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Abstract. Monge’s problem refers to the classical problem of optimally transporting mass:
given Borel probability measuresµ+ �= µ− on Rn, find the measure preserving map
s(x) between them which minimizes the average distance transported. Here distance can be
induced by the Euclidean norm, or any other uniformly convex and smooth normd(x, y) =
‖x − y‖ onRn. Although the solution is never unique, we give a geometrical monotonicity
condition singling out a particular optimal maps(x). Furthermore, a local definition is given
for the transport cost density associated to each optimal map. All optimal maps are then
shown to lead to the same transport densitya ∈ L1(Rn).

Mathematics Subject Classification (2000):49Q20, 28A50

1 Introduction

Let us begin by recalling a modern formulation of Monge’s problem inRn [6].
First published in 1781, we refer to Evans [8], Rachev and Rüschendorf [23], and
Villani [29], for discussions of the problem, its history, and applications.

Problem 1.1 (Monge) Fix a normd(x, y) = ‖x − y‖ on Rn, and two com-
pactly supported densities — non-negative Borel functionsf+, f− ∈ L1(Rn) —
satisfying the mass balance condition

∫
Rn

f+(x) dx =
∫
Rn

f−(y) dy. (1)
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In the setS(f+, f−) of Borel mapsr : Rn → Rn which push the measure
dµ+ = f+(x)dx forward todµ− = f−(y)dy, find a maps which minimizes the
cost functional

I[r] =
∫
Rn

‖r(x)− x‖f+(x)dx. (2)

Herer ∈ S(f+, f−) is sometimes denoted byr#µ+ = µ−, andmeansmerely that∫
Rn

φ(r(x))f+(x)dx =
∫
Rn

φ(y)f−(y)dy, (3)

holds for each continuous test functionφ onRn.

Though the norm‖x − y‖ need not be Euclidean, throughout the present
manuscript we follow [6] in assuming there exist constantsΛ, λ > 0 such that
all x, y ∈ Rn satisfy the uniform smoothness and convexity estimates:

λ ‖y‖2 ≤ 1
2
‖x + y‖2 − ‖x‖2 +

1
2
‖x− y‖2 ≤ Λ ‖y‖2. (4)

The estimates (4) assert some uniform convexity and smoothness [3] of the unit
ball; they are certainly satisfied if, e.g., the unit sphere‖x‖ = 1 is aC2 surface
in Rn with positive principal curvatures. In particular,Λ = λ = 1 makes (4) an
identity in the Euclidean case.

Monge’s problem has been studied by many authors. In 1976 Sudakov showed
solutions to be realized in the original sense of Monge, i.e., as mappings from
Rn to Rn [28]. A second proof of this existence result formed the subject of a
recent monograph by Evans and Gangbo [9], who avoided Sudakov’s measure
decomposition results by using a partial differential equations approach. Recently
a simpler, geometric proof was obtained by Caffarelli, Feldman, McCann [6] and
independently by Trudinger and Wang [30] (for the case of the Euclidean norm).

The optimal map for Problem 1.1 is non-unique. In the one-dimensional case,
multiple optimal maps can be constructed explicitly for fixedµ+ �= µ− on R.
We show in this paper that this one-dimensional phenomenon is the only source
of non-uniqueness in Monge’s problem. We do this by studying the uniqueness of
optimal maps and of the flow generated by optimal maps. Our first result is the
following:

Theorem 1.2 (Uniqueness of optimal maps)Fix anormonRn satisfying theuni-
formsmoothness and convexity conditions (4), and twoL1(Rn)densitiesf+, f− ≥
0with compact support and the same totalmass (1). AmongBorelmapss : Rn −→
Rn solving Monge’s problem, in the sense that they minimize the average distance
(2) transported among all maps pushingf+ forward tof− (3), there exists a unique
optimal maps ∈ S(f+, f−) satisfying the monotonicity condition

x1 − x2

‖x1 − x2‖ +
s(x1)− s(x2)
‖s(x1)− s(x2)‖ �= 0 (5)

for all x1 �= x2 ∈ Rn with distinct imagess(x1) �= s(x2).
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The existence of optimal maps has been shown using various methods, as men-
tioned above [28] [9] [30] [6]. In fact, all of these approaches lead to (or can be
adapted to yield) amap satisfying (5); compare e.g. Trudinger-Wang [30, (18)] with
Lemma 3.2 below. Thus the content of Theorem 1.2 is the uniqueness assertion.

In the absence of the restriction (5), Problem 1.1 admits multiple solutions,
as can be constructed explicitly in the one-dimensional case for anyf+ �= f− ∈
L1(R). Lemma 3.1 below shows condition (5) is in fact implied by optimality, un-
less all four pointsx1, x2, s(x1), s(x2) lie on a single line. Thus the restriction does
nothing except resolve this one-dimensional degeneracy by ensuring that whenever
any pair of points and their images are collinear, then the maps acts monotonically
(non-decreasingly) along this line. More precisely, the geometry of optimal mass
transport is following. Fix a Kantorovich potentialu (see Problem 2.1, Proposition
2.2 and Remark 2.3 below) of problem 1.1. Thenu is a Lipschitz function. The po-
tentialu determinestransport rays, i.e. maximal segments with joining supp(f+)
to supp(f−), along whichu decreases linearly with the maximum rate allowed by
its Lipschitz constant. The optimal maps constructed in [28], [9], [30], and [6] act
down transport rays ofu. Indeed [6, Lemma 6] implies thatanyoptimal map acts
along transport rays of the fixed potentialu. However, not every map is monotonic
along rays, i.e., satisfies (5). Theorem1.2 thus shows that condition ofmonotonicity
along transport rays selects a unique optimal map.

Multiple optimal maps in Problem 1.1 are obtained as follows. Restricting
measuresµ± = f±dx onto each transport ray as in [6] or [30], one obtains a one-
dimensional transportation problem on each ray, which admits nonunique optimal
map. Optimal maps on different transport rays can be chosen more or less inde-
pendently: one need only retain enough consistency to obtain a measurable map
s : Rn → Rn by combining different maps on separate rays. Then the maps is
optimal [6]. In Sect. 4 we examine what effect the choices of optimal maps on the
separate transport rays may cause. We show that the rate of cost of optimal mass
transfer through each point of the space does not depend on the particular choice
of an optimal map. Note that, since direction of optimal mass transfer is uniquely
defined at any point by Theorem 1.2, and cost of transportation per unit mass de-
pends only on direction, the uniqueness of rate of cost at each point is equivalent
to uniqueness of rate of mass flux through each point. The quantity which describe
a rate of cost of optimal transfer through a point of space is calledtransport cost
density(or transport density) and may be introduced heuristically as follows. For a
fixed optimal maps, the transport cost densitya(z) at a pointz ∈ Rn is

a(z) = lim
R→0+

cost of transportation throughDR(z) of mass flow generated bys
|DR(z)| ,

whereDR(z) is a certain domain aroundz, shrinking nicely toz asR → 0+. See
(43) and (40) below for the precise definition ofa(z) andDR(z). We show that
the limit in the definition ofa(z) exists at almost every pointz of Rn, and that
resulting functiona belongs toL1(Rn) and satisfies, in a weak sense, an equation,
which in the Euclidean case has the form

−div (aDu) = f+ − f−. (6)



84 M. Feldman, R. J. McCann

The transport density and similar functions have been studied by several au-
thors, mostly in relation to the equation (6). In 1952, Beckmann [4] proposed a
variational problem for the flow density of minimal transportation cost, but did not
relate this transport density to optimal maps. He derived equation (6) formally, by
assuming “sectional smoothness” of the transport density. Note that such regularity
of a does not generally hold even for smoothf±. Several authors considered equa-
tions similar to (6) motivated by problems of flows through domains (Strang [27],
Iri [17]), or by variational problems for vector fields inL1 or L∞ (Strang [26],
Janfalk [18]), for measures (Bouchitte-Buttazzo-Seppecher [5]), and by variational
evolution problems (Evans-Feldman-Gariepy [11], Feldman [13] [14]). Evans and
Gangbo [9] considered the transport density as a nonnegative function supported
within the collection of transport rays, and satisfying (6). They prove that whenf±

are Lipschitz and disjointly supported, a transport density exists and belongs toL∞.
They useda in their construction of an optimal map, and heuristically interpreteda
as the density of flow generated by an optimal map.Wemake this last interpretation
rigorous, and prove existence and uniqueness of a transport densitya ∈ L1(Rn)
for compactly supportedf± ∈ L1(Rn), while deducing some further properties
of this transport density.

1.1 Epilog

These results were presented at an October 26–28, 2000 workshop onMass trans-
port problems, shape optimization, and weak geometrical structuresof the Scuola
Normale Superiori in Pisa, Italy, where an earlier version of this manuscript was
released. At the same workshop, the authors learned of several notable parallel
developments. First, lecture notes were released by Ambrosio [2], which contain
an excellent summary of progress on Monge’s problem, including an indepen-
dent derivation for existence and uniqueness of a transport densitya( · ) given
f± ∈ L1(Rn). These notes also highlight a gap in Sudakov’s proof for existence
of an optimal map. Although this gap can be filled in two dimensions (provided
the norm has a strictly convex unit ball), a counterexample inR3 due to Alberti,
Kircheim,andPreiss [1] showsoneofhispropositions fails inhigherdimensionsun-
less additional assumptions are made. Thus it would seem that Evans and Gangbo
[9] contains the the first complete proof of existence for optimal maps between
Lipschitz densitiesf± with disjoint support, while Caffarelli-Feldman-McCann
[6] and Trudinger-Wang [30] contain the first complete proofs for more general
f± ∈ L1(Rn). Note that all complete proofs require a Euclidean ball, or at least
the uniform smoothness and convexity hypothesis (4), which Sudakov explicitly
eschews [28, p 164].

In other developments, Stepanov [25] obtained results on differentiability of the
transport density along transport rays, and its non-differentiability in orthogonal
directions, while DePascale and Pratelli [7] obtained estimates onLp summability
of the transport densitya( · ) in terms of‖f±‖p for p ∈ [1,∞], and a sharp lower
bound on the dimension of the support ofa for more singular probability measures
µ±.
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2 Background: existence of optimal maps in Monge’s problem

In this section we give a brief survey of the theory of Monge-Kantorovich problem,
following [6]. We omit most of proofs in this section, since they can be found in
[6].

2.1 Dual problem

First we recall a problem formulated by Kantorovich [19] as a dual to Monge’s
problem. Let Lip1(R

n, ‖ ·‖) denote the set of functions onRn which are Lipschitz
continuous with Lipschitz constant no greater than one; i.e.

Lip1(R
n, ‖·‖) =

{
u : Rn → R1 | |u(x)−u(y)| ≤ ‖x−y‖ for any x, y ∈ Rn

}
.

Problem 2.1 (Kantorovich) MaximizeK̂[v] onLip1(Rn, ‖ · ‖), where

K̂[v] =
∫
Rn

v(dµ+ − dµ−).

