
du™ = fT(z)dx forward todu~ = f~(y)dy, find a maps which minimizes the
cost functional

1) = [ @) - 2l (@) @

Herer € S(f*, f~) is sometimes denoted by, = 11—, and means merely that

() (@ = | o)f~ )y, ®)

R"

holds for each continuous test functigron R".

Though the norml|z — y|| need not be Euclidean, throughout the present
manuscript we follow [6] in assuming there exist constafifs > 0 such that
all z,y € R" satisfy the uniform smoothness and convexity estimates:

1 1
Myl? < Sl +yl” = 127 + S lle =yl < Allyl*. 4)

The estimates (4) assert some uniform convexity and smoothness [3] of the unit
ball; they are certainly satisfied if, e.g., the unit spher¢ = 1 is aC? surface

in R™ with positive principal curvatures. In particulat,= A = 1 makes (4) an
identity in the Euclidean case.

Monge’s problem has been studied by many authors. In 1976 Sudakov showed
solutions to be realized in the original sense of Monge, i.e., as mappings from
R"™ to R™ [28]. A second proof of this existence result formed the subject of a
recent monograph by Evans and Gangbo [9], who avoided Sudakov’'s measure
decomposition results by using a partial differential equations approach. Recently
a simpler, geometric proof was obtained by Caffarelli, Feldman, McCann [6] and
independently by Trudinger and Wang [30] (for the case of the Euclidean norm).

The optimal map for Problem 1.1 is non-unique. In the one-dimensional case,

multiple optimal maps can be constructed explicitly for fixed # p~ on R.
We show in this paper that this one-dimensional phenomenon is the only source
of non-uniqueness in Monge’s problem. We do this by studying the uniqueness of
optimal maps and of the flow generated by optimal maps. Our first result is the
following:

Theorem 1.2 (Uniqueness of optimal mapskix a norm onR." satisfying the uni-

form smoothness and convexity conditions (4), andti@® " ) densitiesf *, f~ >

0 with compact support and the same total mass (1). Among Borelsndgs —

R"™ solving Monge’s problem, in the sense that they minimize the average distance
(2) transported among all maps pushifig forward to f ~ (3), there exists a unique
optimal maps € S(fT, f~) satisfying the monotonicity condition

1 — X s(x1) — s(xq)
Tex —zall + Tsan) —s(a)] 7 ©)

for all 1 # x2 € R" with distinct images(z1) # s(x2).
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The existence of optimal maps has been shown using various methods, as men-
tioned above [28] [9] [30] [6]. In fact, all of these approaches lead to (or can be
adapted to yield) a map satisfying (5); compare e.g. Trudinger-Wang [30, (18)] with
Lemma 3.2 below. Thus the content of Theorem 1.2 is the uniqueness assertion.

In the absence of the restriction (5), Problem 1.1 admits multiple solutions,
as can be constructed explicitly in the one-dimensional case fofany f~ €
L'(R). Lemma 3.1 below shows condition (5) is in fact implied by optimality, un-
less all four points:y, z2, s(z1), s(z2) lie on a single line. Thus the restriction does
nothing except resolve this one-dimensional degeneracy by ensuring that whenever
any pair of points and their images are collinear, then the sraaqts monotonically
(non-decreasingly) along this line. More precisely, the geometry of optimal mass
transport is following. Fix a Kantorovich potentia(see Problem 2.1, Proposition
2.2 and Remark 2.3 below) of problem 1.1. Theis a Lipschitz function. The po-
tentialu determinegransport raysi.e. maximal segments with joining supfp")
to supf f ), along whichu decreases linearly with the maximum rate allowed by
its Lipschitz constant. The optimal maps constructed in [28], [9], [30], and [6] act
down transport rays af. Indeed [6, Lemma 6] implies thany optimal map acts
along transport rays of the fixed potentialHowever, not every map is monotonic
alongrays, i.e., satisfies (5). Theorem 1.2 thus shows that condition of monotonicity
along transport rays selects a unigue optimal map.

Multiple optimal maps in Problem 1.1 are obtained as follows. Restricting
measureg® = f*dx onto each transport ray as in [6] or [30], one obtains a one-
dimensional transportation problem on each ray, which admits nonunique optimal
map. Optimal maps on different transport rays can be chosen more or less inde-
pendently: one need only retain enough consistency to obtain a measurable map
s : R" — R" by combining different maps on separate rays. Then the sniap
optimal [6]. In Sect. 4 we examine what effect the choices of optimal maps on the
separate transport rays may cause. We show that the rate of cost of optimal mass
transfer through each point of the space does not depend on the particular choice
of an optimal map. Note that, since direction of optimal mass transfer is uniquely
defined at any point by Theorem 1.2, and cost of transportation per unit mass de-
pends only on direction, the uniqueness of rate of cost at each point is equivalent
to uniqueness of rate of mass flux through each point. The quantity which describe
a rate of cost of optimal transfer through a point of space is caléport cost
density(or transport density) and may be introduced heuristically as follows. For a
fixed optimal maps, the transport cost densityz) at a pointz € R" is

cost of transportation througRz(z) of mass flow generated by

)

a(2) = Jim, Dr(2)]
whereDg(z) is a certain domain around shrinking nicely toz asR — 0+. See
(43) and (40) below for the precise definition @fz) andDg(z). We show that
the limit in the definition ofa(z) exists at almost every pointof R"™, and that
resulting functioru belongs tal.! (R™) and satisfies, in a weak sense, an equation,
which in the Euclidean case has the form

—div(aDu) = f+ — f~. (6)
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The transport density and similar functions have been studied by several au-
thors, mostly in relation to the equation (6). In 1952, Beckmann [4] proposed a
variational problem for the flow density of minimal transportation cost, but did not
relate this transport density to optimal maps. He derived equation (6) formally, by
assuming “sectional smoothness” of the transport density. Note that such regularity
of a does not generally hold even for smogth. Several authors considered equa-
tions similar to (6) motivated by problems of flows through domains (Strang [27],
Iri [17]), or by variational problems for vector fields ih' or L (Strang [26],
Janfalk [18]), for measures (Bouchitte-Buttazzo-Seppecher [5]), and by variational
evolution problems (Evans-Feldman-Gariepy [11], Feldman [13] [14]). Evans and
Gangbo [9] considered the transport density as a nonnegative function supported
within the collection of transport rays, and satisfying (6). They prove that wiien
are Lipschitz and disjointly supported, a transport density exists and belohgs to
They used: in their construction of an optimal map, and heuristically interpreted
as the density of flow generated by an optimal map. We make this last interpretation
rigorous, and prove existence and uniqueness of a transport density' (R")
for compactly supported® € L'(R"), while deducing some further properties
of this transport density.

1.1 Epilog

These results were presented at an October 26—28, 2000 workshgssrirans-

port problems, shape optimization, and weak geometrical structfrd® Scuola
Normale Superiori in Pisa, Italy, where an earlier version of this manuscript was
released. At the same workshop, the authors learned of several notable parallel
developments. First, lecture notes were released by Ambrosio [2], which contain
an excellent summary of progress on Monge’s problem, including an indepen-
dent derivation for existence and uniqueness of a transport det(siygiven

f* € LY(R™). These notes also highlight a gap in Sudakov’s proof for existence
of an optimal map. Although this gap can be filled in two dimensions (provided
the norm has a strictly convex unit ball), a counterexamplRindue to Alberti,
Kircheim, and Preiss [1] shows one of his propositions fails in higher dimensions un-
less additional assumptions are made. Thus it would seem that Evans and Gangbo
[9] contains the the first complete proof of existence for optimal maps between
Lipschitz densitiesf* with disjoint support, while Caffarelli-Feldman-McCann

[6] and Trudinger-Wang [30] contain the first complete proofs for more general
f* € L'(R™). Note that all complete proofs require a Euclidean ball, or at least
the uniform smoothness and convexity hypothesis (4), which Sudakov explicitly
eschews [28, p 164].

In other developments, Stepanov [25] obtained results on differentiability of the
transport density along transport rays, and its non-differentiability in orthogonal
directions, while DePascale and Pratelli [7] obtained estimatdg’ @ummability
of the transport density( - ) in terms of|| f*||,, for p € [1, 00], and a sharp lower

bound on the dimension of the supporudbr more singular probability measures

.
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2 Background: existence of optimal maps in Monge’s problem

In this section we give a brief survey of the theory of Monge-Kantorovich problem,
following [6]. We omit most of proofs in this section, since they can be found in

[6].
2.1 Dual problem

First we recall a problem formulated by Kantorovich [19] as a dual to Monge’s
problem. Let Lig (R™, || - ||) denote the set of functions & which are Lipschitz
continuous with Lipschitz constant no greater than one; i.e.

Lip, (R™, [I]}) = {u tR" = R Ju(z)—u(y)| < [lz—y| forany o,y € R"}.
Problem 2.1 (Kantorovich) Maximize K[v] on Lip, (R™, | - ||), where

K] = / ) v(dut —du™).

