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Abstract

We consider the Monge-Kantorovich problem of transporting
a probability density on Rm to another on the line, so as to op-
timize a given cost function. We introduce a nestedness criterion
relating the cost to the densities, under which it becomes pos-
sible to solve this problem uniquely, by constructing an optimal
map one level set at a time. This map is continuous if the tar-
get density has connected support. We use level-set dynamics to
develop and quantify a local regularity theory for this map and
the Kantorovich potentials solving the dual linear program. We
identify obstructions to global regularity through examples.

More specifically, fix probability densities f and g on open
sets X ⊂ Rm and Y ⊂ Rn with m ≥ n ≥ 1. Consider trans-
porting f onto g so as to minimize the cost −s(x, y). We give a
non-degeneracy condition (a) on s ∈ C1,1 which ensures the set of
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x paired with [g-a.e.] y ∈ Y lie in a codimension n submanifold
of X. Specializing to the case m > n = 1, we discover a nest-
edness criteria relating s to (f, g) which allows us to construct
a unique optimal solution in the form of a map F : X −→ Y .
When s ∈ C2 ∩W 3,1 and log f and log g are bounded, the Kan-
torovich dual potentials (u, v) satisfy v ∈ C1,1

loc (Y ), and the nor-
mal velocity V of F−1(y) with respect to changes in y is given
by V (x) = v′′(F (x)) − syy(x, F (x)). Positivity (b) of V locally
implies a Lipschitz bound on F ; moreover, v ∈ C2 if F−1(y)
intersects ∂X ∈ C1 transversally (c). On subsets where (a)-
(c) can be be quantified, for each integer r ≥ 1 the norms of
u, v ∈ Cr+1,1 and F ∈ Cr,1 are controlled by these bounds,
‖ log f, log g, ∂X‖Cr−1,1 , ‖∂X‖C1,1 , ‖s‖Cr+1,1 , and the smallness of
F−1(y). We give examples showing regularity extends from X to
part of X, but not from Y to Y . We also show that when s
remains nested for all (f, g), the problem in Rm ×R reduces to
a supermodular problem in R×R.

1 Introduction

In the optimal transportation problem of Monge and Kantorovich, one
is provided with probability measures dµ(x) and dν(y), and asked to
couple them together so as to minimize a given transportation cost, or
equivalently to maximize a given surplus function s(x, y). The measures
are defined on subsets X and Y of complete separable metric spaces,
often Euclidean spaces or manifolds with additional structure, with the
surplus function s(x, y) either defined by or defining the geometry of the
product X × Y . Such problems have a wealth of applications ranging
from the pure mathematics of inequalities, geometry and partial differ-
ential equations to topics in computer vision, design, meteorology, and
economics. These are surveyed in the books of Rachev and Rüschendorf
[42], Villani [50] [51], Santambrogio [46] and Galichon [18]. It has most
frequently been studied under the assumption that X = Y , as in Monge
[40] and Kantorovich [26], or at least that the two spaces X and Y have
the same finite dimension. Monge’s question concerned solutions in the
form of maps F : X −→ Y carrying µ onto ν. At the writing of [50],
Villani described the regularity of such maps as the major open problem
in the subject. Through the work of many authors, an intricate theory
has been developed for the case of equal dimensions, leading up to the
restrictive conditions of Ma, Trudinger and Wang [34] [49] under which
the solution concentrates on the graph of a smooth map between X and
Y ; see [13] and [37] for complementary surveys.

Despite its relevance to applications, much less is known when m 6=
n. The purpose of the present paper is to resolve this situation, at
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least in the case m > n = 1 motivating our title. Though it seems
not to have received much attention previously, we view this as a case
interpolating between between m = n = 1, which can be solved exactly
in the supermodular case ∂2s/∂x∂y > 0, and the fully general problem
m ≥ n > 1. We develop, for the first time, a regularity theory addressing
this intermediate case. It is based crucially on a nestedness condition
introduced simultaneously here and in our companion work [8]. When
satisfied, we show this condition leads to a unique solution in the form of
a Monge mapping. This solution, moreover is semi-explicit: it is based
on identifying each level set of the optimal map independently, and can
presumably be computed with an algorithmic complexity significantly
smaller than non-nested problems of the same dimensions can be solved.
Although nestedness is restrictive, we suspect it may be a requirement
for the continuity of optimal maps. Moreover, it depends subtly on
the relation between µ, ν and s, which distinguishes it sharply from
the familiar criteria for mappings, uniqueness and regularity when m =
n which, with few exceptions [27], depend primarily on the geometry
and topology of s. Our theory addresses interior regularity, as well as
regularity at some parts of the boundary. We identify various obstacles
to nestedness and regularity along the way, including examples which
show that higher regularity cannot generally hold on the entire boundary.

The plan for the paper is as follows. The next section introduces
notation, describes the problem more precisely, and recalls some of its
history and related developments. It is followed by a section dealing
with general source and target dimensions m ≥ n ≥ 1, giving conditions
under which the set of x paired with a.e. y ∈ Y lie in a codimension n
submanifold of X. In section §4 we specialize to n = 1, introduce the
notion of nestedness, and show that it allows us to obtain a unique solu-
tion in the form of a optimal map between µ and ν which, under suitable
conditions, is continuous. The solution map F : X −→ Y is constructed
one level set at a time. Although nestedness generally depends on the
relation of (µ, ν) to s, in section §4.2 we show that when it happens to
hold for all absolutely continuous (µ, ν), then s can effectively be reduced
to a super- or submodular function of two real variables y and I(x). In
Section §5 we explore the motion of the level sets F−1(y) as y ∈ Y is
varied. To do so requires additional regularity of the data (s, µ, ν), under
which we are able to deduce some additional regularity of the solution
and give several conditions equivalent to nestedness. In Section §6 we
give examples of nested and non-nested problems, including some which
illustrate why the unequal dimensions of the problem prevent F from
extending smoothly to the entire boundary of X. Finally, in Section 8,
we develop a complete theory which describes how the higher regularity
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of F (and the Kantorovich dual potentials) is controlled by certain pa-
rameters governing (s, µ, ν,X, Y ) and various geometrical aspects of the
problem, such as the smallness of F−1(y), its transversality to ∂X, and
the speed of its motion, which quantifies the uniformity of nestedness by
determining the separation between distinct level sets.