Proposition 2.2 (Lipschitz maximizer) Let non-negative Borel functionsf+,
f− ∈ L1(Rn) have compact supportX , Y ⊂ Rn and satisfy the mass balance
condition (1). Letµ± = f±dx. Then there existsu ∈ Lip1(R

n, ‖ · ‖) which is a
maximizing solution of Problem 2.1:

K̂[u] = sup
v∈Lip1(R

n,‖·‖)
K̂[v].

In addition,

u(x) = min
y∈Y

(u(y) + ‖x− y‖) for any x ∈ X ;

u(y) = max
x∈X

(u(x)− ‖x− y‖) for any y ∈ Y. (7)

Remark 2.3We call a solution of Problem 2.1 aKantorovich potential.

The next lemma exhibits the connection between the primal and dual problems.

Lemma 2.4 (Duality) Fix u ∈ Lip1(R
n, ‖ · ‖) and let s : Rn → Rn be a

mapping which pushesµ+ forward toµ−. If

u(x)− u(s(x)) = ‖x− s(x)‖ for µ+ a.e. x ∈ X (8)

then:

i. u is a Kantorovich potential maximizing Problem 2.1.
ii. s is an optimal map in Problem 1.1.
iii. The infimum in Problem 1.1 is equal to the supremum in Problem 2.1.
iv. Every optimal map̂s and Kantorovich potential̂u also satisfy (8).
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2.2 Transport rays and their geometry

Fix twomeasuresµ+ andµ− defined by non-negative densitiesf+, f− ∈ L1(Rn)
satisfying the mass balance condition (1). Assume thatµ+ andµ− have compact
supports, denoted byX andY ⊂ Rn respectively.

Our startingpoint for constructinganoptimalmap is a solutionu∈Lip1(R
n, ‖·‖)

of the Kantorovich dual Problem 2.1 satisfying (7). Such au exists by Proposition
2.2.

Since we want to investigate the geometrical implications of (8) foru, suppose
x ∈ X andy ∈ Y satisfy

u(x)− u(y) = ‖x− y‖.
From the Lipschitz constraint

|u(z1)− u(z2)| ≤ ‖z1 − z2‖ for any z1, z2 ∈ Rn, (9)

it follows that on the segment connectingx and y the functionu is affine and
decreasing with the maximum rate compatible with (9). We will call maximal
segments[x, y] having these properties thetransport rays. More precisely:

Definition 2.5 (Transport rays) A transport rayR is a segment with endpoints
a, b ∈ Rn such that

i. a ∈ X , b ∈ Y , a �= b;
ii. u(a)− u(b) = ‖a− b‖;
iii. Maximality: for any t > 0 such thatat := a + t(a− b) ∈ X there holds

|u(at)− u(b)| < ‖ at − b‖,
and for anyt > 0 such thatbt := b + t(b− a) ∈ Y there holds

|u(bt)− u(a)| < ‖ bt − a‖.
We call the pointsa andb theupperandlower endsof R, respectively. Since

u(a)− u(b) = ‖a− b‖, it follows from (9) that any pointz ∈ R satisfies

u(z) = u(b) + ‖z − b‖ = u(a)− ‖a− z‖. (10)

Let us call a pointz ∈ Rn an interior pointof a segment[a, b], wherea, b ∈ Rn,
if z = ta + (1 − t)b for some0 < t < 1. We denote by[a, b]0 the set of interior
points of[a, b].

Definition 2.6 (Rays of length zero) Denote byT1 the set of all points which lie
on transport rays. Define a complementary setT0, called therays of length zero,
by

T0 = {z ∈ X ∩ Y : |u(z)− u(z′)| < ‖z − z′‖ for anyz′ ∈ X ∪ Y, z′ �= z}.
We collect some basic properties of transport rays in the following lemma:
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Lemma 2.7 (Properties of transport rays) Let the norm‖ · ‖ satisfy (4). Then:
i. Data is Supported Only on Transport Rays:X ∪ Y ⊆ T0 ∪ T1
ii. Transport Rays Are Disjoint: Let two transport raysR1 �= R2 share a common

point c. ThenR1 ∩R2 = {c} andc is either the upper end of both rays, or the
lower end of both rays. In particular, an interior point of a transport ray does
not lie on any other transport ray.

iii. Differentiability of Kantorovich Potential Along Rays: Ifz0 lies in the relative
interior of some transport ray R thenu is differentiable atz0. Indeed, setting
e := (a− b)/‖a− b‖ wherea, b are the upper and lower ends ofR yields:

|Du(z0)y| ≤ 1 for all ‖y‖ = 1, with equality if and only ify = ±e.
HereDu(x) ∈ (Rn)∗ is a derivative ofu at x ∈ Rn, viewed as a linear
functional on the tangent space.

We will use the following distance functions to the lower and upper ends of
rays:

Lemma 2.8 (Semicontinuity of distance to ray ends)At eachz ∈ Rn define

α(z) := sup {‖z − y‖ | y ∈ Y, u(z)− u(y) = ‖z − y‖}, (11)

β(z) := sup {‖z − x‖ | x ∈ X , u(x)− u(z) = ‖z − x‖}, (12)

wheresup ∅ := −∞. Thenα, β : Rn → R ∪ {−∞} are both upper semicontin-
uous.

Definition 2.9 (Ray directions) Define a functionν : Rn → Rn as follows. Ifz
is an interior point of a transport rayR with upper and lower endpointsa, b (note
thatR is uniquely defined byz in view of Lemma 2.7(ii)) then

ν(z) :=
a− b

‖a− b‖ . (13)

Defineν(z) = 0 for any pointz ∈ Rn not the interior point of a transport ray. We
call ν(z) thedirection functioncorresponding to the Kantorovich potentialu.

The next property is crucial for construction of optimal map.

Lemma 2.10 (Ray directions vary Lipschitz continuously) LetR1 andR2 be
transport rays, with upper endak and lower endbk for k = 1, 2 respectively. If
there are interior pointsyk ∈ (Rk)0 where both rays pierce the same level set of
the Kantorovich potential,u(y1) = u(y2), then the ray directions (13) satisfy a
Lipschitz bound

‖ν(y1)− ν(y2)‖ ≤ C

σ
‖y1 − y2‖, (14)

with constantC2 +λ = 2(1 + λ−1Λ)/(1 + λ) depending on the norm (4) and the
distanceσ := min

k=1,2
{‖yk − ak‖, ‖yk − bk‖} to the ends of the rays.
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2.3 Measure decomposing change of variables

It is in this subsection that we construct the change of variables onRn which we
use to build an optimal map. Lemma 2.10 suggests how these new coordinatesmust
be defined:n − 1 of the new variables are used to parameterize a given level set
of the Kantorovich potentialu, while the final coordinatexn measures distance to
this set along the transport rays which pierce it. Thus the effect of this change of
variables will be to flatten level sets ofu while making transport rays parallel. But
the conditions of Lemma 2.10 make clear that we retain Lipschitz control only if
we restrict our transformation to clusters of rays in which all rays intersect a given
level set ofu, and the intersections take place a uniform distance away from both
endpoints of each ray. These observations motivate the construction to follow.

Lemma 2.11 (Bi-Lipschitz parametrization of level sets) Let u : Rn → R1

be a Lipschitz function,σ ∈ R1, andSσ the level set{x ∈ Rn | u(x) = σ}. Then
the set

Sσ ∩ {x ∈ Rn | u is differentiable atx andDu(x) �= 0}
has a countable covering consisting of Borel setsSi

σ ⊂ Sσ, such that for each
i ∈ N there exist Lipschitz coordinatesU : Rn → Rn−1 and V : Rn−1 → Rn

satisfying
V (U(x)) = x for all x ∈ Si

σ. (15)

For each levelσ ∈ R1 and integeri ∈ N, we shall extend these coordinates to
the transport rays intersectingSi

p.

Definition 2.12 (Ray clusters) Fix σ ∈ R1, a Kantorovich potentialu, and the
Borel cover{Si

σ}i of the level setSσ := {x ∈ Rn | u(x) = p} in Lemma 2.11.
Let i ∈ N and letB be a Borel subset ofSi

σ. For eachj ∈ N let thecluster
Tσij(B) := ∪Rz denote the union of all transport raysRz which intersectB, and
for which the point of intersectionz ∈ B is separated fromboth endpoints of the ray
by distance greater than1/j in ‖ · ‖. The same cluster, but with ray ends omitted, is
denoted byT 0

σij(B) := ∪z(R0
z). DenoteTσij := Tσij(Si

σ) andT 0
σij := T 0

σij(S
i
σ).

On each ray clusterT 0
σij we define the Lipschitz change of variables:

Lemma 2.13 (Lipschitz change of variables) Each ray clusterTσij ⊂ Rn

admits coordinatesG = Gσij : T 0
σij → Rn−1 × R1 with inverseF = Fσij :

G(T 0
σij) → Rn satisfying:

i. F extends to a Lipschitz mapping betweenRn−1 ×R1 andRn;
ii. for eachλ > 0, G is Lipschitz onTλ

σij := {x ∈ T 0
σij | ‖x−a‖, ‖x− b‖ > λ},

wherea andb denote the endpoints of the (unique) transport rayRx;
iii. F (G(x)) = x for each x ∈ T 0

σij ;
iv. If a transport rayRz ⊂ Tσij intersectsSi

σ at z, then each interior pointx ∈
(Rz)0 of the ray satisfies

G(x) = (U(z), u(x)− u(z)), (16)

whereU : Rn → Rn−1 gives the Lipschitz coordinates (15) onSi
σ.
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Definition 2.14 (Ray ends)Denote byE ⊂ T1 the set of endpoints of transport
rays.

The next step is to address measurability of the setsTσij(B) andG[T 0
σij(B)].

In what follows,n-dimensional Lebesgue measure is denotedLn.

Lemma 2.15 (Measurability of clusters / Negligibility of ray ends) The ray
endsE ⊂ T1 form a Borel set of measure zero:Ln[E ] = 0. The rays of length zero
T0 ⊂ Rn also form a Borel set. Finally, for eachσ ∈ R1, i, j ∈ N, and Borel
B ⊂ Si

σ the clusterT 0
σij(B) of ray interiors and its flattened imageG[T 0

σij(B)]
are Borel. HereG is the map from Lemma 2.13. In particular the setsT 0

σij and
G[T 0

σij ] are Borel.

Remark 2.16The statements corresponding to Lemmas 2.13 and 2.15 are formu-
lated in [6] only for clustersTpij , T 0

pij with (p, i, j) ∈ Q×N2. But the proofs
work without any changes in the conditions of Lemmas 2.13 and 2.15.

A countable collection of clusters forms a covering ofT 0
1 :

Lemma 2.17 (Rational clusters cover rays)The clustersTpij indexed byp ∈ Q
andi, j ∈ N define a countable covering of all transport raysT1 ⊂ Rn. Moreover,
eachTpij and transport rayR satisfy:

Either (R)0 ⊂ Tpij , or (R)0 ∩ Tpij = ∅. (17)

As a particular consequence of this lemma: the setT1 of all transport rays is
Borel, being a countable union of Borel setsT 0

pij with E . Also, the setsTpij are
Lebesgue measurable, being the union of a Borel set with a subset of a negligible
set.