Proposition 2.2 (Lipschitz maximizer) Let non-negative Borel functions,
f~ € L*(R™) have compact suppo®t’, Y C R" and satisfy the mass balance
condition (1). Letu®™ = f*dz. Then there exists € Lip, (R", | - ||) which is a
maximizing solution of Problem 2.1:

Klu] = _sup Klv].
velip, (R~ ||-)

In addition,
u(z) = Iy%ii}l(u(y) + ||z —y|) foranyze X;
u(y) = max(u(z) —[lz —y[) foranyyey. @)
Remark 2.3We call a solution of Problem 2.1kantorovich potential
The next lemma exhibits the connection between the primal and dual problems.

Lemma 2.4 (Duality) Fix u € Lip;(R™, | -|) and lets : R* — R" be a
mapping which pushgs"™ forward top~. If

u(z) —u(s(z)) = ||l — s(z)|| forptae zxelX (8)

then:

i. uis a Kantorovich potential maximizing Problem 2.1.

ii. sisanoptimal map in Problem 1.1.
iii. The infimum in Problem 1.1 is equal to the supremum in Problem 2.1.
iv. Every optimal mag and Kantorovich potential also satisfy (8).
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2.2 Transport rays and their geometry

Fix two measureg™ andu~ defined by non-negative densiti¢s, f~ € L'(R")
satisfying the mass balance condition (1). Assume thaand .~ have compact
supports, denoted by and) c R" respectively.

Our starting point for constructing an optimal map is a solutierLip,@R", ||-|)
of the Kantorovich dual Problem 2.1 satisfying (7). Suahexists by Proposition
2.2.

Since we want to investigate the geometrical implications of (8)fauppose
x € X andy € Y satisfy

u(z) —u(y) = llz -yl
From the Lipschitz constraint
|u(z1) — u(z2)| < ||z1 — 22| forany zi,z2 € R, 9)

it follows that on the segment connectingand y the functionu is affine and
decreasing with the maximum rate compatible with (9). We will call maximal
segmentse, y] having these properties th@nsport rays More precisely:

Definition 2.5 (Transport rays) A transport rayR is a segment with endpoints
a, b € R" such that

i.aeX,be), a#b;
i. u(a)—u(b) =|a—>l;
ii. Maximality: for any¢ > 0 such thata; := a + t(a — b) € X there holds

|u(az) = u(b)| < | ar = bl|,
and for anyt > 0 such that), :== b+ ¢(b — a) € ) there holds
u(be) —u(a)] <[ br — all

We call the points: andb the upperandlower endsof R, respectively. Since
u(a) — u(b) = ||a — bl|, it follows from (9) that any point € R satisfies

u(z) = u(b) + ||z = bl| = u(a) - [la — z||. (10)

Let us call a point € R" aninterior pointof a segmenta, b], wherea, b € R",
if 2 =ta+ (1—t)bfor some0 < t < 1. We denote bya, b]° the set of interior
points of|a, b].

Definition 2.6 (Rays of length zero) Denote byl the set of all points which lie
on transport rays. Define a complementary Bgtcalled therays of length zero

by
To={zeXnNY : |uz)—u(Z)| < ||z =7 foranyz' e XU, 2’ # z}.

We collect some basic properties of transport rays in the following lemma:
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Lemma 2.7 (Properties of transport rays) Let the norm|| - || satisfy (4). Then:

i. Data is Supported Only on Transport Rays:U Y C Tp U T

ii. Transport Rays Are Disjoint: Let two transport rayy # R, share acommon
pointe. ThenR; N Ry = {c} andc is either the upper end of both rays, or the
lower end of both rays. In particular, an interior point of a transport ray does
not lie on any other transport ray.

iii. Differentiability of Kantorovich Potential Along Rays: # lies in the relative
interior of some transport ray R themis differentiable atzy. Indeed, setting
e := (a — b)/|la — b|| wherea, b are the upper and lower ends &fyields:

|Du(z9)y| <1 forall ||y = 1, with equality if and only ify = +e.

Here Du(z) € (R™)* is a derivative ofu at z € R", viewed as a linear
functional on the tangent space.

We will use the following distance functions to the lower and upper ends of
rays:

Lemma 2.8 (Semicontinuity of distance to ray ends)At eachz € R" define

a(z) ==sup {llz -yl | y €V, u(z) —uly) =z —yll}, (11)
B(z) :==sup{llz —z|| | v € X, u(z) —u(z) =z — =[]}, (12)
wheresup ) := —oco. Thena, 5 : R" — R U {—o0} are both upper semicontin-

uous.

Definition 2.9 (Ray directions) Define a functions : R" — R™ as follows. Ifz
is an interior point of a transport ray? with upper and lower endpoints b (note
that R is uniquely defined by in view of Lemma 2.7(ii)) then

a—2b
lla — o]l

v(z) = (13)
Definev(z) = 0 for any pointz € R" not the interior point of a transport ray. We
call v(z) thedirection functioncorresponding to the Kantorovich potential

The next property is crucial for construction of optimal map.

Lemma 2.10 (Ray directions vary Lipschitz continuously) Let R; and R; be
transport rays, with upper end; and lower endh;, for k = 1,2 respectively. If
there are interior points, € (Ry)° where both rays pierce the same level set of
the Kantorovich potentiali(y;) = u(y2), then the ray directions (13) satisfy a
Lipschitz bound

() ~ w2l < Tl vl (1)

with constanC? + X\ = 2(1 + A~ 4)/(1 + ) depending on the norm (4) and the
distance := min {[lyx — ax||, [lyx — b/} to the ends of the rays.
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2.3 Measure decomposing change of variables

It is in this subsection that we construct the change of variabldR'bwhich we

use to build an optimal map. Lemma 2.10 suggests how these new coordinates must
be definedn — 1 of the new variables are used to parameterize a given level set
of the Kantorovich potentiatl, while the final coordinate,, measures distance to

this set along the transport rays which pierce it. Thus the effect of this change of
variables will be to flatten level sets afwhile making transport rays parallel. But

the conditions of Lemma 2.10 make clear that we retain Lipschitz control only if
we restrict our transformation to clusters of rays in which all rays intersect a given
level set ofu, and the intersections take place a uniform distance away from both
endpoints of each ray. These observations motivate the construction to follow.

Lemma 2.11 (Bi-Lipschitz parametrization of level sets) Letu : R" — R!
be a Lipschitz functiony € R', and S, the level se{z € R" | u(z) = o}. Then
the set

Se N{z € R™ | u is differentiable atc and Du(z) # 0}

has a countable covering consisting of Borel s§fsc S, such that for each
i € N there exist Lipschitz coordinatés: R” — R"*and V : R"! - R"
satisfying

V(U(z)) =z forall zec Sk, (15)

For each level € R' and integet € N, we shall extend these coordinates to
the transport rays intersectilﬁg',.

Definition 2.12 (Ray clusters) Fix ¢ € R', a Kantorovich potential, and the
Borel cover{S:}, of the level seS, := {z € R" | u(z) = p} in Lemma 2.11.
Leti € N and let B be a Borel subset of’. For eachj € N let thecluster
T,:;(B) := UR, denote the union of all transport ray®, which interseciB, and

for which the point of intersection€ B is separated from both endpoints of the ray
by distance greater thatyj in || - ||. The same cluster, but with ray ends omitted, is
denoted byr’?;;(B) := U.(RY). Denotel,;; = T5;(S5) and Ty, := T2, (S%).
On each ray clustéfgij we define the Lipschitz change of variables:

Lemma 2.13 (Lipschitz change of variables) Each ray clusterl,;; ¢ R"

admits coordinatesy = G,;; : T%;; — R"™' x R' with inverseF" = F,;; :
0 n i H .

G(Ty;;) — R" satisfying:

i. F extends to a Lipschitz mapping betwdf~! x R! andR";

ii. foreach) >0, Gis Lipschitzoril});; := {x € T;; | ||z —al|, |z —b]| > A},
wherea andb denote the endpoints of the (unique) transport iy

ii. F(G(x))=a foreachz e T7;;;

iv. If atransport rayR, C Tyi; intersectsS? at z, then each interior point €
(R.)° of the ray satisfies

G(z) = (U(2),u(z) — u(z)), (16)
whereU : R" — R" ™! gives the Lipschitz coordinates (15) 8.
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Definition 2.14 (Ray ends) Denote by¢ C T; the set of endpoints of transport
rays.

The next step is to address measurability of the Bty B) andG[T[?ij(B)].
In what follows,n-dimensional Lebesgue measure is dendiéd

Lemma 2.15 (Measurability of clusters / Negligibility of ray ends) The ray
ends€ C T; form a Borel set of measure zer6”[£] = 0. The rays of length zero
T, ¢ R" also form a Borel set. Finally, for each € R', i,j € N, and Borel
B C S} the clusterT?;;(B) of ray interiors and its flattened imag&(77;;(B)]
are Borel. HereG is the map from Lemma 2.13. In particular the SEE&]- and
G[T?,.] are Borel.

oij
Remark 2.16The statements corresponding to Lemmas 2.13 and 2.15 are formu-
lated in [6] only for clustersl};;, Tgij with (p,i,7) € Q x N2. But the proofs
work without any changes in the conditions of Lemmas 2.13 and 2.15.