Our interest in this problem was initially motivated by economic
matching problems with transferable utility [8], such as the stable mar-
riage problem [29], in which µ represents the distribution of female and
ν the distribution of male types, and s(x, y) represents the marital sur-
plus obtained, to be divided competitively between a husband of type
y and a wife of type x. The equivalence of optimal transportation to
stable matching with transferable utility was shown in the discrete set-
ting by Shapley and Shubik [47]. We adopt this terminology hereafter,
in spite of the fact that µ and ν might equally well represent producer
and consumer locations, buyer and seller preferences, etc. There is no
reason a priori to expect the characteristics describing wives and hus-
bands to have the same dimension. Although we anticipate that this
theory will have many other applications, we are particularly aware of
its potential for use in the semigeostrophic model of atmosphere and
ocean dynamics, in which µ would represent the distribution of fluid in
the physical domain and ν a potential vorticity sheet or filament in dual
coordinates [11].

2 Setting and background results

Given Borel probability measures µ on X ⊂ Rm and ν on Y ⊂ Rn, the
Monge-Kantorovich problem is to transport µ onto ν so as to optimize
the given surplus function s(x, y). From Theorem 4 onwards, we assume
X and Y are open, but for the moment they remain arbitrary. Assuming
s ∈ C(X × Y ) to be bounded and continuous for simplicity, we seek a
Borel measure γ ≥ 0 on X × Y having µ and ν for its marginals. The
set Γ(µ, ν) of such γ is convex, and weak-∗ compact in the Banach space
dual to (C(X × Y ), ‖ · ‖∞). Among such γ, Kantorovich’s problem is to
maximize the linear functional

MK∗ := max
γ∈Γ(µ,ν)

∫
X×Y

s(x, y)dγ(x, y). (1)

We shall also be interested in the structure of the optimizer(s) γ. For
example, is there a map F : X −→ Y such that γ vanishes outside
Graph(F ), and if so, what can be said about its analytical and geometric
properties? Such a map is called a Monge or pure solution, deterministic
coupling, matching function or optimal map, and we have γ = (id×F )#µ
where id denotes the identity map on X in that case [1]. More generally,
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if F : X −→ Y is any µ-measurable map, we define the push-forward
F#µ of µ through F by

F#µ(V ) = µ[F−1(V )]

for each Borel V ⊂ Y . Thus Γ(µ, ν) = {γ ≥ 0 on X × Y | πX#γ =
µ and πY#γ = ν}, where πX(x, y) = x and πY (x, y) = y. We denote by

X the closure of X, and by sptµ ⊂ X the smallest closed set carrying
the full mass of µ.

The case which is best understood is the case X = Y = R, so that
n = m = 1. If s ∈ C2(R2) satisfies

∂2s

∂x∂y
(x, y) > 0 (2)

for all x, y ∈ R, then (1) has a unique solution; moreover, this solution
coincides with the unique measure γ ∈ Γ(µ, ν) having non-decreasing
support, meaning (x, y), (x′, y′) ∈ spt γ implies (x − x′)(y − y′) ≥ 0.
This result, which dates back to Lorentz [33], was rediscovered by the
economists Becker [3], Mirrlees [39] and Spence [48]. Condition (2) is
also called the Spence-Mirrlees condition, or supermodularity, in the eco-
nomics literature. Note this condition does not depend on µ or ν, and
while γ depends on them, it is independent of s in this case. More-
over, if µ is free from atoms, then γ concentrates on the graph of a
non-decreasing function F : R −→ R given by∫

(−∞,F (x))

dν ≤
∫ x

−∞
dµ ≤

∫
(−∞,F (x)]

dν. (3)

When µ and ν are given by L1 probability densities f and g, the funda-
mental theorem of calculus yields a ordinary differential equation

f(x) = F ′(x)g(F (x)) (4)

satisfied Lebesgue almost everywhere; smoothness properties of F (x)
can then be deduced from those of f and g.

In higher equal dimensions m = n > 1 the situation is much more
subtle. However if µ is given by a probability density f ∈ L1(Rm),
it is again possible to given conditions on the surplus function s ∈
C1(X × Y ) such that the Kantorovich optimizer (1) is unique [38] [7]
and concentrated on the graph of a map F [19] [30] depending sensi-
tively on the choice of surplus. If ν is also given by a probability density
g ∈ L1(Rn), and log f, log g ∈ L∞, then it is possible to give conditions
on s ∈ C4(X×Y ) which guarantee F is Hölder continuous [32] [16], and
inherits higher regularity from that of f and g [31].
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For unequal dimensions m ≥ n, the existence, uniqueness and graphi-
cal structure of solutions follows from conditions on s as whenm = n, but
concerning other aspects of the problem much less is known. Only a re-
sult of Pass asserts that if smoothness of F holds for all log f, log g ∈ C∞,
then the dimensions are effectively equal, in the sense that there are
functions I : Rm → Rn, α ∈ C(Rm) and σ ∈ C(R2n) such that
s(x, y) = σ(I(x), y) + α(x). If n = 1 we call I an index and s pseudo-
index in this case; otherwise I represents a set of indices and s is pseudo-
indicial.

In general, one of the keys to understanding the Kantorovich problem
(1) is the dual linear program

MK∗ := inf
(u,v)∈Lips

∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y), (5)

where Lips consists of all pairs of payoff functions (u, v) ∈ L1(µ)⊕L1(ν)
satisfying the stability constraint

u(x) + v(y)− s(x, y) ≥ 0 (6)

on X × Y . The remarkable fact is that MK∗ = MK∗ [26]. Thus, if γ
and (u, v) optimize their respective problems, it follows that γ vanishes
outside the zero set S of the non-negative function u+v−s. We therefore
obtain the first and second order conditions

(Du(x), Dv(y)) = (Dxs(x, y), Dys(x, y)) (7)

and (
D2u(x) 0

0 D2v(y)

)
≥
(
D2
xxs(x, y)D2

xys(x, y)
D2
yxs(x, y)D2

yys(x, y)

)
(8)

at each (x, y) ∈ S ∩ (X×Y )0 for which the derivatives in question exist;
here X0 denotes the interior of X. When the surplus s is Lipschitz, then
the infimum (5) is attained by a pair of Lipschitz functions (u, v); when
s has Lipschitz derivatives, we may even take u, v to be semiconvex,
hence twice differentiable (in the sense of having a second-order Taylor
expansion) Lebesgue almost everywhere [50] [46]. We let DomDv and
DomD2v denote the domains where v admits a first- and second-order
Taylor expansion, with Dom0Dv =

(
Y
)0 ∩ DomDv and Dom0D

2v :=(
Y
)0 ∩DomD2v and Y denoting the closure of Y .
For each integer r ≥ 0, and Hölder exponent 0 < α ≤ 1 we denote by

Cr,α(X) the space of functions which are r times continuously differen-
tiable, and whose r-th derivatives are all Lipschitz continuous functions
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with respect to the distance function |x− x′|α on X (in which case both
properties extend to the closure X of X.) We norm this space by

‖f‖Cr,α(X) :=
r∑
i=0

∑
|β|=i

‖Dβf‖∞ + sup
x 6=x′∈X

∑
|β|=r

|Dβf(x′)−Dβf(x)|
|x′ − x|α

where Dβf = ∂|i|f
∂x1···∂xi and the sums are over multi-indices β of degree |β|.