Finally, we can take the clustersTpij of rays to be disjoint. Indeed, enumerate
the triples(p, i, j) so the collectionof clusters{Tpij}becomes{T(k)},k = 1, 2, . . ..
Fork > 1 redefineT(k) → T(k) \ (∪k−1

l=1 T(l)). RedefineT 0
(k) → T 0

(k) \ (∪k−1
l=1 T

0
(l))

analogously. We will continue to denote the modified sets byTpij andT 0
pij . Note

that the structure of the clustersTpij remains the same: for eachTpij wehaveaBorel
subsetSpij := Tpij ∩ Sp ⊂ Si

p, andTpij is the clusterTpij(Spij) from Definition
2.12. In particular, there are Lipschitz coordinatesU ,V (15) satisfyingV (U(x)) =
x for all x ∈ Spij , and mapsF ,G satisfying all assertions of Lemma 2.13. Indeed,
since the new cluster is a subset of the old, the former mapsU ,V ,F ,Gwill suffice.
The measurability Lemma 2.15 holds for the new clusters. Thus from now on we
assume:

The clusters of ray interiorsT 0
pij are disjoint. (18)

For future reference, let us point out that the above construction implies the
following. Define the following mappings j, j± on subsets of level setsSσ =
u−1(σ), whereσ ∈ R1: for A ⊂ Sσ

j(A) = ∪z∈A∩T 0
1
R0

z,

j+(A) = j(A) ∩ {y | u(y) ≥ σ}, (19)

j−(A) = j(A) ∩ {y | u(y) < σ}
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whereR0
z is the relative interior of the unique transport ray throughz. Thus, j(A)

is the smallest transport set containingA∩T 0
1 forA ⊂ Sq, and j

±(A) are the parts
of j(A) which lie above (resp. below) the level setSσ of u.

Corollary 2.18 Let σ ∈ R1, let Sσ := u−1(σ) be the level set ofu(z), and let
B ⊂ Sσ be a Borel set. Then the sets j(B), j±(B) are Borel.

Proof. Sinceu is a continuous function, we only need to prove that j(B) is Borel.
SinceB ∩ T 0

1 is Borel, we can replaceB by B ∩ T 0
1 , i.e., assume thatB ⊂

Sσ ∩ T 0
1 .

We have

j(B) =
∞⋃

i,j=1

T 0
σij(B ∩ Si

σ).

Since bothB andSi
σ are Borel, we use Lemma 2.15 to conclude the proof.��

2.4 Detailed mass balance

Definition 2.19 (Transport sets) A setA ⊂ Rn is called atransport setif z ∈
A ∩ (T1 \ E) impliesR0

z ⊆ A, whereRz is the unique transport ray passing
throughz. It is called thepositive end of a transport setif A merely contains the
interval [z, a) wheneverz ∈ A ∩ (T1 \ E) and a denotes the upper end of the
transport rayRz.

Examples.Any subsetA ⊂ T0 of rays of length zero is a transport set, as are the
clusters of raysTσij .

For Borel transport sets, such asT 0
pij , the following balance conditions apply.

Lemma 2.20 (Detailed mass balance)LetA ⊂ Rn be a Borel transport set.
Then ∫

A

f+(x) dx =
∫
A

f−(x) dx. (20)

More generally, if a Borel setA+ ⊂ Rn forms the positive end of a transport set,
then ∫

A+
f+(x) dx ≥

∫
A+

f−(x) dx. (21)

2.5 Construction of the optimal map

In this subsection we construct an optimal map for Problem 1.1.

Step 1. Localization to clusters of rays.According to Lemma 2.4, it is enough to
construct a maps : Rn → Rn pushingµ+ forward toµ− which only moves mass
down transport rays: i.e., for anyx ∈ X , the points(x) must lie belowx on the
same transport rayRx, possibly of length zero. Here ‘down’ and ‘below’ refer to
the constraintu(x) ≥ u(s(x)) from (8).

Decompose the setX ∪Y into the raysT0 of length zero, clusters of ray interiors
T 0
pij , and the ray endsE using Lemmas 2.7(i) and 2.17. The cluster property (17)
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implies that any suchmaps satisfiess(x) ∈ T 0
pij almost everywhere onT

0
pij , while

s(x) = x onT0. Since the ray ends form a set of measure zero by Lemma 2.15, they
are neglected here and in the sequel. Also, the clustersT 0

pij andT0 are disjoint and
Borel by (18) and Lemma 2.15. Thus we can construct an optimal maps separately
on each clusterT 0

pij and onT0.
Considers0 first. Since every subsetA ⊂ T0 is a transport set, Lemma 2.20

shows the identity map pushesµ+
|T0

forward toµ−
|T0

. Thus we defines0(x) = x on

T0. The remainder of the subsection is devoted to constructing mapsspij : T 0
pij →

T 0
pij pushingµ

+
|T 0

pij
forward toµ−

|T 0
pij

which only move mass down transport rays.

Step 2. Change of variables.Fix p ∈ Q, i, j ∈ N and considerT 0
pij . De-

noteµ±
pij := µ±

|T 0
pij
. By Lemma 2.13 the mapF is one to one onG(T 0

pij), and

F (G(T 0
pij)) = T 0

pij . SinceF is Lipschitz, the Area formula [12,§3.2.5] yields
∫
G(T 0

pij)
ϕ(F (x))f±(F (x))JnF (x) dx =

∫
T 0

pij

ϕ(z)f±(z)dz (22)

for any summableϕ : Rn → R1. HereJnF denotes then-dimensional Jacobian
of F . Definef̂± : Rn−1 ×R1 → R1 by

f̂±(x) =
{
f±(F (x))JnF (x) x ∈ G(T 0

pij);
0 otherwise.

(23)

The characteristic functionϕ = χG(T 0
pij)

in (22) showsf̂± is summable; it is

obviously non-negative and Borel since Lemma 2.15 showsG(T 0
pij) Borel and

bounded. Introduce the measuresdθ± := f̂±(x)dx. From (3), (22), (23) we see
that

F#θ± = µ±
pij , G#µ±

pij = θ±.

It then follows that if a map̂s : Rn−1 × R1 → Rn−1 × R1 pushesθ+ forward
to θ−, then the compositionspij = F ◦ ŝ ◦ G pushes forwardµ+

pij to µ−
pij . In

addition, Lemma 2.13(iv) shows that whenŝmoves mass down vertical lines, i.e.,
satisfieŝs(X,xn) ∈ {X}× [−∞, xn] for any(X,xn), thenspij movesmass down
transport rays. Thus it remains only to constructŝ : Rn−1 ×R1 → Rn−1 ×R1

satisfying

ŝ#θ+ = θ−, ŝ(X,xn) ∈ {X}× [−∞, xn] for any(X,xn) ∈ Rn−1×R1.

Step 3. Restriction to vertical lines.By Fubini’s theorem, the functionŝf±(X, · )
are summable for a.e.X ∈ Rn−1. Let us introduce the distribution function

Ψ±(X, τ) :=
∫ ∞

τ

f̂±(X,xn) dxn. (24)
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Lemma 2.21 Ψ±(X, τ) is non-negative and Borel function throughoutRn−1 ×
R1, with a continuous non-increasing dependence onτ . In addition, for a.e.X ∈
Rn−1

Ψ+(X, τ) ≥ Ψ−(X, τ) (25)

holds for allτ ∈ R, with equality

Ψ+(X,−∞) = Ψ−(X,−∞) <∞ (26)

asτ → −∞.

Properties (25) and (26) are derived from Lemma 2.20.

Step 4. One-dimensional transport.Fix X ∈ Rn−1 for which (25–26) hold.
We construct a maptX(x) ≤ x onR1 which pusheŝf+(X,xn) dxn forward to
f̂−(X,xn) dxn as follows. Fixτ ∈ R1, and recall thatΨ±(X, · ) is a continuous,
non-increasing functionwhich takes constant values outside a compact set. By (26),
there exists someζ ∈ R1 which satisfies

Ψ+(X, τ) :=
∫ ∞

τ

f̂+(X,xn) dxn =
∫ ∞

ζ

f̂−(X,xn) dxn =: Ψ−(X, ζ). (27)

Of courseζ need not be unique, sinceΨ−(X, · ) will not decrease strictly where
f̂− vanishes. Define

tX(τ) := inf {ζ ∈ R1 | Ψ+(X, τ) ≥ Ψ−(X, ζ)} (28)

= sup {ζ ∈ R1 | Ψ+(X, τ) < Ψ−(X, ζ)}. (29)

Step 5. Construction of optimal map.Defineŝ : Rn−1 ×R1 → Rn−1 ×R1 as
ŝ(X,xn) = (X, tX(xn)), wheretX(xn) ≤ xn is from Step 4.

The mapŝ is Borel throughoutRn−1 ×R1, andŝ#θ+ = θ−. By Step 2 this
yields mapsspij = F ◦ ŝ ◦ G on each clusterT 0

pij which pushµ+
|T 0

pij
forward to

µ−
|T 0

pij
while only moving mass down transport rays. Step 1 combines these maps

to yield an optimal maps : Rn → Rn for Problem 1.1.

3 Uniqueness of a raywise monotone optimal map

This section is devoted to establishing the uniqueness of optimal maps under the
monotonicity condition (5). It begins with a series of lemmas culminating in the
proof of Theorem 1.2. The first lemma asserts any optimal map satisfies condition
(5), except possibly along transport rays. Thus the failure of uniqueness inMonge’s
problem is essentially one dimensional: it is due to indeterminacy along lines.

Lemma 3.1 (Inversionsoccuronlyon lines)Anyoptimal solutions ∈ S(f+, f−)
to Monge’s problem satisfies (after modification on a set off+ measure zero) the
following property: ifx1 �= x2 ∈ Rn ands(x1) �= s(x2) are related by

x1 − x2

‖x1 − x2‖ +
s(x1)− s(x2)
‖s(x1)− s(x2)‖ = 0, (30)

then all four pointsx1, x2, s(x1), s(x2) are collinear.
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Proof. After modification on a set off+ measure zero, any optimal solutions ∈
S(f+, f−) satisfies Monge’s two-point inequality

‖x1 − s(x2)‖+ ‖x2 − s(x1)‖ ≥ ‖x1 − s(x1)‖+ ‖x2 − s(x2)‖; (31)

a modern proof may be found e.g., in [16, Theorem 2.3].
Now assumex1 �= x2 ands(x1) �= s(x2) satisfy (30). The four points are

coplanar becausex1 − x2 parallelss(x2) − s(x1) according to (30). Thus the
quadrilateralx1, x2, s(x1), s(x2) is a (convex) trapezoid. Denoting the point where
its diagonals intersect bym, we have‖xi − s(xi)‖ = ‖xi −m‖ + ‖m − s(xi)‖
for i = 1, 2. Furthermore, the triangle inequality yields

‖x1 − s(x2)‖ ≤ ‖x1 −m‖+ ‖m− s(x2)‖ (32)

‖x2 − s(x1)‖ ≤ ‖m− s(x1)‖+ ‖x2 −m‖. (33)

Strict convexity of the norm (4) implies the first inequality to be strict unless
s(x2) lies on the diagonal line throughx1,m and s(x1). Similarly x2 must lie
on the same diagonal or the second inequality will be strict. Either all five points
x1, x2,m, s(x1), s(x2) are collinear, or the sum of (32–33) violates (31) – a con-
tradiction. ��

For two distinct functions0 ≤ f̂± ∈ L1(R) with the same total mass on a
given transport ray, many maps inS(f̂+, f̂−) verify (30) at some pointx1 �= x2.
We claim only one measure-preserving map satisfies the opposite condition (5).
We begin by demonstrating that the map constructed in Sect. 2 above in particular
verifies (5).