A countable collection of clusters forms a coveringlgf

Lemma 2.17 (Rational clusters cover rays)The clusterd},;; indexed by € Q
andi, j € N define a countable covering of all transport rdfjs C R"™. Moreover,
eachT},;; and transport rayR satisfy:

Either (R)? C T}, or (R)° N Ty = 0. (17)

As a patrticular consequence of this lemma: thelgedf all transport rays is
Borel, being a countable union of Borel s@t]%j with £. Also, the setd},;; are
Lebesgue measurable, being the union of a Borel set with a subset of a negligible
set.

Finally, we can take the cluste¥$;; of rays to be disjoint. Indeed, enumerate
the triples(p, 4, j) so the collection of clustefs,;; } becomeg T(;) },k = 1,2, .. ..

Fork > 1 redefinel(x) — T(x) \ (U=, T(r)). Redefinel (), — T4, \ (U2 T()
analogously. We will continue to denote the modified setdy andT};,. Note
that the structure of the clustéfs;; remains the same: for eaéh, ; we have a Borel
subsetSy;; = Tpi; NS, C S, andT,;; is the clustefl),;; (.Sy;;) from Definition
2.12. In particular, there are Lipschitz coordindted” (15) satisfyingl’ (U(z)) =
xforallx € Sp,;5, and mapd”, G satisfying all assertions of Lemma 2.13. Indeed,
since the new cluster is a subset of the old, the former riaps F', G will suffice.
The measurability Lemma 2.15 holds for the new clusters. Thus from now on we
assume:

The clusters of ray interiorérz?ij are disjoint. (18)

For future reference, let us point out that the above construction implies the
following. Define the following mappings j=j on subsets of level sets, =
u~'(c), wheres € R':for A C S,

j(4) = U.eanro RY,

iT(A) =i(A) n{y | uly) > o}, (19)
7 (A) =i(A)N{y [uly) <o}
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whereR! is the relative interior of the unique transport ray througfhus, [ A)
is the smallest transport set containitg 77 for A C S, and i (A) are the parts
of j(A) which lie above (resp. below) the level st of w.

Corollary 2.18 Leto € R, let S, := u~'(0) be the level set of(z), and let
B C S, be a Borel set. Then the sets3)), j*(B) are Borel.

Proof. Sinceu is a continuous function, we only need to prove tti&t)jis Borel.
Since B N 17 is Borel, we can replac& by B N 17, i.e., assume thab C
S, NTY.
We have

U 0 (BNSL).

1,7=1

Since bothB and.S¢ are Borel, we use Lemma 2.15 to conclude the proof.0

2.4 Detailed mass balance

Definition 2.19 (Transport sets) A setA C R" is called atransport seff z €
AN (Th\ &) impliesR? C A, whereR, is the unique transport ray passing
throughz. It is called thepositive end of a transport siétA merely contains the
interval [z,a) whenever: € A N (71 \ £) and a denotes the upper end of the
transport rayR, .

ExamplesAny subsetA C Tj of rays of length zero is a transport set, as are the
clusters of rayg;;.

For Borel transport sets, suchﬂlgj, the following balance conditions apply.

Lemma 2.20 (Detailed mass balance)Let A ¢ R" be a Borel transport set.

Then
/f+(x)dx:/f7(x)da:. (20)
A A

More generally, if a Borel seit ¢ R"™ forms the positive end of a transport set,
then

fH(z)dr > [ (x)dx. (21)
+ A+

2.5 Construction of the optimal map

In this subsection we construct an optimal map for Problem 1.1.

Step 1. Localization to clusters of raysAccording to Lemma 2.4, it is enough to
constructamap : R* — R" pushingu* forward tog,~ which only moves mass
downtransport rays: i.e., for any € X, the points(x) must lie belowz on the
same transport rai,., possibly of length zero. Here ‘down’ and ‘below’ refer to
the constraint(z) > u(s(z)) from (8).

Decompose the satu) into the raysl} of length zero, clusters of ray interiors
and the ray end§ using Lemmas 2.7(i) and 2.17. The cluster property (17)

PU !
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implies that any such magsatisfiess(x) € T};; almost everywhere ofiy; ;, while
s(z) = x onTy. Since the ray ends form a set of measure zero by Lemma 2.15, they
are neglected here and in the sequel. Also, the cIu%]&JrandTo are disjoint and
Borel by (18) and Lemma 2.15. Thus we can construct an optimalsreaparately
on each clustefy);; and onTy.

Considers, first. Since every subset C Ty is a transport set, Lemma 2.20
shows the identity map pushp% forward top - Thus we defingq(z) = x on
TO The remainder of the subsection is devoted to constructing mapsT, W

m] pushmgu‘T0 ~forward tou‘TO which only move mass down transport rays.

Step 2. Change of variablesFix p € Q, i, € N and considef’ W De-
noteupij = “|T0 By Lemma 2.13 the map’ is one to one or7( m) and

F(G(TY.)) = p” SinceF is Lipschitz, the Area formula [133.2.5] yields

pij

/ o(F(2)) f* (F(2)) ], F(x) dx = / Pz (22)
G(TY,.) TY,

pij pij

for any summabl@o : R" — R!. HereJ, F denotes the-dimensional Jacobian
of F. Definef* : R"™! x R! — R! by

e = {gi(F(x))J"F(x) z € G(Ty;); 23)

otherwise

The characteristic functiop = XG(T9,,) in (22) showsf* is summable; it is
obviously non-negative and Borel since Lemma 2.15 sh m]) Borel and

bounded. Introduce the measur#s" := f*(x)dz. From (3), (22), (23) we see
that

+ + + =+
F#9 = ,U,pij, G#,upij =6-.

It then follows that if a mag : R"™! x R' — R"! x R! pushe9™ forward
to 6, then the compositior,;; = F o 5 o G pushes forward%j to 415 IN
addition, Lemma 2.13(iv) shows that wh&moves mass down vertical lines, i.e.,
satisfies (X, z,,) € {X} x [—00, z,,] forany(X, z,,), thens,;; moves mass down
transport rays. Thus it remains only to constréictR" ! x R! - R"! x R}
satisfying

5407 =07, §(X,zn) € {X}x[-00,x,] forany(X,z,) € R" xR

Step 3. Restriction to vertical lines By Fubini’s theorem, the function&® (X, -)
are summable for a.&( € R™~'. Let us introduce the distribution function

UE(X,7) = / h FEX, ) dy. (24)
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Lemma 2.21 ¥*(X, 7) is non-negative and Borel function throughd®it'~* x
R', with a continuous non-increasing dependence-oim addition, for a.e.X e
Rn71

(X, T) >V (X,7) (25)
holds for all~ € R, with equality
T (X, —00) =¥ (X, —00) < 0 (26)

asT — —oo.
Properties (25) and (26) are derived from Lemma 2.20.

Step 4. One-dimensional transportFix X € R™"! for which (25-26) hold.

We construct a mapy (z) < x on R! which pushes’* (X, z,,) dz,, forward to
f~(X,z,)dz, as follows. Fixr € R!, and recall tha#* (X, - ) is a continuous,
non-increasing function which takes constant values outside a compact set. By (26),
there exists som¢ € R' which satisfies

o (X,7) = /OO f+(X,:cn)d:cn:/Oof—(x,xn)d:cn =0 (X,0). (27)
T ¢

Of course¢ need not be unique, sinde (X, -) will not decrease strictly where
f~ vanishes. Define

tx(7) = inf {C e R'|¥H(X,7) >0 (X,()} (28)
=sup {C e R U (X,7) < ¥ (X,Q)}. (29)

Step 5. Construction of optimal map.Defines : R" ™' x R' - R"™! x R' as
$(X,xn) = (X, tx(zn)), wheretx (x,) < z, is from Step 4.

The maps is Borel throughouR™ ' x R', andé40% = 6~. By Step 2 this
yields mapss,;; = F o 50 G on each clusteTp?ij which pUShufTo_, forward to

pry

“I_TSij while only moving mass down transport rays. Step 1 combines these maps

to yield an optimal map : R™ — R" for Problem 1.1.

3 Uniqueness of a raywise monotone optimal map

This section is devoted to establishing the uniqueness of optimal maps under the
monotonicity condition (5). It begins with a series of lemmas culminating in the
proof of Theorem 1.2. The first lemma asserts any optimal map satisfies condition
(5), except possibly along transport rays. Thus the failure of uniqgueness in Monge’s
problem is essentially one dimensional: it is due to indeterminacy along lines.

Lemma 3.1 (Inversions occuronly onlines)Any optimal solutios € S(f*, f™)
to Monge’s problem satisfies (after modification on a sef oimeasure zero) the
following property: ifx; # x2 € R™ ands(z1) # s(z2) are related by

T1 — T2 s(wy) — s(xa)
for —aall T sl —sa2)] (30)

then all four pointsey, 22, s(x1), s(z2) are collinear.
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Proof. After modification on a set of ¥ measure zero, any optimal solutiere
S(fT, f~) satisfies Monge’s two-point inequality

le1 = s(@2)|| + 22 = s(@)l| = [lor = s(z)[| + 2 = s(z2)ll;  (31)

a modern proof may be found e.g., in [16, Theorem 2.3].