We eliminate the supremum if α = 0, abbreviating Cr(X) := Cr,0(X),
C(X) := C0(X), and defining local versions Cr,α

loc (X) of these spaces
analogously. We adopt the convention that C−1,1 = L∞, and denote by
‖∂X‖Cr,1(X′) a minimal bound for the sums of norms of the Cr,1 functions

parameterizing X ′ ∩ ∂X. In case α = 1, this space forms an algebra;
moreover, we extend these definitions to tensor fields f on Riemannian
manifolds X by requiring the components of f to belong to Cr,1

loc and
setting

‖f‖Cr,1(X) :=
r+1∑
i=0

‖Dif‖∞,

the operator Di now denoting iterated covariant derivatives with respect
to the Levi-Civita connection.

We shall also use the Sobolev spaces W r,1(X), consisting of integrable
functions on X whose distributional partial derivatives up to order r are
also integrable. This space is normed by

‖f‖W r,1(X) :=

∫
X

(
∑
|β|≤r

|Dβf |)dHm,

where the sum is over multi-indices β and Hm denotes the Hausdorff
m-dimensional measure on X. Equipped with the norm

‖f‖(C∩W 1,1)(X) := max{‖f‖L∞(X), ‖f‖W 1,1(X)},

the space (C ∩W 1,1)(X) forms an algebra (closed under the continuous
operation of multiplication), as does C(Y ; (C ∩W 1,1)(X)).

3 Transportation between unequal dimensions

We now turn our attention to the case in which the source and target do-
mains X and Y of our transportation problem have unequal dimensions
m ≥ n. In this case, one expects many-to-one rather than one-to-one
matching. Indeed, it is natural to expect that at equilibrium the sub-
set F−1(y) ⊂ X ⊂ Rm of partners which a man of type y ∈ Dom0Dv
is indifferent to will generically have dimension m − n, or equivalently,
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codimension n. Our first proposition recalls from [8] conditions under
which this indifference set will in fact be a Lipschitz (or smoother) sub-
manifold of the expected dimension. It is stated here for costs s 6∈ C2

which need not be quite as smooth as those of [8].

3.1 Potential indifference sets

For any optimal γ and payoffs (u, v), we have already seen that (x, y) ∈
S ∩ (X ×Dom0Dv) implies

Dys(x, y) = Dv(y). (9)

That is, all partner types x ∈ X for husband y ∈ Dom0Dv lie in the
same level set of the map x 7→ Dys(x, y). If we know Dv(y), we can
determine this level set precisely; it depends on µ and ν as well as
s. However, in the absence of this knowledge it is useful to define the
potential indifference sets, which for given y ∈ Y are merely the level
sets of the map x ∈ X 7→ Dys(x, y). We can parameterize these level
sets by (cotangent) vectors k ∈ T ∗y Y = Rn:

X(y, k) := {x ∈ X | Dys(x, y) = k}, (10)

or we can think of y ∈ Y as inducing an equivalence relation between
points of X, under which x and x̄ ∈ X are equivalent if and only if

Dys(x, y) = Dys(x̄, y).

Under this equivalence relation, the equivalent classes take the form (10).
We call these equivalence classes potential indifference sets, since they
represent a set of partner types which y ∈ Dom0Dv has the potential to
be indifferent between.

A key observation concerning potential indifference sets is the fol-
lowing proposition. Recall for a Lipschitz function F : Rm −→ Rn, the
generalized Jacobian or Clarke subdifferential ∂F (x) at x ∈ Rm consists
of the convex hull of limits of the derivatives of F at nearby points of
differentiability [9]. For example, ∂F (x) = {DF (x)} if F is C1 at x.

Definition 1 (Surplus degeneracy) Given X ⊂ Rm and Y ⊂ Rn

with m ≥ n, we say s ∈ C2(X × Y ) degenerates at (x̄, ȳ) ∈ X × Y if
rank(D2

xys(x̄, ȳ)) < n. If s ∈ C0,1
loc (X × Y ) and Dys is locally Lipschitz,

we say s degenerates at (x̄, ȳ) ∈ X × Y if for every Lipschitz extension
of Dys to a neighbourhood of (x̄, ȳ) and choice of orthonormal basis for
Rm, setting

F (x) = Dys(x, ȳ) (11)

yields some m × n matrix M ∈ ∂F (x̄) with det[Mij]1≤i,j≤n = 0. Other-
wise we say s is non-degenerate at (x̄, ȳ).
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Proposition 2 (Structure of potential indifference sets) Let s,Dys ∈
Cr,1
loc(X×Y ) for some r ≥ 0, where X ⊂ Rm and Y ⊂ Rn with m ≥ n. If

s does not degenerate at (x̄, ȳ) ∈ X × Y , then x̄ admits a neighbourhood
U ⊂ Rm such that X(ȳ, Dys(x̄, ȳ))∩U coincides with the intersection of
X with a Cr,1-smooth, codimension n submanifold of U .

Proof. For smooth s, the set L := {x ∈ U | Dys(x, ȳ) = Dys(x̄, ȳ)}
forms a codimension n submanifold of U , by the preimage theorem [23,
§1.4]. Otherwise choose an Cr,1 extension of Dys to a neighbourhood
U×V of (x̄, ȳ) and an orthonormal basis for Rm such that each M ∈ ∂F
has full rank with F from (11). The Clarke inverse function theorem [9]
gives a Cr,1 local inverse to the map x ∈ U 7→ (Dys(x, ȳ), xn+1, . . . , xm).
Taking U smaller if necessary, the set X(ȳ, Dys(x̄, ȳ)) is the image of
the affine subspace {Dys(x̄, ȳ)} × Rm−n under this (biLipschitz) local
inverse.

Although we have stated the proposition in local form, it implies that
if k̄ = Dys(x̄, ȳ) is a regular value of x ∈ X 7→ Dys(x, ȳ) — meaning s
is non-degenerate throughout X(ȳ, k̄) — then X(ȳ, k̄) is the intersection
of X with an m− n dimensional submanifold of Rm.