Lemma 3.2 (Monotonicity along rays by construction)The maps constructed
in Sect. 2.5 satisfies the monotonicity condition (5).

Proof. Let u be a Kantorovich potential satisfying (7), ands be the optimal map
constructed in Sect. 2.5. This maps acts along transport rays ofu, i.e., satisfies
(8). Also sinceµ+[Rn \ X ] = 0 and |E| = 0, whereE is the set of endpoints
of transport rays (Definition 2.14 and Lemma 2.15) we can sets(x) = x for all
x ∈ Rn \ X andx ∈ E . Sinces(x) = x on the setT0 of rays of length zero, we
now haves(x) = x onRn \ (X ∩ T 0

1 ).
In order to show thats satisfies (5), it is enough to consider the case when the

four pointsx1 �= x2 ands(x1) �= s(x2) are all collinear, according to Lemma 3.1.
If x1 = s(x1) �= s(x2) = x2 then condition (5) holds trivially because2 �= 0.
Thus we assumex1 �= s(x1) without loss of generality. Recall thats(x) = x on
Rn \ (X ∩ T 0

1 ), hencex1 ∈ X ∩ T 0
1 . Thenx1 lies in the relative interiorR0

1 of a
transport rayR1 with s(x1) ∈ R1 from (8).

If x2 ∈ R0
1, then (5) follows from monotonicity ofs along transport rays, i.e.,

from the property[u(x1)−u(x2)][u(s(x1))−u(s(x2))] ≥ 0 for anyx1, x2 ∈ R0
1.

This last property follows from the fact that the functiontX defined by (28) is
nondecreasing, and from Lemma 2.13(iii-iv).

Thus it remains to considerx2 /∈ R0
1.
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If x2 = s(x2), then equality (30) implies thatx2 lies in the relative interior of
R1, betweenx1 ands(x1) — a contradiction.

The only other possibility isx2 �= s(x2)— in which casex2 lies in the relative
interior R0

2 of a transport rayR2. Sincex2 �∈ R0
1 we haveR0

1 ∩ R0
2 �= ∅ from

Lemma 2.7(ii). Furthermore,s(x2) ∈ R2 by (8). The disjoint transport raysR0
1

andR0
2 must be collinear, sox1 − x2 ands(x1) − s(x2) both point in the same

direction: away fromR0
1 and towardR0

2. In this case (5) is again satisfied since
2 �= 0. Lemma 3.2 has therefore been proved. ��

The next lemma and corollary pave the way to the proof of Theorem 1.2. They
establish uniqueness of raywise monotone maps in the flattened coordinate system
of Sect. 2.3.

Lemma 3.3 Fix two compactly supported densities0 ≤ θ±(x) ∈ L1(Rn, dHn),
satisfying mass balance (1). Writex = (X, z) ∈ Rn−1 × R and θ±

X(z) :=
θ±(X, z). If s : Rn−1 ×R −→ Rn−1 ×R is a Borel map of the forms(X, z) =
(X, sX(z)) ands ∈ S(θ+, θ−), thensX ∈ S(θ+

X , θ−
X) holds forHn−1-a.e.X ∈

Rn−1.

Proof. Chooser > 0 large enough so that bothθ± vanish outsideRn−1× [−r, r].
AssumesX(z) ∈ [−r, r] without loss of generality (since it holds for forθ+-
a.e.(X, z)), and fix a countable dense subsetV of the continuous test functions
C[−r, r] (such as polynomials with rational coefficients). Givenv ∈ V and a
bounded continuous test functionh ∈ L∞(Rn−1) ∩ C(Rn−1), Fubini’s theorem
combines withs ∈ S(θ+, θ−) to yield∫

Rn−1

[∫
R
v(w) θ−

X(w)dw
]
h(X)dn−1X

=
∫
Rn

h(X)v(w) θ−(X,w) dn−1Xdw

=
∫
Rn

h(X)v(sX(z)) θ+(X, z) dn−1Xdz

=
∫
Rn−1

[∫
R
v(sX(z)) θ+

X(z)dz
]
h(X) dn−1X.

Sinceh ∈ C(Rn−1) ∩ L∞(Rn−1) was arbitrary,∫
R
v(w) θ−

X(w)dw =
∫
R
v(sX(z)) θ+

X(z)dz (34)

holds forµ-a.e.X ∈ Rn−1, and for allv in the countable setV. For suchX wehave
θ±
X ∈ L1(R) vanishing outside[−r, r], so (34) extends immediately from the dense
subsetV to its uniform closureC[−r, r], and thence to all continuous functions on
the line. Thus the Borel mapsX pushesθ+ forward toθ−: sX ∈ S(θ+

X , θ−
X) as

desired. ��
Combining this lemma with the well known uniqueness of monotone measure

preserving maps of the line [20] (or better [21,§A.2]), we recover uniqueness of
optimal maps in flattened coordinates.



Uniqueness and transport density in Monge’s mass transportation problem 95

Corollary 3.4 (Unique optimal maps in flattened coordinates)
Fix 0 ≤ θ±(X, z) ∈ L1(R−1 ×R) ands ∈ S(θ+, θ−) as in Lemma 3.3. Suppose
another Borel mapr ∈ S(θ+, θ−) also takes the formr(X, z) = (X, rX(z)), and
for eachX ∈ Rn−1 bothrX(z) andsX(z) are nondecreasing functions ofz ∈ R.
Thenr = s holds outside a subset ofRn−1 ×R whereθ+ vanishes.

Proof. The setN = {(X, z) ∈ Rn−1×R | rX(z) �= sX(z)} is Borel, so Fubini’s
theorem yields∫

N

θ+(X, z) dn−1Xdz =
∫
Rn−1

[∫
R
χN (X, z) θ+

X(z)dz
]
dN−1X. (35)

ForHn−1-a.e.X ∈ Rn−1, Lemma 3.3 assertsrX , sX ∈ S(θ+
X , θ−

X) with θ±
X ∈

L1(R, dH1). SincerX andsX are nondecreasing, it follows thatrX = sX must
holdθ+

X -a.e., according to [20]. The integrandon the right of (35) thereforevanishes,
establishing the corollary. ��
Proof of Theorem 1.2.Letu be a Kantorovich potential satisfying (7), ands be the
optimal map constructed in Sect. 2.5. This maps acts along transport rays ofu,
i.e., satisfies (8). Also sinceµ+[Rn \ X ] = 0 and|E| = 0, whereE is the set of of
endpoints of transport rays (Definition 2.14 and Lemma 2.15) we can sets(x) = x
for all x ∈ Rn \ X andx ∈ E .

Let r : Rn → Rn be another optimal map for Problem 1.1 satisfying (5). Note
that we do not assume thatr acts along the transport rays ofu, i.e. that (8) holds
for r andu.

LetN := {x ∈ X | s(x) �= r(x)}. ThenN is a Borel set. In order to prove
Theorem 1.2, we need to show thatµ+[N ] = 0.

Since the maps satisfies (8), it follows from Lemma 2.4(iv) that any optimal
map and Kantorovich potential also satisfy (8). In particular, the mapr and the
functionu satisfy (8) as well.

Let Tpij be the ray clusters associated withu. By Lemma 2.17,X ⊂ T0 ∪
(∪pijTpij). Since bothr ands satisfy (8) withu, thens(x) = r(x) = x for µ+ a.e.
x ∈ T0, i.e.,µ+[N ∩ T0] = 0. Also, since|E| = 0, we haveµ+[N ∩ E ] = 0. Thus
it remains to show thatµ+[N ∩ T 0

pij ] = 0 for all (p, i, j) ∈ Q×N2.
Fix p, i, j and letF andG be the coordinate maps associated toT 0

pij , defined

in Lemma 2.13. Letθ± = f̂±(X, τ)dx′dτ be measures on the coordinate space
Rn−1×R1, wheref̂± are the functions (23). As bothmapss andr satisfy (8), there
holdsµ+[s(T 0

pij) \ T 0
pij ] = µ+[r(T 0

pij) \ T 0
pij ] = 0. Thus we can define mappings

ŝ, r̂ : G(T 0
pij) → G(T 0

pij) by ŝ = G ◦ s ◦F andr̂ = G ◦ r ◦F for θ+ a.e. point of
G(T 0

pij). From the definition,

θ±[F−1(A ∩ T 0
pij)] ≡ θ±[G(A ∩ T 0

pij)] = µ±[A ∩ T 0
pij ].

and thus the mapŝs andr̂ push forwardθ+ ontoθ−.
Let N̂ := {(X,xn) ∈ G(T 0

pij) | ŝ(x) �= r̂(x)}. ThenN̂ is a Borel set, and, by

(22),µ+[N ∩ T 0
pij ] = θ+[N̂ ]. Thus it remains to prove

θ+[N̂ ] = 0. (36)
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Note that the mapss andr satisfy (8), sôs andr̂must have the following form.
Write x = (X, z) ∈ Rn−1 ×R. Then

ŝ(X, z) = (X, ŝX(z)) and r̂(X, z) = (X, r̂X(z)), (37)

where for a.e.X ∈ Rn−1 the functionŝsX , r̂X : R1 → R1 satisfyŝX(w) ≤ w
andr̂X(w) ≤ w. In addition, condition (5) implies that

the functionŝsX , r̂X are monotone nondecreasing. (38)

Indeed, let there existX ∈ Rn−1 andw1 > w2 such that̂rX(w1) < r̂X(w2). Let
x1 = F (X,w1), x2 = F (X,w2). By Definition 2.12, Lemma 2.7(ii), and Lemma
2.13(iii-iv) it follows that pointsx1, x2, r(x1), r(x2) lie on one transport rayR,
and

x1 − x2 = (w1 − w2)ν(x1), r(x1)− r(x2) = [r̂X(w1)− r̂X(w2)]ν(x1),

whereν( · ) is the direction function introduced in Definition 2.9. Thus the points
x1, x2 violate (5) for the mapr. This and a similar argument for̂sX prove (38).

Finally, Corollary 3.4 combineswith (37–38) to prove (36), hence Theorem1.2.
��

4 Transport density

We continue to work inRn metrized by a norm‖ · ‖. Note that we also have
a Euclidean structure onRn determined by the product structure(R1)n of Rn.
Denote bye · f the scalar product ofe, f ∈ Rn, and by| · | the Euclidean norm
|e| =

√
e · e. The (Euclidean) gradient of a functionϕ : Rn → R1 atx ∈ Rn is

denoted by∇ϕ(x) ∈ Rn. We denote byDϕ(x) ∈ (Rn)∗ the derivative ofϕ at
x. Forψ : Rn → Rn denote by divψ the (Euclidean) divergence ofψ. Through
this sectionBR(z) denotes closed Euclidean ball with centerz and radiusR, i.e.,
BR(z) := {y ∈ Rn; |y − z| ≤ R}.