Now assumer; # xo ands(x;) # s(xzz) satisfy (30). The four points are
coplanar because; — z, parallelss(z2) — s(x1) according to (30). Thus the
quadrilaterak , x2, s(x1), s(x2) is a (convex) trapezoid. Denoting the point where
its diagonals intersect by,, we havel||x; — s(z;)|| = ||lz; — m|| + [|m — s(z;)]]
for i = 1, 2. Furthermore, the triangle inequality yields

21 —m +[Im — s(x2)|| (32)
[m = s(z1)[| + [lz2 — m]l. (33)

Strict convexity of the norm (4) implies the first inequality to be strict unless
s(z2) lies on the diagonal line through;, m and s(x). Similarly 25 must lie
on the same diagonal or the second inequality will be strict. Either all five points
x1,x2,m, s(x1), s(z2) are collinear, or the sum of (32—33) violates 31a con-
tradiction. O

For two distinct function®) < f= e L!(R) with the same total mass on a
given transport ray, many maps&(f*, f*) verify (30) at some point; # xs.
We claim only one measure-preserving map satisfies the opposite condition (5).
We begin by demonstrating that the map constructed in Sect. 2 above in particular
verifies (5).

Lemma 3.2 (Monotonicity along rays by construction) The maps constructed
in Sect. 2.5 satisfies the monotonicity condition (5).

Proof. Let v be a Kantorovich potential satisfying (7), andbe the optimal map
constructed in Sect. 2.5. This magpacts along transport rays af i.e., satisfies
(8). Also sincep™[R™ \ X] = 0 and|&| = 0, where€ is the set of endpoints
of transport rays (Definition 2.14 and Lemma 2.15) we carsget = « for all
x € R"\ X andz € £. Sinces(z) = z on the sefl}, of rays of length zero, we
now haves(z) = z onR" \ (X N TY).

In order to show that satisfies (5), it is enough to consider the case when the
four pointszy # x5 ands(x1) # s(xz2) are all collinear, according to Lemma 3.1.
If 21 = s(x1) # s(x2) = x2 then condition (5) holds trivially becauge# 0.
Thus we assume; # s(z1) without loss of generality. Recall thafz) = = on
R"\ (X NTY), hencer; € X NTY. Thenz lies in the relative interioz! of a
transport rayR; with s(z1) € Ry from (8).

If zo € RY, then (5) follows from monotonicity of along transport rays, i.e.,
from the propertyu(z1) — u(xa)|[u(s(z1)) — u(s(z2))] > 0 for anyx,, z2 € RY.
This last property follows from the fact that the functibn defined by (28) is
nondecreasing, and from Lemma 2.13(iii-iv).

Thus it remains to consider, ¢ RY.



94 M. Feldman, R. J. McCann

If 2o = s(x2), then equality (30) implies that;, lies in the relative interior of
Ry, betweenr; ands(z1) — a contradiction.

The only other possibility iss # s(x2) — in which caser; lies in the relative
interior RY of a transport rayR,. Sincezy ¢ RY we haveR! N Ry # () from
Lemma 2.7(ii). Furthermores(z2) € Ry by (8). The disjoint transport rayB?
and RY must be collinear, s@; — 22 ands(z1) — s(x2) both point in the same
direction: away fromR!{ and towardR3. In this case (5) is again satisfied since
2 # 0. Lemma 3.2 has therefore been proved. O

The next lemma and corollary pave the way to the proof of Theorem 1.2. They
establish uniqueness of raywise monotone maps in the flattened coordinate system
of Sect. 2.3.

Lemma 3.3 Fix two compactly supported densities< 6+ (z) € L*(R", dH"),
satisfying mass balance (1). Write = (X,z) € R"' x R and 9§(z) =
0=(X,2). If s : R"! x R — R""! x R is a Borel map of the forna(X, z) =
(X, sX( )) ands € S(0+,07), thensy € S(0%,0%) holds forH"'-a.e. X €
R" .

Proof. Choose- > 0 large enough so that bof¥ vanish outsid&®™ " x [—r, r].
Assumesx (z) € [—r,r] without loss of generality (since it holds for for"-
a.e.(X, z)), and fix a countable dense sub3ebf the continuous test functions
C[—r,r] (such as polynomials with rational coefficients). Givene V and a
bounded continuous test functiane L>(R"~*) N C(R"'), Fubini's theorem
combines withs € S(1,67) to yield

/Rn ! [/RU(U’) 9x(w)dw] h(X)d" X
0~ (X, w)d"' Xdw

-
:/ (X )o(sx(2)) 8+ (X, 2) " X dz
-
= v(sx(2)) 0% (2)dz n-lx,
-/ [/R (sx () 05 )tz ) L x
Sinceh € C(R™ ') N L>°(R"~!) was arbitrary,
/ v(w) O (w)dw — / w(sx(2)) 0% (2)dz (34)
R R

holds foru-a.e.X € R, and for all in the countable sét. For suchX we have

0% € L'(R)vanishing outsidé-r, r], so (34) extends immediately from the dense
subset’ to its uniform closure”[—r, ], and thence to all continuous functions on
the line. Thus the Borel mapx pusheg)* forward tof~: sx € 8(9},0;() as
desired. O

Combining this lemma with the well known unigueness of monotone measure
preserving maps of the line [20] (or better [2H.2]), we recover uniqueness of
optimal maps in flattened coordinates.
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Corollary 3.4 (Unique optimal maps in flattened coordinates)

Fix0 < 0F(X,2) € L'(R™! x R) ands € S(6T,0~) as in Lemma 3.3. Suppose
another Borel map € S(6*,607) also takes the form(X, z) = (X, rx(z)), and
for eachX € R™! bothrx(z) andsx (z) are nondecreasing functions ofc R.
Thenr = s holds outside a subset B"~' x R wheref+ vanishes.

Proof. ThesetN = {(X,z) € R" ' xR | rx(z) # sx(z)} is Borel, so Fubini's
theorem yields

/9+(X,z)d"—1Xdz=/ U v (X, 2) 0% (2)dz| d¥ 71X, (35)
N R"1 R

ForH" '-ae.X € R""!, Lemma 3.3 assertsy, sx € S(6%,0%) with 6% ¢
L'(R,dH'). Sincerx andsx are nondecreasing, it follows that = sx must
holdd%-a.e., according to [20]. The integrand on the right of (35) therefore vanishes,
establishing the corollary. O

Proof of Theorem 1.2L et u be a Kantorovich potential satisfying (7), ante the
optimal map constructed in Sect. 2.5. This magacts along transport rays af
i.e., satisfies (8). Also singe™ [R" \ X] = 0 and|€| = 0, where€ is the set of of
endpoints of transport rays (Definition 2.14 and Lemma 2.15) we caffspt =
forallz € R"\ X andx € £.

Letr : R™ — R" be another optimal map for Problem 1.1 satisfying (5). Note
that we do not assume thatcts along the transport raysofi.e. that (8) holds
for r andu.

Let NV := {z € X | s(z) # r(x)}. Then\ is a Borel set. In order to prove
Theorem 1.2, we need to show that|\] = 0.

Since the map satisfies (8), it follows from Lemma 2.4(iv) that any optimal
map and Kantorovich potential also satisfy (8). In particular, the mapd the
functionw satisfy (8) as well.

Let 7},;; be the ray clusters associated withBy Lemma 2.17X C Ty U
(UpijTpij)- Since bothr ands satisfy (8) withu, thens(z) = r(z) = x for u* a.e.

x € Tp, i.e.,u™ [N NTy] = 0. Also, sincelE| = 0, we haveu™ [N N E] = 0. Thus
it remains to show that™ [V NTY;;] = 0 for all (p,i,j) € Q x N2,

Fix p, 4,7 and letF’ andG be the coordinate maps associate(ﬂfg, defined
in Lemma 2.13. Let® = f*(X,7)dz'dr be measures on the coordinate space
R" ! xR!, wheref* are the functions (23). As both mapandr satisfy (8), there
holdst [s(T75;;) \ Tpi;] = wt[r(T0;) \ Tyi;] = 0. Thus we can define mappings
5,7 : G(TS.) — G(TY )bys = GosoFandi=GoroF forft a.e. point of

pij pij

G(T&]) From the definition,

OE[F~HANTY)] = 05 [GANTY)] = p*[ANTY, .

Pij pij pij

and thus the mapsand7 push forward)™ ontof—. R
Let NV := {(X,z,) € G( T9;) | 3(x) # #(x)}. Then\ is a Borel set, and, by

(22), p* N N TY,] = 6 [N]. Thus it remains to prove

0+ [N = 0. (36)
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Note that the mapsandr satisfy (8), s and? must have the following form.
Write z = (X, z) € R"' x R. Then

$(X,2) = (X,8x(2)) and #(X, 2) = (X,7x(2)), (37)

where for a.eX € R ! the functionséx,7x : R' — R! satisfysx (w) < w
and7x (w) < w. In addition, condition (5) implies that

the functionss x, #x are monotone nondecreasing. (38)

Indeed, let there exist € R" ! andw; > ws such that' x (w1) < 7x(w2). Let
x1 = F(X,w1), z2 = F(X,w,). By Definition 2.12, Lemma 2.7(ii), and Lemma
2.13(iii-iv) it follows that pointsz, 2, r(z1), r(z2) lie on one transport rag,
and

z1 —xo = (w1 —wo)v(z1),  r(z1) —r(z2) = [Px(w1) — Fx(w2)]v(z1),

wherev( - ) is the direction function introduced in Definition 2.9. Thus the points
x1, x2 Violate (5) for the map. This and a similar argument fér; prove (38).
Finally, Corollary 3.4 combines with (37—38) to prove (36), hence Theorem 1.2.
O

4 Transport density

We continue to work inR™ metrized by a normj| - ||. Note that we also have
a Euclidean structure oR™ determined by the product structuf®')™ of R™.
Denote bye - f the scalar product of, f € R", and by| - | the Euclidean norm
le| = /e e. The (Euclidean) gradient of a functign: R™ — R' atz € R" is
denoted byWp(z) € R". We denote byDyp(x) € (R™)* the derivative ofp at
z. Fory : R™ — R™ denote by divw) the (Euclidean) divergence @f. Through
this sectionBr(z) denotes closed Euclidean ball with centeand radiusR, i.e.,
Br(z) ={y € R"; |y — 2| < R}.