Remark 3 (Genericity) For s ∈ C2 regular values are generic in the
sense that for any given ȳ ∈ Y , Sard’s theorem asserts that the regu-
lar values of Dys(·, ȳ) form a set having full Lebesgue measure in Rn.
However, if Dys(·, ȳ) also has critical (i.e. non-regular) values for some
ȳ ∈ Y , it is entirely possible that Dv(ȳ) is a critical value of Dys(·, ȳ)
for each such ȳ. This is necessarily the case when rank(D2

xys(x, y)) <
min{m,n} throughout X × Y , meaning s is globally degenerate.

As argued above, the potential indifference sets (10) are determined
by the surplus function s(x, y) without reference to the populations µ
and ν to be matched. On the other hand, the indifference set actually
realized by each y ∈ Y depends on the relationship between µ, ν and
s. This dependency is generally complicated. However, there is one
case in which it may simplify substantially: the case of multi-to-one di-
mensional matching, namely n = 1. In this case, suppose D2

xys(·, y) is

non-vanishing (i.e. ∂s
∂y

(·, y) takes only regular values). Then the poten-

tial indifference sets X(y, k) form hypersurfaces in Rm. Moreover, as k
moves through R, these potential indifference sets sweep out more and
more of the mass of µ. For each y ∈ Y there will be some choice of
k ∈ R for which the µ measure of {x | Dys(x, y) ≤ k} exactly coincides
with the ν measure of (−∞, y] (assuming both measures are absolutely
continuous with respect to Lebesgue, or at least that µ concentrates no
mass on hypersurfaces and ν has no atoms). In this case the potential
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indifference set X(y, k) is said to split the population proportionately at
y, making it a natural candidate for being the iso-husband set F−1(y)
to be matched with y.1 In the next sections, we go on to describe and
contrast situations in which this expectation is born out and leads to a
complete solution from those in which it does not.

4 Multi-to-one dimensional matching

We now detail a new approach to a specific class of transportation prob-
lems, largely unexplored, but which can often be solved explicitly as be-
low. These are multi-to-one dimensional problems, in which the space
of wives may have several dimensions but the space of husbands only
one. Thus, we are matching a distribution on x = (x1, ..., xm) ∈ Rm

with another on y ∈ R. The surplus s is then a function s (x1, ..., xm, y)
of m+ 1 real variables.

The goal is to construct from data (s, µ, ν) a mapping F : X −→
Y ⊂ R, whose level sets F−1(y) constitute the iso-husband sets, or sub-
manifold of wives among which husband x turns out to be indifferent
facing the given market conditions. At the end of the preceding section
we identified a natural candidate for this iso-husband set: namely the
potential indifference set which divides the mass of µ in the same ratio as
y divides ν; whether or not these natural candidates actually fit together
to form the level sets of a function F or not depends on a subtle inter-
action between µ, ν and s. When they do, we say the model is nested,
and in that case we show that the resulting function F : X −→ Y pro-
duces the unique optimizer γ = (id × F )#µ for (1). Note that except
in the Lorentz/Becker/Mirrlees/Spence case m = 1 = n, this nestedness
depends not only on s, but also on µ and ν.

4.1 Constructing explicit solutions for nested data

For each fixed y ∈ Y ⊆ R, our goal is to identify the iso-husband set
{x ∈ X | F (x) = y} of husband type y in the given problem. When
differentiability of v holds at y ∈ Y 0, the argument in the preceding
section implies that this is contained in one of the potential indifference
sets X(y, k) from (10). Proposition 2 indicates when this set will have
codimension 1; it generally divides X into two pieces: the sublevel set

X≤(y, k) := {x ∈ X | ∂s
∂y

(x, y) ≤ k}, (12)

and its complement X>(y, k) := X \ X≤(y, k). We denote its strict
variant by X<(y, k) := X≤(y, k) \X(y, k).

1Since k = sy(x, y) can be recovered from any x ∈ X(y, k) and y, we may equiv-
alently say x splits the population proportionately at y, and vice versa.
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To select the appropriate level set, we choose the unique level set
splitting the population proportionately with y; that is, the k = k(y)
for which the µ measure of female types X≤(y, k) coincides with the ν
measure of male types (−∞, y]. We then set y := F (x) for each x in
X(y, k). Our next theorem specifies conditions under which the resulting
match γ = (id×F )#µ optimizes the Kantorovich problem (1); we view it
as the natural generalization of the positive assortative matching results
of [33] [39] [3] and [48] from the one-dimensional to the multi-to-one
dimensional setting. Unlike their criterion (2), which depends only on
s, ours relates s to µ and ν, by requiring the sublevel sets y ∈ Y 7→
X≤(y, k(y)) identified by the procedure above to depend monotonically
on y ∈ R, with the strict inclusion X≤(y, k(y)) ⊂ X<(y′, k(y′)) holding
whenever ν[(y, y′)] > 0. We say the model (s, µ, ν) is nested in this case.

Theorem 4 (Optimality of nested matchings) Let X ⊂ Rm and
Y ⊂ R be connected open sets equipped with Borel probability measures
µ and ν. Assume ν has no atoms and µ vanishes on each Lipschitz
hypersurface. Use s ∈ C1,1(X × Y ) and sy = ∂s

∂y
to define X≤, X<, etc.

as in (12).
(a) Assume s is non-degenerate throughout X × Y . Then for each

y ∈ Y there is a maximal interval K(y) = [k−(y), k+(y)] 6= ∅ such that
µ[X≤(y, k)] = ν[(−∞, y)] for all k ∈ K(y). Both k+ and (−k−) are
upper semicontinuous.

(b) In addition, assume both maps y ∈ Y 7→ X≤(y, k±(y)) are non-

decreasing, and moreover that
∫ y′
y
dν > 0 implies X≤(y, k+(y)) ⊆ X<(y′, k−(y′)).

Then k+ is right continuous, k− is left continuous, and they agree through-
out spt ν except perhaps at countably many points. Setting F (x) = y for
each x ∈ X(y, k+(y)) defines F : X −→ Y [µ-a.e.], and γ = (id× F )#µ
is the unique maximizer of (1) on Γ(µ, ν).

(c) In addition, assume spt ν is connected, say spt ν = [y, ȳ]. Then
F agrees µ-a.e. with the continuous function

F̄ (x) =


ȳ if x 6∈

⋃
y∈(y,ȳ) X<(y, k−(y))

y if x ∈ X≤(y, k+(y)) \X<(y, k−(y)) with y ∈ (y, ȳ),
y if x ∈

⋂
y∈(y,ȳ) X≤(y, k+(y)).

(13)

(d) If, in addition, Y ⊂ spt ν then F̄ : X −→ Y .