Let u be a Kantorovich potential for Problem 1.1, satisfying (7). By Theorem
1.2 and Lemma 2.4(iv) the direction of optimal mass transfer through any point of
T 0

1 is uniquely defined, and is given by the direction functionν(z) introduced in
Definition 2.9. It remains to study the rate of optimal mass transfer through a point
ofRn. We define below a corresponding quantity, called thetransport cost density,
and study its properties.

Imagine that as each particle of mass is transported fromx to s(x), it deposits
a trail of dust uniformly along the line segment joiningx to s(x). Imagine further-
more, that the total residueof dust deposited by an individual particle is proportional
to themass of the particle times the trip tariff‖x−s(x)‖. Thetransport cost density
a(z) defined in (39) gives the cumulative density of dust deposited atz ∈ T 0

1 by
all particles ofµ+ as they are transported toµ− by a maps. Thusa(z) represents
a localized contribution of transportation through the pointz to the total cost of
redistributingµ+ onto µ−. We quantify this definition by choosing a particular
sequence of open neighborhoodsDR(z) shrinking toz and setting

a(z) = lim
R→0+

cost of transportation throughDR(z) of mass flow generated bys
|DR(z)| ,

(39)
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if the limit exists. Our particular choice of domainsDR(z) is motivated by the
convenience of subsequent arguments, and corresponds to a small cylinder in the
flattened coordinates of Sect. 2.3. More precisely, letSz,u be a level set ofu con-
tainingz, i.e.,Sz,u = {y | u(y) = u(z)}. Define forz ∈ T 0

1 ,R > 0

DR(z) := j[BR(z) ∩ Sz,u] ∩ {y | u(z)−R ≤ u(y) ≤ u(z) + R}, (40)

where the map j is defined by (19). By Corollary 2.18,DR(z) is a Borel subset of
Rn.

Thepurposeof this section is toshow thatall optimalmapss inMonge’sproblem
lead to the same transportation cost densitya(z) in (39). Furthermore,a ∈ L1(Rn)
and solves equation (45) uniquely in a suitable sense. In the Euclidean case,a(z)
therefore coincides with thetransport densityof Evans and Gangbo [9], and shows
the latter quantity to be unique. These results are collected in Theorem 4.1.

Let us begin by computing the cost of transportation throughDR(z) of themass
flow generated by an optimal maps. The computation is based on the following
observation. LetR be a transport ray andx, y ∈ R satisfyu(x) > u(y). Then
u(x) − u(y) = ‖x − y‖, and so the cost of transport of unit mass fromx to y is
u(x)−u(y). It follows that, ifτ < t, and a total massm is distributed within a level
setu−1(t)∩T 0

1 , then the cost of transportation of this mass along the transport rays
to the level setu−1(τ) ∩ T 0

1 ism(t− τ).
LetA be a Borel subset of level setu−1(t) ∩ T 0

1 . Since the maps generates a
mass flow down the transport rays ofu, the mass flux throughA generated bys is
µ+{y ∈ j+(A)

∣∣ s(y) ∈ j−(A)}, where the maps j± are defined by (19). Note
that

µ+{y ∈ j+(A)
∣∣ s(y) ∈ j−(A)} = µ+[j+(A) ∩ s−1(j−(A))], (41)

Wenowshow that the expression (41) does not depend on a choice of an optimal
maps. Indeed, for a Borel setA ⊂ T 0

1 ∩u−1(t) it follows from Corollary 2.18 that
j(A), j±(A) are Borel. Since j(A) is a transport set and j+(A) is the upper end of
a transport set, we have by (8) that there exist setsN ⊂ Rn with µ+[N ] = 0 such
thats[j(A)] \N ⊂ j(A) ands−1[j+(A)] \N ⊂ j+(A), where the second inclusion
holds sinceu(y) ≥ u(s(y)) for µ+ a.e.y ∈ Rn by (8). Thus the right-hand side of
(41) can be rewritten as follows

µ+[j+(A) ∩ s−1(j−(A))] = µ+[j+(A) \ s−1(j+(A))]
= µ+[j+(A)]− µ+[s−1(j+(A))]
= µ+[j+(A)]− µ−[j+(A)], (42)

where we useds#µ+ = µ− in the last equality. Note that (42) depends only on the
Kantorovich potentialu, and no longer on the maps.

Now the cost of transport of the mass (42) along transport rays fromA ⊂
u−1(t) ∩ T 0

1 to the level setu−1(t− dt) is

{
µ+[j+(A)]− µ−[j+(A)]

}
dt.
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So the cost of mass transport generated by any optimal maps through a Borel
setB ∈ Rn is∫ ∞

−∞

{
µ+
[
j+[B ∩ u−1(t)]

]
− µ−

[
j+[B ∩ u−1(t)]

]}
dt.

Thus we define the transport cost density of the flow generated by any optimal
maps at the pointz ∈ T 0

1 as

a(z) := lim
R→0+

∫ ∞

−∞

{
µ+
[
j+[DR(z) ∩ u−1(t)]

]
− µ−

[
j+[DR(z) ∩ u−1(t)]

]}
dt

|DR(z)| ,

(43)
whereDR(z) is defined by (40). We show below that forR > 0 the integrand in the
right-hand side of (43) is an integrable function oft. Thus the question addressed
by our final theorem is existence of the limit, and properties ofa(z). We make
several remarks before giving its proof.

Theorem 4.1 (Existence, uniqueness, and properties of transport density)Fix
a Kantorovich potentialu satisfying (7) and letν be the corresponding direction
function from Definition 2.9.

i. Limit (43) exists a.e. onT 0
1 and does not depend on a choice of optimal maps.

ii. There existsa ∈ L1(Rn), called thetransport cost density, with the following
properties:

a ≥ 0 on Rn, a ≡ 0 on Rn \ T1, (44)

anda(z) is equal to the right-hand side of (43) forLn a.e.z ∈ T 0
1 . In addition,

a( · ) satisfies the equation

−div(a ν) = f+ − f− in Rn (45)

in the weak sense, meaning any test functionϕ ∈ C1(Rn) obeys∫
Rn

a ν · ∇ϕdz =
∫
Rn

(f+ − f−)ϕdz. (46)

Moreover, for any measurable transport setA ⊂ Rn andϕ ∈ C1(Rn)∫
A

a ν · ∇ϕdz =
∫
A

(f+ − f−)ϕdz. (47)

iii. A functiona ∈ L1(Rn) satisfying (47) for all measurable transport setsA and
ϕ ∈ C1(Rn) is uniquely determined by the constraints (44).

Remark 4.2 (Euclidean transport density)In the case when‖ · ‖ is the Euclidean
norm | · |, we haveν(x) = ∇u(x) on T 0

1 . Thus the equations (45) and (46) have
the form

−div (a∇u) = f+ − f−; (48)∫
Rn

a∇u · ∇ϕdz =
∫
Rn

(f+ − f−)ϕdz. (49)
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Remark 4.3 (Vanishing at ray ends)Let us discuss the property (47). For simplicity
we consider the case when‖ · ‖ is the Euclidean norm. Then (47) becomes: for any
transport setA∫

A

a∇u · ∇ϕdz =
∫
A

(f+ − f−)ϕdz for any ϕ ∈ C1(Rn). (50)

Property (50) can be heuristically interpreted as following: equation (48) holds in
Rn, and on the boundary of any transport setA the Neumann-type condition holds

a∂nu = 0 on ∂A, (51)

where∂nu is the normal derivative ofu. Indeed, (50) implies (51) if∂A is smooth.
Note that (51) means that there is no mass transfer through the boundary of any
transport set.

Let us further interpret the condition (51). The discussion is mostly heuristic.
SinceA is a “cylinder” of transport rays, it is natural to write∂A = Γ1∪Γ2, where
Γ1 = ∂A \ E is the set of interior points of rays, andΓ2 = ∂A ∩ E is the set of
endpoints of rays. By Lemma 2.7(iii), forx ∈ Γ1 the Kantorovich potentialu is
differentiable atx, and∇u(x) is a unit vector in the direction of the transport ray
Rx containingx. Thus∂nu(x) = 0 onΓ1. So (51) naturally holds onΓ1. OnΓ2
we cannot expect∂nu = 0, and thus the meaning of (51) is thata( · ) vanishes
(in a certain generalized sense) at the endpoints of transport rays. Note that since
all mass transfer occurs within transport rays, there is no mass transfer through
endpoints of rays, so the vanishing of the transport density at endpoints of rays is
a natural property.

Evans and Gangbo [9] proved that iff± are Lipschitz functions, thena( · )
indeed vanishes onE in the following sense: the limit ofa( · ) along the transport
rays is zero at the rays ends. This was an important property for constructing an
optimal map in [9]. The vanishing ofa( · ) along the rays as the end of a transport
ray is approached was also a crucial property for deriving and justifying the law
of evolution of a sandpile shape in [11], [13], [14]. Also, in [13] the property (50)
was shown for a restricted class off±.

In the general casef± ∈ L1(Rn) one can construct examples in whicha( · )
has a positive limit or blows up to+∞ along transport rays at the endpoints of rays
(one example is given below). Thus vanishing of transport density onE along the
transport rays holds in general only in the sense of (50).

Example 4.4 (Non-vanishing at ray ends)Theexample, inR2, of transport density

blowuparoundE is the following:f+(x) = 2χB1(0)(x),f−(x)=
1

2|x| 32 χB1(0)(x),

whereχB1(0)( · ) is the characteristic function of the diskB1(0) ⊂ R2. Then
u(x) = |x|, transport rays are radii of the diskB1(0), andE = {0} ∪ ∂B1(0),
where the pointx = 0 is the lower end of all transport rays. The transport density

is a(x) =

(
1√|x| − |x|

)
χB1(0)(x), and it blows up along every transport ray at

its lower endx = 0 ∈ E .
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Proof of Theorem 4.1.Let us first show that forR > 0 the integrand in the right-
hand side of (43) is an integrable function oft. DenoteCR(z) := j[BR(z)∩Sz,u].
By Corollary 2.18,CR(z) is a Borel subset ofRn. Also, sinceT 0

1 is a bounded set,
CR(z) is bounded. We have

A :=
⋃

t∈[−∞,∞]

j+[DR(z) ∩ u−1(t)]× {t} (52)

= {(y, t) ∈ Rn ×R1 | u(z)−R ≤ t ≤ u(z) + R, u(y) ≥ t, y ∈ CR(z)},

where we used the convention∅ × {t} = ∅. It follows thatA is a Borel subset
of Rn ×R1, bounded sinceA ⊂ CR(z) × [u(z) − R, u(z) + R]. OnRn ×R1

consider the product measureµ+ ×L1. Sinceµ+ is a Radon measure,µ+ ×L1 is
also a Radonmeasure. Thus the Borel setA ⊂ Rn×R1 is (µ+×L1)-measurable,
and, sinceA is bounded,(µ+×L1)(A) <∞. Using Fubini’s theorem [10,§1.4.1],
we conclude thatt→ µ+[At] ≡ µ+

[
j+[DR(z) ∩ u−1(t)]

]
is measurable, and

∫ ∞

−∞
µ+
[
j+[DR(z) ∩ u−1(t)]

]
dt = (µ+ × L1)(A) <∞. (53)

A similar conclusion holds for the measureµ−. Thus forR > 0 the right-hand side
of (43) is well-defined and finite if|DR(z)| > 0.