Let u be a Kantorovich potential for Problem 1.1, satisfying (7). By Theorem
1.2 and Lemma 2.4(iv) the direction of optimal mass transfer through any point of
T? is uniquely defined, and is given by the direction functign) introduced in
Definition 2.9. It remains to study the rate of optimal mass transfer through a point
of R". We define below a corresponding quantity, calledcttaasport cost density
and study its properties.

Imagine that as each particle of mass is transported froons(x), it deposits
a trail of dust uniformly along the line segment joiningo s(x). Imagine further-
more, that the total residue of dust deposited by an individual particle is proportional
to the mass of the particle times the trip talfiff — s(x)||. Thetransport cost density
a(z) defined in (39) gives the cumulative density of dust depositedatly by
all particles ofu™ as they are transported to- by a maps. Thusa(z) represents
a localized contribution of transportation through the pairtd the total cost of
redistributingu™ onto ;. ~. We quantify this definition by choosing a particular
sequence of open neighborhoddg(z) shrinking toz and setting

cost of transportation throughr (z) of mass flow generated by

a(2) = Jlim, Dr(2)] (39’)
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if the limit exists. Our particular choice of domaifi3z(z) is motivated by the
convenience of subsequent arguments, and corresponds to a small cylinder in the
flattened coordinates of Sect. 2.3. More preciselyslet be a level set of. con-
tainingz, i.e.,S. , = {y | u(y) = u(z)}. Define forz € T, R > 0

Dr(2) :=i[Br(2) N Sz ul N {y | u(z) = R <uly) <u(z) + R}, (40)

where the map j is defined by (19). By Corollary 2.I8;(z) is a Borel subset of
R".

The purpose of this section is to show that all optimal nsap#/onge’s problem
lead to the same transportation cost density in (39). Furthermore; € L' (R")
and solves equation (45) uniquely in a suitable sense. In the Euclidear¢ase,
therefore coincides with theansport densityf Evans and Gangbo [9], and shows
the latter quantity to be unique. These results are collected in Theorem 4.1.

Let us begin by computing the cost of transportation thraDgliz) of the mass
flow generated by an optimal map The computation is based on the following
observation. LefR be a transport ray and, y € R satisfyu(z) > u(y). Then
u(x) — u(y) = ||z — yl|, and so the cost of transport of unit mass frorto y is
u(z) —u(y). Itfollows that, ifr < ¢, and a total mass: is distributed within a level
setu~1(t)NTY, then the cost of transportation of this mass along the transport rays
to the level set =1 (7) N TY ism(t — 7).

Let A be a Borel subset of level set'! (t) N T7. Since the map generates a
mass flow down the transport rays:gfthe mass flux through generated by is
pHy €jt(A) \ s(y) € j~(A)}, where the maps'j are defined by (19). Note
that

pHy et (A) | sty) ej (A} =p T (A)NsTH((A)], (1)

We now show that the expression (41) does not depend on a choice of an optimal
maps. Indeed, for a Borel set TP Nu~(t) it follows from Corollary 2.18 that
ji(A), jT(A) are Borel. Since(jA) is a transport set and [ A) is the upper end of
a transport set, we have by (8) that there exist4éts R" with u*[N] = 0 such
thats[j(A)] \ N C j(A) ands~'[jT(A)]\ NV C j*(A), where the second inclusion
holds since:(y) > u(s(y)) for u™ a.e.y € R™ by (8). Thus the right-hand side of
(41) can be rewritten as follows

pHITA) NsTHGT(A)] = 1 (A \ s (A)]
= pF T (A)] = p s (A)]
= p* T (A)] - Tl (42)
where we usedy ™ = p~ in the last equality. Note that (42) depends only on the
Kantorovich potential:, and no longer on the map

Now the cost of transport of the mass (42) along transport rays fiom
u~L(t) N TY to the level set=1(t — dt) is

{irr e - i i far
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So the cost of mass transport generated by any optimalsitajough a Borel
setB e R"is

/OO {u+ {jﬂBﬂu‘l(t)]} e {jﬂBﬂu_l(t)]} }dt.

—00

Thus we define the transport cost density of the flow generated by any optimal
maps at the point: € 77 as

[ {w it na@l] - o [itoeer 0 o]
al2) := Jim, Dr(2)| ’
(43)
whereDg(2) is defined by (40). We show below that fBr> 0 the integrand in the
right-hand side of (43) is an integrable functiontofrhus the question addressed
by our final theorem is existence of the limit, and propertiea(af). We make

several remarks before giving its proof.

Theorem 4.1 (Existence, uniqueness, and properties of transport densityfix
a Kantorovich potential, satisfying (7) and let be the corresponding direction
function from Definition 2.9.

i. Limit (43) exists a.e. offY and does not depend on a choice of optimal map
ii. There exists: € L*(R™), called thetransport cost densityvith the following
properties:
a>0on R", a=0o0on R"\ T, (44)

anda(z) is equal to the right-hand side of (43) far* a.e.z € T7. In addition,
a( - ) satisfies the equation

—div(av)=fT—f~ inR" (45)

in the weak sense, meaning any test function C'*(R") obeys

/naV~V<pdz:/n(f+—f_)cpdz. (46)

Moreover, for any measurable transport seét- R™ andy € C1(R"™)

/aV~V<pdz:/(f+ff*)g0dz. 47)
A A

iii. Afunctiona € L'(R") satisfying (47) for all measurable transport setand
© € C*(R") is uniquely determined by the constraints (44).

Remark 4.2 (Euclidean transport density the case whefi - || is the Euclidean
norm| - |, we havev(z) = Vu(x) onT?. Thus the equations (45) and (46) have
the form

—div(aVu) = f* — f~; (48)
/ aVu-Vgodz:/ (ft — f)edz. (49)
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Remark 4.3 (Vanishing atray endsgt us discuss the property (47). For simplicity
we consider the case whén || is the Euclidean norm. Then (47) becomes: for any
transport sed

/aVu-Vgodz:/(f+—f_)<pdz forany ¢ € CY(R"). (50)
A A

Property (50) can be heuristically interpreted as following: equation (48) holds in
R"™, and on the boundary of any transport dehe Neumann-type condition holds

adpu =0 on JA, (51)

whered,, u is the normal derivative af. Indeed, (50) implies (51) #A is smooth.
Note that (51) means that there is no mass transfer through the boundary of any
transport set.

Let us further interpret the condition (51). The discussion is mostly heuristic.
SinceA is a “cylinder” of transport rays, it is natural to writed = I'} U I's, where
In = 0A\ € is the set of interior points of rays, add = 0A N £ is the set of
endpoints of rays. By Lemma 2.7(iii), far € I the Kantorovich potential is
differentiable atc, andVu(x) is a unit vector in the direction of the transport ray
R, containingz. Thusd,u(z) = 0 onI3. So (51) naturally holds of}. On I,
we cannot expead,u = 0, and thus the meaning of (51) is that- ) vanishes
(in a certain generalized sense) at the endpoints of transport rays. Note that since
all mass transfer occurs within transport rays, there is no mass transfer through
endpoints of rays, so the vanishing of the transport density at endpoints of rays is
a natural property.

Evans and Gangbo [9] proved thatjfif are Lipschitz functions, then( -)
indeed vanishes ofi in the following sense: the limit ai( - ) along the transport
rays is zero at the rays ends. This was an important property for constructing an
optimal map in [9]. The vanishing af( - ) along the rays as the end of a transport
ray is approached was also a crucial property for deriving and justifying the law
of evolution of a sandpile shape in [11], [13], [14]. Also, in [13] the property (50)
was shown for a restricted class .

In the general casg® € L'(R") one can construct examples in whieh)
has a positive limit or blows up t&¢oc along transport rays at the endpoints of rays
(one example is given below). Thus vanishing of transport densi#y along the
transport rays holds in general only in the sense of (50).