Our strategy for proving (b) is to show the spt γ is contained in the
the s∗-subdifferential

∂s
∗
v∗ := {(x, y) ∈ X × Y | v(y′) ≥ v(y)− s(x, y) + s(x, y′) ∀y′ ∈ Y }.

11



of the Lipschitz function v : Y −→ R ∪ {+∞} solving the differential
equation v′(y) = k+(y) a.e. From there, we can conclude optimality of γ
using well-known results which show s∗-subdifferentials have a property
(known as s-cyclical monotonicity) characterizing the support of opti-
mizers [20] [51]. We also give a self-contained duality-based proof of
optimality of γ as a byproduct of our uniqueness argument.
Proof. (a) Proposition 2 implies X(y, k) is the intersection with X of an
m− 1 dimensional Lipschitz submanifold (orthogonal to Dxsy(x, y) 6= 0
wherever the latter is defined and continuous). Since both µ and ν vanish
on hypersurfaces, the function

h(y, k) := µ[X≤(y, k)]− ν[(−∞, y)]

is continuous, and for each y ∈ Y climbs monotonically from−ν[(−∞, y)]
to 1− ν[(−∞, y)] with k ∈ R. The intermediate value theorem then im-
plies the existence of k±(y). Continuity of h(y, k) also confirms that
the zero set [k−(y), k+(y)] of k 7→ h(y, k) is closed, that k− is lower
semicontinuous and k+ is upper semicontinuous.

(b) Observe k−(y) < k+(y) implies the open set X<(y, k+(y)) \
X≤(y, k−(y)) is non-empty, because the image of x ∈ X 7→ sy(x, y)
is connected. This open subset of X is disjoint from X<(y′, k+(y′)) \
X≤(y′, k−(y′)) whenever ν[(y, y′)] 6= 0, by the monotonicity assumed of
X≤(·, k±(·)). Since X can only contain countably many disjoint open
sets, we conclude k+(y) = k−(y) for y ∈ spt ν, apart perhaps from
countably many points.

Having established ν[{y | k+ > k−}] = 0, we shall continue the proof
by showing the solution

v(y) :=

∫ y

k+(y)dy.

of v′(y) = k+(y) has a s∗-subdifferential which is closed and contains S+

defined by

S± := {(x, y) ∈ X × Y | sy(x, y) = k±(y)}.

(A similar argument shows the solution to v′ = k− has a s∗-subdifferential
containing S−.) Note that the global bound sy ∈ L∞ implies v is Lips-
chitz, hence differentiable Lebesgue almost everywhere.

To begin, suppose (x′, y′) ∈ S+ and k+(y′) = k−(y′), so that v is
differentiable at y′ and v′(y′) = sy(x

′, y′). Since X≤(y′, v′(y′)) ⊆ X≤(y′+
δ, v′(y′ + δ)) for almost all δ > 0, we see sy(x

′, y) ≤ v′(y) for almost all
y > y′. Integrating over y ∈ [y′, y+] yields

v(y+)− s(x′, y+) ≥ v(y′)− s(x′, y′) (14)

12



for all y+ ≥ y′. On the other hand, since v′(y) is continuous at y′

and X(y, v′(y)) is a hypersurface in the open set X, we deduce x′ =
limi→∞ xi for some sequence satisfying sy(xi, y

′) > v′(y′). Then from
X≤(y − δ, v′(y − δ)) ⊂ X≤(y, v′(y)) we deduce sy(xi, y

′ − δ) > v′(y′ − δ)
for almost all δ > 0 hence sy(x

′, y′ − δ) ≥ v′(y′ − δ). Integrating over
y − δ ∈ [y−, y′] yields

s(x′, y′)− v(y′) ≥ s(x′, y−)− v(y−) (15)

for all y− ≤ y′. Together (14)–(15) show (x′, y′) ∈ ∂s∗v∗.
It remains to consider the countable collection of points y ∈ spt ν

where k+(y) > k−(y). We claim k+ is right continuous. Since the s-
subdifferential ∂s

∗
v∗ is closed, this will complete the proof that S+ ⊂

∂s
∗
v∗. Due to the semicontinuity already established, it is enough to

show
k+(y) ≤ L+ := lim inf

δ↓0
k+(y + δ).

For any sequence yi ≥ yi+1 decreasing to y with k+(yi) → L+,
the sets X≤(yi, k

+(yi)) decrease by assumption. The limit set X∞ :=⋂∞
i=1 X≤(yi, k

+(yi)) therefore contains X(y, k+(y)) ⊆ X∞. On the other
hand, from the definition and continuity of sy we check X∞ ⊆ X≤(y, L+).
Monotonicity of k 7→ X≤(y, k) yields k+(y) ≤ L+ as desired. The proof
that k− is left continuous is similar, and implies s-cyclical monotonicity
of S−.

Since k± are both constant on any interval I ⊂ R with ν[I] = 0, we
conclude they are continuous functions except perhaps at the countably
many points in spt ν where they disagree (k− being left continuous and
k+ right continuous at such points). We shall show γ := (id × F )#µ is
well-defined and maximizes (1).

The definitions of F and S+ were chosen to ensure Graph(F ) ⊂ S+.
There are two kinds of irregularities to consider. Any discontinuities in
k+ correspond to countably many gaps

X<(y, k+(y)) \X<(y, k−(y)) (16)

in the distribution µ of wives. Although F has not been defined on
these open gaps, they have µ measure zero. In addition, Y \ spt ν may
consist of at most countably many intervals (y

i
, ȳi). To each such interval

corresponds a relatively closed gap

X≤(ȳi, k
+(ȳi) \X<(y

i
, k−(y

i
)) (17)

of µ measure zero on which F is not generally well-defined; typically
this gap consists of a single Lipschitz submanifold, throughout which we
have attempted to simultaneously assign F every value in [y

i
, ȳi].

13



Apart from these two kinds of gaps (open and closed) — which have
µ measure zero and on which F may not be (well-)defined — the m− 1
dimensional Lipschitz submanifolds X(y, k+(y)) foliate the support of µ
in X. The leaves of this foliation correspond to distinct values y 6= y′

and are disjoint since ν([y, y′]) > 0 implies X(y, k+(y)) ⊂ X<(y′, k+(y′))
disjoint from X(y′, k+(y′)). This shows F is defined µ-a.e.; it is also
µ-measurable since F−1((−∞, y]) differs from a relatively closed sub-
set of X only by the countably many above-mentioned gaps, which are
themselves Borel and have vanishing µ measure. Since F was selected so
that F#µ := µ ◦ F−1 agrees with ν on the subalgebra of intervals (∞, y]
parameterized by y ∈ Y , we see γ := (id × F )#µ lies in Γ(µ, ν) and is
well-defined. Since Graph(F ) ⊂ S+ ⊂ ∂s

∗
v∗, we conclude γ vanishes

outside ∂s
∗
v∗. On the other hand, s∗-subdifferentials are known to be

s-cyclically monotone [43], whence optimality of γ follows from standard
results [51]. We later give a self-contained proof, as a byproduct of our
uniqueness argument below.