Now we show that the limit in (43) exists a.e. inT 0
1 , and defines a function

which satisfies (44) and (47).

Step 1. Limit in (43) exists a.e.We first obtain a convenient expression for the
integral in the right-hand side of (43). By (53)

∫ ∞

−∞
µ±
[
j+[DR(z) ∩ u−1(t)]

]
dt =

∫
A

f±(z)dzdt (54)

Let T 0
pij for (p, i, j) ∈ Q×N2 be the ray clusters introduced in Definition 2.12.

SinceA ⊂ T 0
1 ×R1, we getA =

⋃
pij

Apij , where the setsApij = A∩ (T 0
pij ×R1)

are disjoint (18), and Borel by Lemma 2.15. Thus we can replace the right-hand
side of (54) by a sum of integrals over the setsApij , and in each integral make a
Lipschitz change of variables(z, t) = (F (x), t) for (x, t) ∈ (G×Id)(Apij), where
F = Fpij , G = Gpij are the mappings from Lemma 2.13, andId : R1 → R1

is the identity map. The set(G × Id)(Apij) is Borel since(G × Id)(Apij) =
(F ×Id)−1(Apij)∩ [G(T 0

pij)×R1] and themapF is Lipschitz. Note thatG(T 0
pij)

is Borel by Lemma 2.15. Thus we get from (54)

∫ ∞

−∞
µ±
[
j+[DR(z) ∩ u−1(t)]

]
dt =

∑
(p,i,j)∈Q×N2

∫
(G×Id)(Apij)

f̂±(x)dxdt,

(55)
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where the functionŝf± = f̂±
pij are defined by (23). Note that, writingx = (X, τ) ∈

Rn−1 ×R1, we get from (16), (52):

(G× Id)(Apij) =
{

(X, τ, t) ∈ Rn−1 ×R1 ×R1 | (X, t) ∈ G[DR(z) ∩ T 0
pij ],

τ ≥ t, (X, τ) ∈ G(T 0
pij)
}
.

Sincef̂± vanish a.e. inRn \ G(T 0
pij), we can integrate in the right-hand side of

(55) over the set{
(X, τ, t) ∈ Rn−1 ×R1 ×R1 | (X, t) ∈ G[DR(z) ∩ T 0

pij ], τ ≥ t

}

and obtain∫ ∞

−∞
µ±
[
j+[DR(z) ∩ u−1(t)]

]
dt

=
∑

(p,i,j)∈Q×N2

∫
G[DR(z)∩T 0

pij ]

(∫ ∞

t

f̂±(X, τ)dτ
)
dXdt.

We rewrite this using the functionsΨ± = Ψ±
pij defined by (24):∫ ∞

−∞

{
µ+
[
j+[DR(z) ∩ u−1(t)]

]
− µ−

[
j+[DR(z) ∩ u−1(t)]

]}
dt

=
∑

(p,i,j)∈Q×N2

∫
G[DR(z)∩T 0

pij ]
[Ψ+(X, t)− Ψ−(X, t)]dXdt,

(56)
Note thatΨ± are Borel, nonnegative, locally summable functions onRn−1 ×R1.

Denoting

θ[B] :=
∑

(p,i,j)∈Q×N2

∫
G(B∩T 0

pij)
[Ψ+(X, t)− Ψ−(X, t)]dXdt, (57)

we see that right-hand side of (56) isθ[DR(z)]. Note that (57) is well-defined for
any Borel setB ⊂ Rn. Indeed,G(B ∩ T 0

pij) = F−1(B ∩ T 0
pij) ∩ G(T 0

pij) is a
Borel set sinceF is Lipschitz andG(T 0

pij) is Borel by Lemma 2.15. Thus we need
only show that the series on the right-hand side of (57) converges. By (25) each
term of the series is nonnegative. Moreover, by (25)∫
G(B∩T 0

pij)
[Ψ+(X, t)−Ψ−(X, t)]dXdt ≤

∫
G(T 0

pij)
[Ψ+(X, t)−Ψ−(X, t)]dXdt.

Fix p, i, j and denotef̂±
X (τ) := f̂±(X, τ). For a.e.X ∈ Rn−1 we havef̂±

X ∈
L1(R1). Thus by (24) the functionsΨ± are continuous on a.e. vertical line{X}×
R1. Also, for a.e.X ∈ Rn−1, the functionsf̂±

X vanish outside a segment[c, d] of
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finite length, sincef± have compact supports. ThusΨ± are constant on{X} ×
(−∞, c] and on{X} × [d,∞) for a.e.X ∈ Rn−1. Using (24) and (26), we have

Ψ+(X, τ) = Ψ−(X, τ) for all τ ≤ c and for allτ ≥ d. (58)

We also have∂∂tΨ
±(X, t) = −f±(X, t). Thus, integrating by parts with respect

to t on the segment[c, d] (see [12,§2.6.7]) and, using (58) to cancel the boundary
terms, we obtain∫

G(T 0
pij)

[Ψ+(X, t)− Ψ−(X, t)]dXdt =
∫
G(T 0

pij)
t[f̂+(X, t)− f̂−(X, t)]dXdt.

In the last expression we change variables toz = F (X, t). Now, using (23), and
noting that by (16) we havet = u(z)− p, we get

∫
G(T 0

pij)
t[f̂+(X, t)− f̂−(X, t)]dXdt =

∫
T 0

pij

[u(z)− p][f+(z)− f−(z)]dz

=
∫
T 0

pij

u(z)[f+(z)− f−(z)]dz,

where we used detailed mass balance (20) on the Borel transport setT 0
pij to obtain

the second equality. Thus the series with nonnegative terms in the right hand side
of (57) is bounded from above by the following convergent series

∑
(p,i,j)∈Q×N2

∫
T 0

pij

u(z)[f+(z)−f−(z)]dz =
∫
Rn

u(z)[f+(z)−f−(z)]dz, (59)

and thus the right hand side of (57) converges.
Define onRn an (outer) measureθ as follows: for BorelB ⊂ Rn defineθ[B]

by (57), and for any otherA ⊂ Rn define

θ[A] = inf{θ[B] | A ⊂ B, whereB is a Borel subset ofRn}. (60)

Since, by (57),θ[B1 ∪ B2] ≤ θ[B1] + θ[B2] for BorelB1, B2, it follows thatθ is
indeed an (outer) measure.

Lemma 4.5 (Absolute continuity and integrability) θ defined by (57) and (60) is
aRadonmeasureonRn, absolutely continuouswith respect toLn, andθ[Rn] <∞.

Proof of Lemma 4.5.To see that the measureθ is Borel: letB1,B2 ⊂ Rn be Borel
sets with dist(B1, B2) > 0. For any(p, i, j) ∈ Q×N2 we haveG(B1 ∩ T 0

pij) ∩
G(B2∩T 0

pij) = ∅since themapG is one-to-oneonT 0
pij . Thusθ[B1∪B2] = θ[B1]+

θ[B2] by (57). LetA1, A2 ⊂ Rn be any sets satisfying dist(A1, A2) = 3δ > 0. By
(60) there exist Borel setsBk ⊂ Rn for k = 1, 2, . . . such thatA1 ∪A2 ⊂ Bk and
θ[Bk]− θ[A1 ∪A2] < 1

k for k = 1, 2, . . .. Denote byAδ
1, A

δ
2 theδ-neighborhoods
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of A1, A2. ThenAδ
1, A

δ
2 are open sets and dist(Aδ

1, A
δ
2) ≥ δ > 0. Then we have

using (60)

θ[A1 ∪A2] = lim
k→∞

θ[Bk] ≥ lim inf
k→∞

θ[(Bk ∩Aδ
1) ∪ (Bk ∩Aδ

2)]

= lim inf
k→∞

(
θ[Bk ∩Aδ

1] + θ[Bk ∩Aδ
2]
)

≥ θ[A1] + θ[A2].

Thus the measureθ is Borel by Caratheodory’s criterion [12,§2.3.2(9)].
Now the measureθ onRn is Borel regular by (60).
Next we show thatθ is absolutely continuous with respect toLn. Indeed, con-

sider first a BorelB ⊂ Rn such that|B| = 0. Then for each(p, i, j) ∈ Q×N2

we have|G(B ∩ T 0
pij)| = 0. Indeed, for eachλ > 0 the mapG is Lipschitz on

the Borel setTλ
pij , defined in Lemma 2.13(ii). Thus|G(B ∩ Tλ

pij)| = 0 for any

λ > 0. We haveTλ1
pij ⊂ Tλ2

pij for anyλ1 > λ2 > 0, andT 0
pij =

∞⋃
k=1

T
1
k
pij . Thus

|G(B ∩ T 0
pij)| = 0. Then, by (57)θ[B] = 0. Now letA ⊂ Rn and|A| = 0. Then,

sinceLn is Borel regular, there exists a BorelB ⊂ Rn, such thatA ⊂ B and
|B| = 0. Thenθ[B] = 0, and thusθ[A] = 0.

Finally, sinceweestimated (57)by (59),weshowed thatθ[A] ≤ ∫Rn u(z)[f+(z)
− f−(z)]dz < ∞ for anyA ⊂ Rn, which implies thatθ is a Radon measure.
Lemma 4.5 is proved ��

Remark 4.6 (Total cost bounds)ForB = Rn, the argument estimating (57) by
(59) showsθ[Rn] =

∫
Rn u(z)[f+(z)− f−(z)]dz, which coincides with the total

transportation costK[u] = I[s].

Using the absolute continuity proved for the finite Radon measureθ in Lemma
4.5, the Radon-Nikodym theorem [10,§1.6.2] yields a density0 ≤ g ∈ L1(Rn) of
θ with respect toLn. Any measurable setA ⊂ Rn satisfies

θ[A] =
∫
A

g(y)dy. (61)

and

‖g‖L1 = θ[Rn] <∞. (62)

Lemma 4.7 (Local transport cost density) Letλ > 0 and(p, i, j) ∈ Q×N2.
Letz ∈ Rn be a Lebesgue point for the functiong, and a point of density 1 for the
setTλ

pij of Lemma 2.13(ii). Then forz the limit (43) exists and converges tog(z).

Proof. By (56) and (57) we can write the right-hand side of (43) as

lim
R→0+

θ[DR(z)]
|DR(z)| ,
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or, by (61),

lim
R→0+

1
|DR(z)|

∫
DR(z)

g(y)dy.

By [24, §7.9–10], this limit isg(z) if z is a Lebesgue point ofg, provided that
the family of setsDR(z) shrink nicely toz in the following sense: there exist
M,M1 > 0 andR0 > 0, depending onz, such that

DR(z) ⊂ BMR(z), |DR(z)| ≥ 1
M1

Rn for all R ∈ (0, R0). (63)

According to Lemma 4.8 below,Dr(z) shrinks nicely to any pointz of density 1
for the setTλ

pij . Thus Lemma 4.7 follows from Lemma 4.8. ��
The following lemma quantifies the rate at which the cylindersDR(z) shrink

nicely.