Example 4.4 (Non-vanishing atray endBhe example, ilR?, of transport density
blowup around is the following: f* (z) = 2x, (o) (@), [~ ()= WXBI(O) (),

x|2
where x g, (0)(-) is the characteristic function of the digk, (0) C R?. Then
u(z) = |z|, transport rays are radii of the digk,; (0), and€ = {0} U 0B1(0),
where the point: = 0 is the lower end of all transport rays. The transport density

isa(x) = \/1|?| — I:v) X B, (0)(z), and it blows up along every transport ray at

its lowerendr =0 € €.
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Proof of Theorem 4.1Let us first show that foR > 0 the integrand in the right-
hand side of (43) is an integrable functiontoDenoteCr(z) := j[Br(z) NS, 4]-
By Corollary 2.18(C'r(z) is a Borel subset dR". Also, sinceT? is a bounded set,
Cr(z) is bounded. We have

A= |J iTPrz)nu ()] x {t} (52)

t€[—o00,00]

= {(;t) eR" xR | u(z) = R<t<u(z)+R, uly) >t, y € Cr(z)},

where we used the conventifinx {¢t} = . It follows that A is a Borel subset
of R" x R', bounded sincel C Cg(2) x [u(z) — R,u(z) + R]. OnR™ x R!
consider the product measyre x £'. Sinceu® is a Radon measurg;t x L' is
also a Radon measure. Thus the Borelset R” x R'is (u* x £')-measurable,
and, sinced is bounded(ut x £1)(A) < co. Using Fubini’s theorem [1G,1.4.1],

we conclude that — pt[A;] = p™ {j*[DR(z) N ul(t)]} is measurable, and

| oae nut @)= ot < e <o (63

— 00

A similar conclusion holds for the measyre. Thus forR > 0 the right-hand side
of (43) is well-defined and finite ifDr(z)| > 0.

Now we show that the limit in (43) exists a.e. T, and defines a function
which satisfies (44) and (47).

Step 1. Limit in (43) exists a.eWe first obtain a convenient expression for the
integral in the right-hand side of (43). By (53)

G [j*[wz) mﬂ(tﬂdtz [ @azar (54)

— 00

Let T;?ij for (p,i,7) € Q x N? be the ray clusters introduced in Definition 2.12.

SinceA C TY x R', we getd = UAp,;j, where the setd,,;; = AN (T5; xR')

are disjoint (18), and Borel by iémma 2.15. Thus we can replace the right-hand
side of (54) by a sum of integrals over the sdis;, and in each integral make a
Lipschitz change of variablds, t) = (F(x),t) for (z,t) € (Gx1d)(Ap;), where

F = F,;;, G = G,;; are the mappings from Lemma 2.13, ahtl: R' — R'

is the identity map. The s€G x Id)(A,;;) is Borel since(G x Id)(A,:;) =

(F x Id) =1 (Api;) N[G(TY;;) x R'] and the mag is Lipschitz. Note tha€(7)%)

is Borel by Lemma 2.15. Thus we get from (54)

/ o {MDR(Z) " u_l(t)]] di=" > / f () davdt,
- (p’i»j)eQXNz (GXId)(Aptj)
(55)
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where the functiong* = p” are defined by (23). Note that, writing= (X, 7) €
R" ! x R!, we get from (16), (52):

(G x Id)(Apij) = {(X,T,t) eR" ' xR'xR! | (X,t) € G[Dr(z)NTY% ],

pij

pij

>t (X,7) € G(TY )}

Since f* vanish a.e. iR™ \ G(
(55) over the set

T:;), we can integrate in the right-hand side of

{(XJJ)GR”_llele | (X,t) € G[Dr(2) NTY ], T>t}

Py

and obtain

[ it oo

— 00

- X / o ( / FEx ﬂm)dth

(pyi,5) EQXN? pij

We rewrite this using the functions®™ = p” defined by (24):

/_O:C {/H {jﬂDR(z) N u_l(t)]} o {jJ’[DR(z) R u_l(t)]] }dt

= (X, t) — ¥ (X,t)]dXdt,
(p,i,j)€QXN? G[Dr(2)NTy;;]
(56)
Note that?* are Borel, nonnegative, locally summable functiond®h ' x R'.
Denoting

oB]= D, / W (X,t) - ¥ (X,t)dXdt, (57
(pi.j)eQxN2 Y G(BNTE;;)

we see that right-hand side of (56)d8D(z)]. Note that (57) is well-defined for

any Borel setB C R". Indeed,G(BNTY;) = F-'(BNTy;) NG(Ty;) is a

Borel set sincé is Lipschitz and7(T});;) is Borel by Lemma 2.15. Thus we need
only show that the series on the rlght hand side of (57) converges. By (25) each

term of the series is nhonnegative. Moreover, by (25)

/ TH(X,t) - (X,t)]dXdt g/ [TH(X,t) -V (X,t)]dXdt.
G(BNTO. )

0
G(TY,,)

Fix p,i,j and denotef£ () := f*(X,7). For a.e.X € R"" we havefi ¢
LY(RY). Thus by (24) the functiong™® are continuous on a.e. vertical lifi& } x
R'. Also, for a.e.X € R", the functionsf; vanish outside a segmejat d] of
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finite length, sincef* have compact supports. Thi#s are constant o X} x
(—oo,c] and on{ X} x [d, 00) for a.e.X € R™"'. Using (24) and (26), we have

Ut(X,7)=v (X,7) forallT <c¢ andforallr > d. (58)

We also haveg—twi(X, t) = —f*(X,t). Thus, integrating by parts with respect
to ¢t on the segmert;, d] (see [1252.6.7]) and, using (58) to cancel the boundary
terms, we obtain

/ W0 (X, 1) — U (X, £)]dXdt / {7+ (X, 1) — f~ (X, )]dXdt.
a(T®

Pij Pij

In the last expression we change variables to F'(X,t). Now, using (23), and
noting that by (16) we have= u(z) — p, we get

/ HAT (X = f7 (X, ))dX dt = / [u(z) = pl[fT(2) = f~(2)]d>
G(T®

pij pij

where we used detailed mass balance (20) on the Borel transp@ﬁ;jsm obtain
the second equality. Thus the series with nonnegative terms in the right hand side
of (57) is bounded from above by the following convergent series

S [ e [ el 69

(pyi,J) EQxN?

and thus the right hand side of (57) converges.
Define onR™ an (outer) measurgas follows: for BorelB ¢ R" defined[B]
by (57), and for any othed C R" define

0[A] = inf{0[B] | A C B, whereB is a Borel subset dR"}. (60)

Since, by (57)0[B1 U Ba] < 0[B1] + 0[B2] for Borel By, B, it follows that6 is
indeed an (outer) measure.

Lemma 4.5 (Absolute continuity and integrability) 6 defined by (57) and (60) is
aRadonmeasure dR", absolutely continuous with respectd8, andf[R"| < cc.

Proof of Lemma 4.5To see that the measutés Borel: letB;, Bs C R" be Borel
sets with distB;, B») > 0. For any(p, i, 5) € Q x N* we haveG (B N T%;) N
G(B2NTy,;) = Osince the mag is one-to-one offy) ;. Thusf[ B UBy| = 6 B1]+
0[Bs] by (57). LetA;, A, C R™ be any sets satisfying d{st;, A>) = 30 > 0. By
(60) there exist Borel sef8* ¢ R"™ for k = 1,2, ... such thatd; U A, ¢ B* and
0[B*] — 6[A; U Ay) < ¢ fork =1,2,.... Denote byA?, A3 thed-neighborhoods
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of Ay, A;. ThenA$, A3 are open sets and dist{, A3) > § > 0. Then we have
using (60)

0[A1 U Ag] = lim 0[B*] > lim inf 0[(B* N A) U (B n AY))

k—o0

= lim inf (Q[Bk N A<15] + 9[Bk N Ag])
> 0[A1] + 0[As].

Thus the measuris Borel by Caratheodory’s criterion [182.3.2(9)].

Now the measur@ onR" is Borel regular by (60).

Next we show thafl is absolutely continuous with respect48. Indeed, con-
sider first a BorelB  R" such that B| = 0. Then for each(p, i, j) € Q x N?
we have|G(B N Ty;;)| = 0. Indeed, for each > 0 the mapG is Lipschitz on

the Borel sefl’, ., defined in Lemma 2.13(ii). Thu&/(B N T2}, )| = 0 for any

pij’ pij

A > 0. We haveT,. C To3 foranyA; > X2 > 0, andT);; U .- Thus

P pvg

|G(B ﬂTz?”)\ = 0. Then, by (579[B] = 0. Now letA c R" and\A| = 0. Then,
since L™ is Borel regular, there exists a BorBl ¢ R", such thatd ¢ B and
|B| = 0. Thenf[B] = 0, and thug)[A] = 0.

Finally, since we estimated (57) by (59), we showed#hat < [ . u(z)[f*(2)
— f7(2)]dz < oo for any A C R", which implies that) is a Radon measure.

Lemma 4.5 is proved O

Remark 4.6 (Total cost boundsForB = R", the argument estimating (57) by
(59) showd)[R"] = [, u( (z) = f~(2)]dz, which coincides with the total
transportation cosK [u] =T [s]

Using the absolute continuity proved for the finite Radon meagiméemma
4.5, the Radon-Nikodym theorem [1§1,.6.2] yields a density < g € L' (R") of
6 with respect taZ”. Any measurable set C R" satisfies

AlA] = .
4] /A o(y)dy (61)
and

lgllz: = 6R"] < oo. 62)

Lemma 4.7 (Local transport cost density) Let A > 0 and(p,i,7) € Q x N2
Letz € R" be a Lebesgue point for the functignand a point of density 1 for the
setTp*Z.j of Lemma 2.13(ii). Then for the limit (43) exists and convergesd(:).