(c) Before addressing uniqueness, let us consider point (c). Each
point x ∈ X outside the µ-negligible gaps (16)–(17) belongs to a leaf
X(y, k+(y)) of the foliation corresponding to a unique y ∈ Y ; moreover
k+(y) = k−(y). Since X(y, k+(y)) = X≤(y, k+(y)) \ X<(y, k−(y)) for
such y we see F = F̄ holds µ-a.e. Let us now argue F̄ is continuous.

The fact that spt ν = [y, ȳ] is connected rules out all gaps (17) of the
second kind in X excepting two, corresponding to the intervals in Y to
the left of y and to the right of ȳ. Thus F̄ is well-defined throughout
X, taking constant values y and ȳ on each of these two gaps, and the

constant value F̄ (y) = y on each remaining open gap (16). From (13)
and the monotonicity assumed of y ∈ Y 7→ X≤(y, k±(y)) we see

F̄−1((−∞, y]) =


∅ if y < y,⋂

y′∈(y,ȳ)

X≤(y′, k+(y′)) if y = y,

X≤(y, k+(y)) if y ∈ (y, ȳ),
X if y ≥ ȳ,

and

F̄−1([y,∞)) =


X if y ≤ y,

X≥(y, k−(y)) if y ∈ (y, ȳ),
X \

⋃
y′∈(y,ȳ) X<(y′, k−(y′)) if y = ȳ,

∅ if y > ȳ,

are relatively closed, hence F̄ is continuous.
(d) is obvious from the monotonicity of X≤(y, k+(y)).
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Proof of uniqueness in Theorem 4(b). To prove unicity, we show
that the function v constructed above, along with

u(x) := sup
y∈Y

s(x, y)− v(y) (18)

solve the dual problem (5). (Since v is Lipschitz, we may equivalently
take the supremum defining u over Y 0 or Y .) From there we proceed to
argue along well-trodden lines. From (18) we see (6) holds on X × Y .
Moreover, the fact that Graph(F ) ⊂ ∂s

∗
v∗ shows for x ∈ DomF that

the supremum (18) is attained at y = F (x); thus u < ∞ on DomF .
This implies v has a global lower bound, which in turn implies a global
upper bound for u. On the other hand,

v(y) ≥ sup
x∈X

s(x, y)− u(x)

shows u is bounded below, hence belongs to L∞. Since y = F (x) yields
equality in the stability constraint (6), integrating s against γ = (id ×
F )#µ yields

MK∗ ≥
∫
sd(id× F )#µ=

∫
[u(x) + v(F (x))]dµ(x)

=

∫
udµ+

∫
vdν

≥MK∗,

where we have concluded v ∈ L1(ν) and hence (u, v) ∈ Lips from the
second equality. Since the opposite inequality MK∗ ≤MK∗ is immedi-
ate from (6) and γ ∈ Γ(µ, ν), we conclude that our functions (u, v) attain
the infimum (5). (We also obtain direct confirmation that MK∗ = MK∗
and (id× F )#µ attains the supremum (1).)

Now let γ̄ be any other optimizer for (1). To establish uniqueness,
we shall show γ̄ vanishes outside the graph of F , after which [1, Lemma
3.1] equates γ̄ with (id × F )#µ to conclude the proof. The set S :=
spt γ ∩ (X × Dom0Dv) carries the full mass of γ̄. Each (x′, y′) ∈ S
produces equality in (6), hence sy(x

′, y′) = v′(y′). Thus x′ ∈ X(y′, k(y′))
and F (x′) = y′, showing S ⊂ Graph(F ) as desired.

4.2 Universally nesting surpluses reduce dimension

Nestedness is generally a property of the three-tuple (s, µ, ν); that is, for
most non-degenerate surplus functions, the model may or may not be
nested depending on the measures under consideration. In some cases,
however, the surplus function is such that the model is nested for all
measures (µ, ν). We show this occurs precisely when the surplus takes
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pseudo-index form; for s ∈ C2 this means there exist C1 functions α and
I on X ⊂ Rm and σ on I(X)× Y ⊂ R2 such that

s (x, y) = α (x) + σ (I (x) , y) . (19)

In this case the different components of x = (x1, · · · , xm) are relevant
only in so far as the determine the value of the index function I(x), and
the dimension of the transport problem is effectively reduced from m+1
to 1 + 1, since it becomes equivalent to matching I#µ with ν optimally
for σ. For connected domains, we shall also see non-degeneracy implies
the effective surplus function σ is either super- or sub-modular.

Proposition 5 (Surpluses nesting universally are pseudo-index)
Assume X ⊆ Rn and Y = (a, b) ⊂ R are open and connected, and that
the surplus s ∈ C2(X × Y ) is non-degenerate, meaning Dxsy is nowhere
vanishing on X × Y . Then s takes pseudo-index form (19) if and only
if (s, µ, ν) is nested for every choice of absolutely continuous probability
measures µ on X and ν on Y .

Under the additional hypothesis that each level set X(y, k) is con-
nected, the ”if” assertion in the preceding proposition follows immedi-
ately from Theorem 3.2 in [41] (which, under the additional connected-
ness assumption, asserts that if the optimal map is continuous for all
marginals, with densities bounded above and below, then s must be of
index form) and Theorem 4: if (s, µ, ν) is nested for each (µ, ν), Theorem
4 implies that the optimal map is continuous whenever ν has connected
supported, contradicting the result in [41].

We offer a self-contained proof in an appendix. Aside from eliminat-
ing the connectedness assumption on the X(y, k), our proof has the ad-
ditional advantage of being elementary; the proof of Theorem 3.2 in [41]
relies on a sophisticated result of Ma, Trudinger and Wang [34], which
asserts that s-convexity of the target is a necessary requirement for op-
timal maps to be continuous for all marginals with densities bounded
above and below.