Lemma 4.8 (Cylinders shrink nicely)

i. For anyR > 0 and z ∈ Rn there holdsDR(z) ⊂ BMR(z), whereM =
(1 + sup

‖e‖=1
|e|).

ii. Let λ > 0 andz be a point of density 1 for the setTλ
pij . Then there existM1

andR0 > 0 such that

|DR(z) ∩ Tλ
pij | ≥

1
M1

Rn for all R ∈ (0, R0).

Proof. Let x ∈ DR(z). Then, by (40),|u(x)− u(z)| ≤ R, and there exists a point
y ∈ BR(z) such that|u(x)− u(y)| = ‖x− y‖ andu(y) = u(z). Then

|x− y| = |u(x)− u(y)| |x− y|
‖x− y‖ ≤ |u(x)− u(z)| sup

‖e‖=1
|e| ≤ R sup

‖e‖=1
|e|.

Thus
|x− z| ≤ |x− y|+ |y − z| ≤ (1 + sup

‖e‖=1
|e|)R,

which proves (i).
Now we address (ii). We first prove

B R
M

(z) ∩ Tλ
pij ⊂ DR(z) ∩ Tλ

pij . (64)

for R ∈ (0, R0), whereR0 small enough andM large enough are selected below.
Let x ∈ B R

M
(z) ∩ Tλ

pij . LetRx be the unique transport ray containingx. In order
to prove (64) it is enough to show thatRx intersects the level setSz,u = {ξ ∈
Rn | u(ξ) = u(z)}, and the pointy of intersection ofRx andSz,u satisfies
y ∈ T 0

pij and|y − z| < R.
Sincex ∈ Tλ

pij , for anyτ ∈ (−λ, λ) there existsy ∈ Rx with u(y) = u(x)+τ .
Sincex ∈ B R

M
(z),

|u(x)− u(z)| ≤ ‖x− z‖ ≤ |x− z| sup
|e|=1

‖e‖ ≤ sup|e|=1 ‖e‖
M

R. (65)
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Thus ifM ≥ 2
sup|e|=1 ‖e‖

λ , then

|u(x)− u(z)| ≤ λ

2
R.

Thus if R ≤ 1 there existsy ∈ Rx with u(y) = u(z), i.e., y is the point of
intersection ofRx with Sz,u. Then|u(x)− u(y)| = ‖x− y‖ and

|x− y| ≤ ‖x− y‖ sup
‖e‖=1

|e| = |u(x)− u(y)| sup
‖e‖=1

|e|.

Sincex ∈ B R
M

(z),

|y − z| ≤ |y − x|+ |x− z| ≤ |u(x)− u(y)| sup
‖e‖=1

|e|+ R

M

≤ (sup‖e‖=1 |e|)(sup|e|=1 ‖e‖) + 1
M

R,

where we usedu(y) = u(z) and (65) in the last inequality. Thus|y − z| ≤ R
2 if

M ≥ 2[(sup‖e‖=1 |e|)(sup|e|=1 ‖e‖) + 1]. This implies thatx ∈ DR(z). Recall
also thatx ∈ Tλ

pij . Thus (64) holds, ifR ≤ 1 andM satisfies all above conditions,
i.e. ifM is large depending onλ, sup|e|=1 ‖e‖ andsup‖e‖=1 |e|. Fix such anM .

Sincez is apoint of density1 forTλ
pij , thereexistsρ0 such that foranyρ ∈ (0, ρ0)

|Bρ(z) ∩ Tλ
pij | ≥

1
2
|Bρ|. (66)

Thus choosingR0 = ρ0M , applying (66) toρ = R
M and using (64), we get (ii).

This concludes the proof of Lemma 4.8. ��

We have T 0
1 =

⋃
(p,i,j)∈Q×N2

T 0
pij and T 0

pij =
∞⋃
k=1

T
1
k
pij for each

(p, i, j) ∈ Q×N2, and the setsT 0
pij , T

1
k
pij are Borel. From Lemma 4.7 the limit

on the right-hand side of (43) converges tog(z) for a.e.z ∈ T
1
k
pij , and thus for a.e.

z ∈ T 0
1 . SinceT1 is a closed set, it follows from the definition of the measureθ that

θ[Rn \ T1] = 0, and sog ≡ 0 onRn \ T1 = 0. In addition,g ∈ L1 by (62). The
endpoints of transport raysE = T1 \ T 0

1 occupy zero volume in Lemma 2.15, so
the functiona = g satisfies (44) and is equal to the right-hand side of (43) forLn

a.e.z ∈ T 0
1 . This concludes the first assertion of the theorem. In Steps 2 and 3 we

address (45–47).

Step 2. Transport cost density on a ray cluster in flattened coordinates.

Lemma 4.9 Letλ > 0 and(p, i, j) ∈ Q×N2. Then for a.e.z ∈ Tλ
pij

a(z) = lim
R→0+

θ[DR(z) ∩ Tλ
pij ]

|DR(z) ∩ Tλ
pij |

(67)
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Proof. Define a measurẽθ onRn by

θ̃[A] = θ[A \ Tλ
pij ]

for anyA ⊂ Rn. SinceTλ
pij is a Borel set, it follows from Lemma 4.5 thatθ̃ is

a Radon measure, absolutely continuous with respect toLn. Thus there exists a
densityg̃ ≥ 0 of θ̃ with respect toLn. Theng̃ ∈ L1(Rn) sinceθ̃[Rn] < ∞. We
haveθ̃[Tλ

pij ] = θ[∅] = 0, and thus̃g = 0 a.e. inTλ
pij .

Let z ∈ Tλ
pij be Lebesgue point of bothg( · ) andg̃( · ), and letz be a point of

density 1 forTλ
pij and a point of density 0 forRn \ Tλ

pij . Note that a.e.z ∈ Tλ
pij

satisfies these conditions. We show the lemma holds for suchz.
Note also that, sincẽg = 0 a.e. inTλ

pij andg̃ ∈ L1, the above conditions imply
g̃(z) = 0. In addition, by Lemma 4.7,

g(z) = lim
R→0+

θ[DR(z)]
|DR(z)| .

Also, by a similarly proof as Lemma 4.7, we get

g̃(z) = lim
R→0+

θ̃[DR(z)]
|DR(z)| .

In addition, sincez is a point of density 0 forRn \Tλ
pij , we have|BR(z) \Tλ

pij | =
o(Rn). Also Lemma 4.8(ii) holds sincez is a point of density 1 forTλ

pij . Thus we
have

0 ≤ |DR(z) \ Tλ
pij |

|DR(z)| ≤ |BMR(z) \ Tλ
pij |

|DR(z)| ≤ o(Rn)
1

M1
Rn

→ 0 as R → 0+,

so

lim
R→0+

|DR(z)|
|DR(z) ∩ Tλ

pij |
= 1.

Now we compute:

θ[DR(z) ∩ Tλ
pij ]

|DR(z) ∩ Tλ
pij |

=
θ[DR(z)]− θ[DR(z) \ Tλ

pij ]
|DR(z)|

|DR(z)|
|DR(z) ∩ Tλ

pij |
. (68)

From the discussion above, the limit asR → 0+ of the right-hand side of (68)
exists and isg(z)− g̃(z) = g(z) = a(z). Thus Lemma 4.9 is proved. ��
Lemma 4.10 (Transport cost density in flattened coordinates)Let (p, i, j) ∈
Q ×N2, and letF,G be the mappings defined in Lemma 2.13 forT 0

pij . Then for
a.e.z ∈ T 0

pij ,

a(z) =
â(G(z))

JnF (G(z))
, (69)

whereâ : Rn−1 ×R1 → R1 is defined by

â(X,xn) = Ψ+(X,xn)− Ψ−(X,xn). (70)
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Proof. SinceT 0
pij =

⋃∞
k=1 T

1
k
pij , it is enough to prove that (69) holds for a.e.

z ∈ T
1
k
pij for everyk ∈ N. Therefore, fixk ∈ N and letλ = 1

k . Let z ∈ Tλ
pij be

a point at which (67) holds. Using (57) and the Area formula, we rewrite (67) as
follows

a(z) = lim
R→0+

∫
G(DR(z)∩Tλ

pij)
[Ψ+(X,xn)− Ψ−(X,xn)]dXdxn∫

G(DR(z)∩Tλ
pij)

JnF (X,xn)dXdxn

= lim
R→0+

∫
G(DR(z)∩Tλ

pij)
â(X,xn)dXdxn∫

G(DR(z)∩Tλ
pij)

JnF (X,xn)dXdxn
, (71)

whereJnF is the Jacobian ofF . Note that both functionŝa( · ) andJnF ( · ) are
locally integrable.

Let z be a point with the following properties: (67) holds,z is a point of density
1 forTλ

pij , andG(z) is a Lebesgue point for botĥa( · ) andJnF ( · ). Since the map
F is Lipschitz onRn, andG is Lipschitz onTλ

pij by Lemma 2.13, then a.e.z ∈ Tλ
pij

satisfies these conditions.
It follows that Lemma 4.8 holds forz. SinceF is Lipschitz (say, with constant

L), it follows from Lemma 4.8(i) thatG(DR(z) ∩ Tλ
pij) ⊂ BLMR(G(z)) for any

R > 0, and from Lemma 4.8(ii) and the Area formula

Ln|G(DR(z) ∩ Tλ
pij)| ≥ |DR(z) ∩ Tλ

pij | ≥
1
M1

Rn for all R ∈ (0, R0).

Thus, by Rudin [24,§7.9–10], sinceG(z) is a Lebesgue point for botĥa andJnF ,

lim
R→0+

1
|G(DR(z) ∩ Tλ

pij)|
∫
G(DR(z)∩Tλ

pij)
â(X,xn)dXdxn = â(G(z)) and

lim
R→0+

1
|G(DR(z) ∩ Tλ

pij)|
∫
G(DR(z)∩Tλ

pij)
JnF (X,xn)dXdxn = JnF (G(z)).

(72)
Note also that by Lemma 2.13(iii),JnF (G(z))JnG(z) = 1 for a.e.z ∈ Tλ

pij . Thus

JnF (G(z)) �= 0 for a.e. z ∈ Tλ
pij , (73)

and we can pass to the limit in (71) using (72). Thus Lemma 4.10 is proved.��

Step 3. Differential equation satisfied by the transport cost density.
Now we prove that thata(z) satisfies (46–47). LetA be a Borel transport set. Fix
T 0
pij for (p, i, j) ∈ Q×N2 and consider its coordinate mapsU , V , F , G from

Lemmas 2.11 and 2.13, and the corresponding functionsf̂± andâ defined by (70).
By (25),â ≥ 0. By (58),â has compact support, and sinceΨ± ∈ L1

loc(R
n−1×R1),

it follows â ∈ L1(Rn−1 ×R1).
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DenoteB = Si
p ∩A ∩ T 0

pij , where the subsetS
i
p of the level setSp = u−1(p)

is defined in Lemma 2.11. ThenB is a Borel set. From Definition 2.12 it follows
thatA ∩ T 0

pij = j(B). Now from (16)

G(A ∩ T 0
pij) =

[
U(B)×R1

]
∩G(T 0

pij) (74)

By Lemma 2.11, the setU(B) = V −1(B) is Borel. Thus, using Lemma 2.15, we
conclude that the setG(A ∩ T 0

pij) is Borel.
Letϕ ∈ C1(Rn). By (23) and Area formula, we get∫

G(A∩T 0
pij)

ϕ(F (X,xn))
[
f̂+(X,xn)−f̂−(X,xn)

]
dXdxn=

∫
A∩T 0

pij

ϕ[f+−f−]dz.