Proof. By (56) and (57) we can write the right-hand side of (43) as

i 2Pr()]
R—0+ |Dg(2)|’
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or, by (61),
1

lim —— dy.
R50+ |Dg(2) DR(Z)g(y) Y
By [24, §7.9-10], this limit isg(z) if z is a Lebesgue point of, provided that
the family of setsDg(z) shrink nicely toz in the following sense: there exist
M, M; > 0andRy > 0, depending on, such that

Di(2) € Barn(2), \DR(Z)QMLR” forall R (0,Ry).  (63)
1

According to Lemma 4.8 belov,.(z) shrinks nicely to any point of density 1

for the seffpﬁ-j. Thus Lemma 4.7 follows from Lemma 4.8. O

The following lemma quantifies the rate at which the cylindBggz) shrink
nicely.

Lemma 4.8 (Cylinders shrink nicely)

i. Forany R > 0 andz € R" there holdsDg(z) C Bur(z), whereM =

(14 sup le]).
llell=1

ii. Let A > 0 andz be a point of density 1 for the sﬁg\ij. Then there exisd/;
and Ry > 0 such that

1
IDr(2) N Thy;| > T B forall R e (0, Ro).
1

Proof. Letx € Dr(z). Then, by (40)|u(z) — u(z)| < R, and there exists a point
y € Bg(z) such thatu(z) — u(y)| = ||z — y|| andu(y) = u(z). Then

r—Yy
2~ ] = Ju(@) — u@) 2= < o) — u(z)] sup [l < R sup Je]
|z =yl lel|=1 llell=1
Thus
|z —2[ <[z —yl+|y—2[ < (1+ sup [e))R,
llell=1
which proves (i).
Now we address (ii). We first prove
B (2) NTy; C Dr(2) N Ty (64)

for R € (0, Ry), whereR, small enough and/ large enough are selected below.
Letz € Br ()N Tpﬁ-j. Let R, be the unique transport ray containingln order
to prove (64) it is enough to show th&, intersects the level set, , = {¢ €
R" | u(§) = u(#)}, and the pointy of intersection ofR, and S, , satisfies
€ Tp; andly — 2| < R.
Sincex € T),,;, foranyr € (—\, \) there existg € R, with u(y) = u(z)+7.

Sincex € B%(z),

SUP|e|=1 lell

R (69

u(e) —u(z)] < ||z — z[| < |z — 2] sup |le]| <

le|]=1
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Thusif M > 2M then

u(z) —u(z)] < SR

| >

Thus if R < 1 there existyy € R, with u(y) = u(z), i.e.,y is the point of
intersection ofR, with S, ,,. Then|u(z) — u(y)| = || — y| and

[z =yl <z —yll sup fe] = |u(z) —u(y)| sup le].
lefl=1 lefl=1

Sincex € Bx (),
M
R
ly =zl < ly -2l + |z — 2] < |u(z) —uly)| sup le| + 77
flell=1

< (supje=1 €]) (supjej—1 [lell) + 1
< R,
M

where we used(y) = u(z) and (65) in the last inequality. Thug — z| < £ if
M > 2[(supj¢=1 le])(sup¢ /=1 [le]]) + 1]. This implies thatr € Dg(2). Recall
also thatr € TPA” Thus (64) holds, iR < 1 andM satisfies all above conditions,
i.e. if M is large depending oA, sup| =1 |le|| andsupy¢ 1 [e]. Fix such an\/.

Sincez is a point of density 1 farf| p”, there existg, such thatforany € (0, po)

1
1By(=) N Tpi;| = 518, (66)
Thus choosing?y = poM, applying (66) top = % and using (64), we get (ii).
This concludes the proof of Lemma 4.8. O
We have TV = U 7% and 13, = U %, for each

(pyi,7) EQXN?

(p,i,7) € Q x N?, and the setg“l?u, T;w are Borel. From Lemma 4.7 the limit

on the right-hand side of (43) convergegj{e) for a.e.z € Tp’fw, and thus for a.e.

z € TY. SinceTy is a closed set, it follows from the definition of the measutieat

9[R" \ Ty] = 0, and sog = 0 onR"™ \ T} = 0. In addition,g € L' by (62). The
endpoints of transport rayd = T3 \ T} occupy zero volume in Lemma 2.15, so
the functiona = g satisfies (44) and is equal to the right-hand side of (43)for
a.e.z € TY. This concludes the first assertion of the theorem. In Steps 2 and 3 we
address (45-47).

Step 2. Transport cost density on a ray cluster in flattened coordinates.

Lemma 4.9 LetA > 0 and(p,i,j) € Q x N*. Then for a.ez € T}

_ 0[Dr(z) N T
W) = 0 TDaz) AT, | 7
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Proof. Define a measur@ onR" by
01A] = 0[A\ ;]

foranyA ¢ R". SlnceTpﬁj is a Borel set, it follows from Lemma 4.5 thétis
a Radon measure, absolutely continuous with respect'taThus there exists a
densityg > 0 of § with respect tal”. Thenj € L'(R") sinced[R"] < co. We
havea[TpAU] 0[0] = 0, and thugj = 0 a.e. inT}), .

Letz € TPAZJ be Lebesgue point of boy - ) andg( ), and letz be a point of
density 1 forZ}),; and a point of density 0 foR" \ 7},,,. Note that a.ez € T}
satisfies these conditions. We show the lemma holds for such

Note also that, sincg = 0 a.e. |nTp’\” andg € L', the above conditions imply

g(z) = 0. In addition, by Lemma 4.7,

_ 9[Dr(2)]
9(z) = AMH|DR(N'

Also, by a similarly proof as Lemma 4.7, we get

In addition, sincer is a point of density 0 foR" \ T W, we havdBR( )\
o(R™). Also Lemma 4.8(ii) holds sinceis a point of density 1 fof’
have

pw| -

m] Thus we

0<

D B §
‘ R()\ ng <| MR()\ p” <0§R7)l—>0 as R — 0+,

- Pr(x) T [Pr(x)l T R
SO
R=0+ |Dg(z) N Tp*lj ‘
Now we compute:
|Dr(2 ) TA IDR( )I IDR( )n T,?” '

pij

From the discussion above, the limit & — 0+ of the right-hand side of (68)
exists and ig/(z) — g(z) = g(z) = a(z). Thus Lemma 4.9 is proved. O

Lemma 4.10 (Transport cost density in flattened coordinates) Let (p, ¢, j) €
Q x N?, and letF, G be the mappings defined in Lemma 2. 13I§r Then for
aezeTy,,

o(s) — _HCED
TFGE)

whered : R"™! x R — R' is defined by

(69)

a(X,z,) =0T (X, 2,) — ¥ (X, 1,). (70)
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Proof. SmceTgu U, T, ;], it is enough to prove that (69) holds for a.e.

z € T’c for everyk € N. Therefore, fixc € N and letA = +. Letz € TAj be
a pomt at which (67) holds. Using (57) and the Area formula we rewrite (67) as
follows

S (X, 2) — 0 (X, 2,)|dX dar,
a(z) = lim pis

R—0+ fG(DR(z)ﬁT&j) I F(X, x,)dXdx,
fG(DR(Z)ﬁT*) &(Xv :En)dXd.’En

= lim : (71)
T Ro0+ fG (Dr(=)NT,) JnF (X, x,)dXdz,

whereJ,, F' is the Jacobian of’. Note that both functiong(-) andJ,, F(-) are
locally integrable.

Let z be a point with the following properties: (67) holdds a point of density
1for T2 ., andG(z) is a Lebesgue point for boﬂ( ) andJ, F(-). Since the map

pij’
Fis LipschitzonR"™, andG is Lipschitz oril’?. . by Lemma 2.13, then a.e.€ TPAU
satisfies these conditions.

It follows that Lemma 4.8 holds for. SinceF' is Lipschitz (say, with constant
L), it follows from Lemma 4.8(i) that(Dr(z) N T};;) € Brur(G(z)) for any
R > 0, and from Lemma 4.8(ii) and the Area formula

PU

1
L"G(Dr(2) NTN)| > [Dr(z) NTY;| > T B forallR e (0, Ry).
1

pij pij

Thus, by Rudin [24§7.9-10], sincé&7(z) is a Lebesgue point for bothandJ,, F,

1
lim / X, x,)dXdx, = a(G(z and
R TGDR() NI Joaorms,y 5™ 4G

1
lim InF(X,z,)dXdx, = J,F(G(2)).

R0+ |G(Dr(2) NT,;)| G(Dr(2)NTA,)
(72)
Note also that by Lemma 2.13(iiiy,, F(G(z))J,,G(z) = 1fora.e.z € T .. Thus

pij”

J.F(G(2)) #0 forae. ze T,

pij’

(73)

and we can pass to the limitin (71) using (72). Thus Lemma 4.10 is proved.

Step 3. Differential equation satisfied by the transport cost density.