5 Criteria for nestedness

Theorem 4 illustrates the powerful implications of nestedness, when it is
present. In this section, we exploit the machinery of level set dynamics
to derive several alternative characterizations of nestedness which — for
sufficiently smooth data — may be easier to check in practice. The first
of these asserts that nestedness is essentially equivalent to X≤(y, k+(y))
expanding outward at each point on its boundary as y is increased, as-
suming its boundary hits ∂X transversally. To describe this outward
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expansion requires us to derive an analytic expression for the normal ve-
locity of X≤(y, k+(y)); this normal velocity also appears naturally in the
integrodifferential analog of the Monge-Ampère type equation adapted
to multi-to-one dimensional transport which is derived at (31) below. A
second characterization, also requiring transversality, asserts nestedness
is equivalent to the existence of a unique mapping F : X −→ Y such
that y = F (x) splits the population proportionately to x for each x ∈ X.

We begin with a preparatory lemma. Anticipating our later needs, we
allow for the possibility of matching between the line and a Riemannian
manifold M with metric tensor gij of Sobolev regularity (such as M =
∂X ⊂ Rm with ∂X ∈ C1 ∩W 2,1); until then the reader may imagine
(M, gij) represents Euclidean space. Hausdorff measure Hd of dimension
d ≤ m on M , functions of bounded variation, sets of finite perimeter and
their reduced boundaries are defined as in, e.g. [14] for M = Rn and [15]
for the general case.

Lemma 6 (Motion of sublevel sets) Let M be a complete m-dimensional
manifold with a Riemannian metric tensor gij ∈ (C ∩ W 1,1)(M). Let
X ⊂ M and Y ⊂ R be domains of finite perimeter. Fix s ∈ C0,1 non-
denegerate throughout X×Y , with sy ∈ C1(X×Y ) and each component
of (Dxsy, syy) in C(Y ; (C ∩W 1,1)(X)). Then

N := {(y, k) ∈ Y ×R | Hm−1
[
X(y, k) ∩ ∂∗X

]
> 0} (20)

is closed and N ∩{y}×R is countable for each y ∈ Y , where ∂∗X ⊂ ∂X
denotes the reduced boundary of X. Setting U := Y × R, the area
Hm−1[X(y, k)] varies continuously on U \N .

If f ∈ L∞(X × Y ) and fy := ∂f
∂y
∈ L∞, then

Φ(y, k) :=

∫
X≤(y,k)

f(x, y)dHm(x)

defines a Lipschitz function on U := Y ×R, with ‖Φ‖C0,1(U) controlled
by the volume and perimeter of X, ‖(f, fy, syy, |Dxsy|−1)‖L∞(X×Y ) and

sup
(y,k)∈U

Hm−1[X(y, k)] <∞. (21)

For a.e. (y, k) ∈ U ,

DΦ(y, k) := (
∂Φ

∂y
,
∂Φ

∂k
) (22)

=

∫
X(y,k)

f
(−syy, 1)

|Dxsy|
dHm−1 +

∫
X≤(y,k)

(
∂f

∂y
, 0)dHm,
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where ∓s(1±1)/2
yy /|Dxsy| are the outward normal velocities of X≤(y, k)

as either y or k is varied, the other being held fixed. If, in addition
f ∈ C(Y, (C ∩W 1,1)(X)) then Φ ∈ C1(U \N).

Proof. Use the approximate Heavyside step function

φε(t) :=


1 if t ≤ 0,
1− t/ε if t ∈ [0, ε],
0 if t ≥ ε,

to define continuous functions

hε(y, k) =

∫
∂∗X

φε(sy(x, y)− k)dHm−1(x)

which are monotone in both ε > 0 and k, and approximate

h+(y, k) = Hm−1
[
X≤(y, k) ∩ ∂∗X

]
pointwise from above. This shows upper semicontinuity of h+. By sym-
metry,

h−(y, k) = Hm−1
[
X<(y, k) ∩ ∂∗X

]
is lower semicontinuous. Since

(h+ − h−)(y, k) = Hm−1
[
X(y, k) ∩ ∂∗X

]
we see h+ ≥ h−, with equality holding outside of the closed set N . Since
X has finite perimeter and X≤(y, k) depends monotonically on k, for
each y there can only be countably many k values with (y, k) ∈ N .

To compute the instantaneous rate of displacement of x ∈ X(y, k0)
as a function of y near y0, with k0 held fixed, let x(y) = expx0 λ(y)n̂0 de-
note the intersection of X(y, k0) with the geodesic parallel to outer unit
normal n̂0 := Dxsy(x0, y0)/|Dxsy| at x0 ∈ X(y0, k0), meaning x(y) =
x0 + λ(y)n̂0 in the Euclidean case. Applying the implicit function theo-
rem to sy(x(y), y) = k0, we see a differentiable solution λ exists near y0

held fixed with

λ′(y0) =
−syy
|Dxsy|

(x0, y0).

This gives the outer normal velocity x′(y0) = λ′(y0)n̂0 of ∂X≤(y, k0) at
x0. The corresponding normal velocity as k is varied with y0 held fixed
is similar and even simpler to compute.

Now suppose f ∈ C(Y,C∩W 1,1(X)) temporarily, with fy ∈ L∞, and
define

Φε(y, k) :=

∫
X

f(x, y)φε(sy(x, y)− k)dHm(x).
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We claim the Φε are equi-Lipschitz approximations to Φ. The dominated
convergence theorem and co-area formula [14] [15] yield

DΦε(y, k) =

∫
X

(fy, 0)φε(sy−k)dHm+
1

ε

∫ ε

0

dt

∫
X(y,k+t)

f
(−syy, 1)

|Dxsy|
dHm−1.

(23)
Letting ∇X denote the divergence operator on X, while n̂X and n̂X= :=
Dxsy/|Dxsy| denote the outward unit normals to X and X≤(y, sy(x, y))
respectively, the generalized Gauss-Green formula [25, Proposition 5.8]
asserts∫
X(y,k)

V · n̂X=dHm−1 =

∫
X≤(y,k)

∇X ·V dHm−
∫
∂∗X∩X≤(y,k)

V · n̂XdHm−1

(24)
for any continuous Sobolev vector field V on X. We are interested in
applying this to vector fields which depend on an additional parameter
y ∈ Y , whose components in local coordinates lie in C(Y, (C∩W 1,1)(X)).
We claim this integral then depends continuously on (y, k) ∈ U \N , and
its magnitude is bounded throughout U by∣∣∣∣∫

X(y,k)

V · n̂X=dHm−1

∣∣∣∣ ≤ ‖V ‖W 1,1(X) + ‖V ‖L∞(X)Hm−1(∂∗X). (25)

The continuous dependence on (y, k) follows from the dominated conver-
gence theorem, and the fact that 1X≤(y′,k′) converges to 1X≤(y,k) Lebesgue
almost everywhere on X and Hm−1-a.e. on ∂∗X as (y′, k′)→ (y, k) 6∈ N ,
in view of (20). In particular, we use this argument to show the last
summand in∣∣∣∣∣
∫
X≤(y′,k′)

∇X · V (x, y′)dHm(x)−
∫
X≤(y,k)

∇X · V (x, y)dHm(x)

∣∣∣∣∣
≤
∫
X≤(y′,k′)

|∇X · (V (y′)− V (y))|dHm +

∫
X≤(y,k)∆X≤(y′,k′)

|∇X · V (y)|dHm

vanishes in the limit (y′, k′) → (y, k), where ∆ denotes the symmetric
difference of the domains of integration; the other summand vanishes by
the continuous dependence in L1(X) of ∇X · V on y′.