(75)
Sincef̂± := 0 onRn \G(T 0

pij) from (23), we use (74) to rewrite (75) as∫
U(B)×R1

ϕ(F (X,xn))
[
f̂+(X,xn)−f̂−(X,xn)

]
dXdxn=

∫
A∩T 0

pij

ϕ[f+−f−] dz.

(76)
Let c, d be the numbers from (58). Then the functionsf̂±

X (τ) := f̂±(X, τ)
vanish outside the segment[c, d] of finite length for a.e.X ∈ Rn−1. Also, f̂±

X ∈
L1(R1) for a.e.X ∈ Rn−1. Then, sinceF is Lipschitz and ∂

∂xn
Ψ± = −f̂±, we

can integrate by parts with respect toxn in the left-hand side of (76) on the segment
[c, d] (as in [12,§2.6.7]). Using (58) to cancel the boundary terms, and recalling
the definition (70) of̂a, we obtain∫
U(B)×Rn

∂ϕ(F (X,xn))
∂xn

â(X,xn) dXdxn =
∫
A∩T 0

pij

ϕ(z)[f+(z)− f−(z)] dz.

(77)
We shall rewrite the left-hand side of (77) in a more convenient form. From

Lemma 2.13(iii-iv) and (13), for any(X,xn) ∈ G(T 0
pij)

∂F (X,xn)
∂xn

= ν(F (X,xn)).

Also, by (24) and (26), it follows thatΨ+ = Ψ− a.e. onRn \G(T 0
pij). We get

â = Ψ+ − Ψ− = 0 a.e. on Rn \G(T 0
pij). (78)

Thus we can integrate over the set

[
U(B)×Rn

]
∩G(T 0

pij) in the left-hand side of

(77), which is the setG(A ∩ T 0
pij) by (74). Now, using (69–70) and then the Area

formula [12,§3.2.5], we get∫
U(B)×R1

∂ϕ(F (X,xn))
∂xn

â(X,xn) dXdxn

=
∫
G(A∩T 0

pij)

(
a

n∑
i=1

∂ϕ

∂zi
νi

)
◦ F (X,xn)JnF (X,xn) dXdxn
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=
∫
T 0

pij∩A

a ν · ∇ϕdz.

Thus we can write (77) in the form∫
T 0

pij∩A

a ν · ∇ϕdz =
∫
T 0

pij∩A

(f+ − f−)ϕdz. (79)

We sum this equality over(p, i, j) ∈ Q×N2 and, using (18), obtain (47). Note
that (47) implies (46) since the right-hand side of (46) is finite for anyϕ ∈ C1(Rn).

Step 4. Uniqueness of the transport density.
Finally, we address assertion (iii) of the Theorem. Assumea ∈ L1(Rn) satisfies
(44–47). By approximation, (47) holds for any Lipschitzϕ. In particular, choosing
ϕ(z) = Φ(u(z)), whereΦ is a Lipschitz function onR1, and using thatν · ∇u =
Duν = 1 onT 0

1 by Lemma 2.7(iii), we get∫
A

a(y)Φ′(u(y)) dy =
∫
A

[f+(y)− f−(y)]Φ(u(y)) dy (80)

for any Borel transport setA.
LetR > 0 andΦR be the Lipschitz function

ΦR(τ) =




0 for τ < −R;
τ

R
+ 1 for τ ∈ [−R,R];

2 for τ > R;

so that Φ′
R(τ) = R−1χ[−R,R](τ) is a step function. Letλ > 0 and

(p, i, j) ∈ Q×N2. Fix z ∈ T 2λ
pij . Insert in (80) the functionΦ(u(y)) = ΦR[u(y)−

u(z)], and transport set

A = j(B), where B = Sz,u ∩ Tλ
pij ∩BR(z), (81)

whereSz,u is the level set{y |u(y) = u(z)}, and j is the map (19). The setB is
Borel, and thusA = j(B) is Borel by Corollary 2.18. We get

1
R

∫
Dλ

R(z)
a(y) dy =

∫
j(B)

[f+(y)− f−(y)]ΦR[u(y)− u(z)] dy, (82)

where

Dλ
R(z) = j[Sz,u ∩ Tλ

pij ∩BR(z)] ∩ {y | u(z)−R ≤ u(y) ≤ u(z) + R}. (83)

Note thatDλ
R(z) is a Borel set since the set j[Sz,u∩Tλ

pij ∩BR(z)] = j(B) is Borel.
Let us rewrite the right-hand side of (82). We haveA = j(B) ⊂ T 0

pij , since
B ⊂ T 0

pij by (81) andT
0
pij is a transport set. Thus we can make on j(B) the change

of variablesy = F (x), wherex = (X, t) ∈ Rn−1 ×R1, andU , V , F andG are
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maps from Lemma 2.13 forT 0
pij . Note that, by (16),t = u(y)−p. Also, (74) holds.

Thus we obtain using (23), the Area formula, (74) andA ⊂ T 0
pij :∫

j(B)
[f+(y)− f−(y)]ΦR[u(y)− u(z)] dy

=
∫
G[j(B)]

[f̂+(X, t)− f̂−(X, t)]ΦR[t + p− u(z)] dXdt

=
∫
U(B)×R1

[f̂+(X, t)− f̂−(X, t)]ΦR[t + p− u(z)] dXdt,

where we used̂f± = 0 onRn \G(T 0
pij). Now repeating the argument given after

(75) we integrate by parts with respect tot in the last expression, and obtain∫
j(B)

[f+(y)− f−(y)]ΦR[u(y)− u(z)] dy

=
∫
U(B)×R1

â(X, t)Φ′
R[t + p− u(z)] dXdt

=
1
R

∫
U(B)×[p−u(z)−R,p−u(z)+R]

â(X, t) dXdt,

whereâ = Ψ+ − Ψ−. Using (78), we can replace the domain of integration in the

last expression byG[Dλ
R(z)] =

(
U(B)×[p−u(z)−R, p−u(z)+R]

)
∩G(T 0

pij).

Now, recalling (82), we recover∫
Dλ

R(z)
a(y) dy =

∫
G(Dλ

R(z))
â(X, t) dXdt.

Dividing this equality by|Dλ
R(z)| and using the Area formula on the right-hand

side, we get

1
Dλ

R(z)

∫
Dλ

R(z)
a(y) dy =

∫
G(Dλ

R(z)) â(X, t)dXdt∫
G(Dλ

R(z)) JnF (X, t)dXdt
. (84)

To pass to the limitR → 0+, we need the following analog to Lemma 4.8.

Lemma 4.11 (Cylinders shrink nicely within ray clusters)Fix λ > 0.

i. For anyR > 0 andz ∈ Rn,Dλ
R(z) ⊂ BMR(z) withM = (1 + sup

‖e‖=1
|e|).

ii. There existsR0 depending only onλ such that for anyR ∈ (0, R0) andz ∈ Rn,

Dλ
R(z) ⊂ T

λ
2
pij .

iii. Let z be a point of density 1 for the setT 2λ
pij . Then there existM andR0 > 0

such that

|Dλ
R(z)| ≥ 1

M
Rn for all R ∈ (0, R0).
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Proof. Assertion (i) follows from the obvious inclusionDλ
R(z) ⊂ DR(z) and

Lemma 4.8(i). Next chooseR0 = λ
2 . Then (ii) follows readily from definition of

Dλ
R(z) and the following property of setsTλ

pij :

Claim 4.12 If y1 ∈ Tλ
pij andy2 lies on the transport rayRy1 , and‖y1 − y2‖ =:

δ < λ, theny2 ∈ Tλ−δ
pij .

Proof. Sincey1 is on the‖ · ‖-distance at leastλ from the ends ofRy1 , it follows
from the conditions of Claim thaty2 is on the‖ · ‖-distance at leastλ− δ from the
ends ofRy1 . Claim 4.12 follows. ��

Now we prove (iii). The proof is similar to the proof of Lemma 4.8(ii). We will
first show

B R
M

(z) ∩ T 2λ
pij ⊂ Dλ

R(z), (85)

for R ∈ (0, R0), where a smallR0 and a largeM will be chosen below. Let
x ∈ B R

M
(z) ∩ T 2λ

pij . Let Rx be the unique transport ray containingx. In order
to prove (85) it is enough to show thatRx intersects the level setSz,u = {ξ ∈
Rn | u(ξ) = u(z)}, and the pointy of intersection ofRx andSz,u satisfies
y ∈ Tλ

pij and|y − z| < R.
Sincex ∈ T 2λ

pij , for any τ ∈ (−λ, λ) there existsy ∈ Rx ∩ Tλ
pij with

u(y) = u(x) + τ . Sincex ∈ B R
M

(z), we obtain (65), and then, choosingM ≥
sup|e|=1 2‖e‖/λ, we get

|u(x)− u(z)| ≤ λ

2
R.

Thus ifR ≤ 1 there existsy ∈ Rx ∩ Sz,u andy ∈ Tλ
pij by Claim 4.12. The rest of

the proof of (iii) follows the proof of Lemma 4.8(ii). Lemma 4.11 is proved.��
Finally, fix λ > 0 andz ∈ T 2λ

pij , so we can pass to the limitR → 0+ in (84). By
Lemma 4.11(i, iii) and Rudin [24,§7.9–10], the limit on the left-hand side of (84)
exists and converges toa(z) wheneverz is a Lebesgue point ofa( · ) and a point of
density 1 for the setT 2λ

pij .
Consider the right-hand side of (84). By Lemma4.11(ii), themapG is Lipschitz

onDλ
R(z) for allR ∈ (0, R0(λ)). Thuswe can repeat the proof of Lemma4.10with

use of Lemma 4.11(i, iii) to conclude that ifz is a point of density 1 for the setT 2λ
pij

andG(z) is a Lebesgue point for botĥa andJnF , and ifJnF (G(z)) �= 0, then the
limit on the right-hand side of (84) exists and converges toâ(G(z))/JnF (G(z)).
Since the mapF is Lipschitz onRn, andG is Lipschitz onT 2λ

pij , and (73) holds,
a.e.z ∈ T 2λ

pij satisfies these conditions.
Thus for anyλ > 0, for a.e.z ∈ T 2λ

pij

a(z) =
â(G(z))

JnF (G(z))
=

Ψ+(G(z))− Ψ−(G(z))
JnF (G(z))

. (86)

SinceT 0
pij =

⋃∞
k=1 T

1
k
pij , the formula (86) holds a.e. onT

0
pij . Uniqueness ofa(z),

satisfying (44–47) follows, and Theorem 4.1 is proved. ��
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