Now we prove that thai(z) satisfies (46—47). Letl be a Borel transport set. Fix
TI?U for (p,i,j) € Q x N? and consider its coordinate maps V, F, G from
Lemmas 2.11 and 2.13, and the corresponding funcpféhanda defined by (70).
By (25),a > 0.By (58) ahas compact support, and sine € L} (R" ' xR'),

it follows a € L*(R"~! x RY).
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DenoteB = S) N AN Ty, where the subsef! of the level setS, = u™"(p)
is defined in Lemma 2.11. Thei is a Borel set. From Definition 2.12 it follows

thatANTY%. = j(B). Now from (16)

pij

canty,) = v < v naay,) (74)
By Lemma 2.11, the séf (B) = V ~1(B) is Borel. Thus, using Lemma 2.15, we
conclude that the s&t(A N T);;) is Borel.

Lety € C1(R"™). By (23) and Area formula, we get

/ D(F(X, 20)) [ (X, )~ (X, )] dX iy = / ol S ld
G(ANTY,;)

ANTO. .
(75)

Sincef* := 0onR" \ G( from (23), we use (74) to rewrite (75) as

ng)

/ D(F(X, ) [ (X, 20)f~ (X, 2,)] dX / oSt —f)dz
U(B)xR! A

ngw
(76)

Let ¢, d be the numbers from (58). Then the functiofi§() := f*(X,7)
vanish outside the segmelat d] of finite length for a.eX € R""*. Also, fi €
L'(R') fora.e.X € R"™". Then, sinceF" is Lipschitz and;2- v+ = — f*, we
can integrate by parts with respectitgin the left-hand side of (76) on the segment
[c,d] (as in [12,§2.6.7]). Using (58) to cancel the boundary terms, and recalling
the definition (70) ofi, we obtain

[t axde, < [ eI - G
U(B)xR™ Ln ANTO,
(77)

pij
We shall rewrite the left-hand side of (77) in a more convenient form. From

Lemma 2.13(jii-iv) and (13), for anyX, z,,) € G(T});;)
OF (X, x,
% — V(F(X,,)).
Also, by (24) and (26), it follows that ™ = ¥~ a.e. orR" \ G(T};;). We get
a=vt U~ =0 ae.on R"\G( W) (78)

pij

(77), which is the set’(A N T2 ) by (74). Now, using (69-70) and then the Area

pij

formula [12,§3.2.5], we get

Thus we can integrate over the :{é}t( ) R”} NG(TY.) inthe left-hand side of

/ M&(X’ ) dX dwy,
U(B)xR! Oxy

= a F(X,xpn)JnF(X, z,) dXdz,
/G(AmT;;”) ( ;azz ) VI ( )
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:/ av-Vedz.
7% NA

pij

Thus we can write (77) in the form

/ aV~V<pdz:/ (ft — f)pdz. (79)
7% NA T° NA

pij pij

We sum this equality ovep, i, j) € Q x N? and, using (18), obtain (47). Note
that (47) implies (46) since the right-hand side of (46) is finite forary C* (R™).

Step 4. Uniqueness of the transport density

Finally, we address assertion (iii) of the Theorem. Assume L!(R") satisfies
(44-47). By approximation, (47) holds for any Lipschitzin particular, choosing
©(2) = ®(u(z)), whered is a Lipschitz function orR', and using that - Vu =
Duv =10nTy by Lemma 2.7(iii), we get

/ a(y)® (u(y)) dy = / P @) — F~ W)e(u(y)) dy (80)
A A

for any Borel transport sed.
Let R > 0 and®y be the Lipschitz function

0 forr < —R;
Dp(r) = %+1f0r76[—R,R};
2 for r > R;
so that ¢(r) = R71X[_R7R](T) is a step function. Letx > 0 and

(p,i,j) € Q x N2, Fixz € ng Insertin (80) the functio®(u(y)) = Prlu(y) —
u(z)], and transport set

A=j(B), where B=S.,NTy;NBgr(z), (81)
whereS, ,, is the level sefy |u(y) = u(z)}, and j is the map (19). The s& is
Borel, and thusA = j(B) is Borel by Corollary 2.18. We get

1

R “ - i - u(y) —u(z
R Jo e (y) dy /J.(B)[f () — F~ (D Prluly) —u(z)]dy, (82)

where

Dy (2) =[Sz N Ty N Br(2)] N {y | u(2) = R < u(y) < u(z) + R}. (83)
Note thatDy(z) is a Borel set since the s¢b}. , N 17, N Br(z)] = j(B) is Borel.
Let us rewrite the right-hand side of (82). We hate= j(B) C Tz?ij, since
B C Ty, by (81) andr});; is a transport set. Thus we can make @8)jthe change

of variablesy = F(z), wherex = (X,t) € R"* x R', andU, V, F andG are

109
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maps from Lemma 2.13 fdi’poij. Note that, by (16); = u(y) —p. Also, (74) holds.
Thus we obtain using (23), the Area formula, (74) ahd: T;())ij:

/ FH) — W) Brfuly) — u(=)] dy
J(B)
= [0 - @R+ p - ul2)] dXds
G[J(B)]
- / FHX8) — F (X, 0)@nlt +p — u(=)] dXdt,
U(B)xR!

where we useg* = 0 onR" \ G(TI?U). Now repeating the argument given after
(75) we integrate by parts with respectttm the last expression, and obtain

/ W) — F @) erluly) — u(=)] dy
J(B)

= / a(X, ) PRt +p — u(z)| dXdt
U(B)xR!
1 a(X,t)dXdt,
R Ju(B)x[p—u(z)~Rp—u(z)+R]
wherea = W — ¥~ Using (78), we can replace the domain of integration in the
last expression b@[D%(2)] = (U(B) X [p—u(z) —R,p—u(z)+R]) NG(TY;)-

Now, recalling (82), we recover

/ a(y) dy = / a(X,t)dXdt.
D (2) G(Dx(2))

Dividing this equality by|D7(z)| and using the Area formula on the right-hand
side, we get

1 Jeipa oy a(X, t)dX dt
/ a(y) dy = — L) (84)
Dx(2)

Dy (2) Jaoy ey TnF (X, )dXdt
To pass to the limiR — 0+, we need the following analog to Lemma 4.8.

Lemma 4.11 (Cylinders shrink nicely within ray clusters) Fix A > 0.
i. ForanyR > 0andz € R", D} (2) C Byr(z) with M = (14 sup |e]).
llel|=1
ii. There existR, depending only on such thatforany? € (0, Rg) andz € R",

A
Dy(z) C T2,

ii. Let z be a point of density 1 for the s@% Then there exisd/ and Ry > 0
such that

1
|Dx(2)] > MR” forall R € (0, Ry).
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Proof. Assertion (i) follows from the obvious inclusioRP}(z) C Dr(z) and
Lemma 4.8(i). Next choos&, = % Then (i) follows readily from definition of
D1(z) and the following property of sefg), ;:

Clam4.121f ¢y, € T

A
0 < A, thenysy € Tpu .

W andys lies on the transport ra,,, and||y: — y2|| =

Proof. Sincey; is on the|| - ||-distance at least from the ends of?,, , it follows
from the conditions of Claim thay; is on the|| - ||-distance at least — ¢ from the
ends ofR,, . Claim 4.12 follows. O

Now we prove (iii). The proof is similar to the proof of Lemma 4.8(ii). We will
first show

By (2)NT2) € Dh(2), 85

prj

for R € (0,Ry), where a smallR, and a largeM will be chosen below. Let
x € BR( )N T% Let R, be the unique transport ray containimgIn order
to prove (85) it is enough to show th&t, intersects the level sef, , = {£ €
R” \ u( ) = u(z)}, and the pointy of intersection ofR, and S, , satisfies
Ty, andly — z| < R.
Smcex € ng, for any r € (=X, \) there existsy € R, N Tp*” with
u(y) = u(x) + 7. Sincex € Bz (z), we obtain (65), and then, choositg >

supje|=1 2[|el|/A, we get

u(z) —u(z)] < SR

DO | >

Thus if R < 1 there existy € R, NS, , andy € T, p” by Claim 4.12. The rest of
the proof of (iii) follows the proof of Lemma 4.8(ii). Lemma 4.11 is proved.O

Finally, fix A\ > 0andz € T2A SO we can pass to the limfit — 0+ in (84). By
Lemma 4.11(i, iii) and Rudin [243,7 9-10], the limit on the left-hand side of (84)
exists and converges &4z) whenever: is a Lebesgue point af( - ) and a point of
density 1 for the sef’).

Consider the right-hand side of (84). By Lemma 4.11(ii), the @apLipschitz
onDx(z) forall R € (0, Ry()\)). Thus we can repeat the proof of Lemma 4.10 with
use of Lemma 4.11(i, iii) to conclude thatifis a point of density 1 for the sﬁﬁ}j
andG(z) is a Lebesgue point for bothand.J,, F', and if J,, F'(G(z)) # 0, then the
limit on the right-hand side of (84) exists and converge&(G(z))/J, F(G(z)).
Since the magF' is Lipschitz onR", andG is Lipschitz onng, and (73) holds,
a.e.z € T\ satisfies these conditions.

Thus ]fagr anyA > 0, fora.e.z € T2
_ a(G(r) _¥T(G(2) — ¥ (G(2))
92 = FFGE) IF(G(2) (%)

SinceT),; = U,—, T,;;, the formula (86) holds a.e. 6f),;. Uniqueness o(z),
satisfying (44-47) foIIows and Theorem 4.1 is proved. O
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