Choosing V = n̂X= in (24) demonstates the continuity ofHm−1[X(y, k)]

on U \ N . Alternately, choosing V = fs
(1±1)/2
yy Dxsy/|Dxsy|2 for fixed

y ∈ Y , we have just shown the inner integrals in (23) depend continu-
ously on small t as long as (y, k) 6∈ N , and are locally uniformly bounded
(25) with a constant depending only on Hm−1(∂∗X) and

sup
y∈Y

∥∥∥∥∥fs(1±1)/2
yy Dxsy
|Dxsy|2

∥∥∥∥∥
(C∩W 1,1)(X)

<∞. (26)
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Thus Φε converges locally uniformly on U to a Lipschitz limit Φ0, and
DΦε converges pointwise on U \N to

DΦ0(y, k) =

∫
X≤(y,k)

(
∂f

∂y
, 0)dHm +

∫
X(y,k)

f
(−syy, 1)

|Dxsy|
dHm−1. (27)

Since this surface intregral is controlled by the same constants, the pre-
ceding arguments show Φ0 ∈ C0,1(U)∩C1(U \N). Since N is Lebesgue
negligible, ‖Φ0‖C0,1(U) = ‖Φ0‖C1(U\N); (27) shows the latter to be con-
trolled by the listed constants.

On the other hand, the co-area formula [14] yields

|Φε(y, k)− Φ(y, k)| ≤
∫
X≤(y,k+ε)\X≤(y,k)

|f(x, y)|dHm(x)

=

∫ ε

0

dt

∫
X(y,k+t)

|f |
|Dxsy|

dHm−1(x)

≤ ε
∥∥∥∥ f

|Dxsy|

∥∥∥∥
∞

max
(y,k)∈U

Hm−1[X(y, k)]

showing Φ = Φ0 on U and establishing the lemma for f ∈ C0,1(X × Y ).
We handle the case f, fy ∈ L∞(X × Y ) by approximation: mollifica-

tion yields a sequence f δ ∈ C0,1(X×Y ) with (f δ, f δy ) uniformly bounded
and converging to (f, fy) pointwise a.e. as δ → 0. The dominated con-
vergence theorem asserts pointwise convergence of

Φδ(y, k) :=

∫
X≤(y,k)

f δ(x, y)dHm(x)

to Φ. On the other hand, the version of the lemma established above
shows the Φδ to be Lipschitz on U with a constant independent of δ > 0.
Thus they converge uniformly to a limit Φ sharing the same Lipschitz
constant. The lemma also establishes (22) on U \ N , with (Φδ, f δ) in
place of (Φ, f). We would like to use the dominated convergence theorem
to pass to the limit δ → 0 in (22) for a.e. (y, k). This works immediately
when f is continuous. Otherwise, let Z ⊂ X × Y denote the Lebesgue
negligible set where f δ fails to converge to f . Fubini’s theorem shows
Z(y) := {x ∈ X | (x, y) ∈ Z} has zero measure for a.e. y ∈ Y . Applied
to its indicator function, the co-area formula

0 =

∫
X

1Z(y)dHm =

∫
R

dk

∫
X(y,k)

1Z(y)

|Dxsy|
dHm−1

then yields Hm−1 negligibility of Z(y) ∩ X(y, k) for a.e. k. For such y
and k, the dominated convergence theorem permits passage to the δ → 0
limit in (22), to complete the proof.
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Our next goal is to establish Theorem 7, which describes how the
set of wives hypothetically paired with husband y ∈ Y ⊂ R move in
response to changes in his type.

Theorem 7 (Dependence of iso-husbands on husband type) (a)
Let X ⊂ Rm and Y ⊂ R be connected open sets of finite perimeter,
equipped with Borel probability measures dµ(x) = f(x)dx and dν(y) =
g(y)dy whose Lebesgue densities satisfy log f ∈ L∞(X) and log g ∈
L∞loc(Y ). Assume s ∈ C2 is non-degenerate throughout X × Y , with
all components of (Dxsy, syy) in C(Y ;C ∩ W 1,1(X)) Then the func-
tions k± of Theorem 4(a) coincide. Moreover, k := k± ∈ C0,1

loc (Y ) and
|k′(y)| ≤ ‖syy‖L∞(X) + g(y)‖Dxsy/f‖L∞(X)/Hm−1(X(y, k(y))) a.e.

(b) If, in addition log f ∈ (C ∩W 1,1)(X) and log g ∈ C0
loc(Y ) then k

is continuously differentiable outside the relatively closed set

Z := {y ∈ Y | (y, k(y)) ∈ N from (20)} (28)

and k′(y) = −hy
hk

(y, k(y)) is given by (30) on Y \ Z. As y ∈ Y \ Z
increases the outward normal velocity of X≤(y, k(y)) at x ∈ X(y, k(y))
is given by (k′−syy)/|Dxsy|. If log g ∈ C(Y ), then k′(y) diverges to +∞
at the endpoints of Y unless Hm−1[X(y, k(y))] remains bounded away
from zero in this limit.

Proof. Since the non-degeneracy of s extends to X × Y , Proposition 2
shows X(y, k) := X≤(y, k) \ X<(y, k) to be the intersection with X of
an m− 1 dimensional C1 submanifold orthogonal to Dxsy(x, y) 6= 0. As
in Theorem 4, k±(y) represent the maximal and minimal roots of the
continuous function

h(y, k) := µ[X≤(y, k)]− ν[(−∞, y)], (29)

which depends monotonically on k. The open setX<(y, k+(y))\X≤(y, k−(y))
carries none of the mass of µ, hence must be empty since log f is real-
valued. Thus k+ = k− is continuous on Y and Z ⊂ Y is relatively
closed.

Under the asserted hypotheses we claim h ∈ C0,1
loc (Y ×R) and con-

tinuously differentiable outside of the set N of zero measure from (20).
Indeed, h is locally Lipschitz on Y ×R according to Lemma 6, and its
partial derivatives are given a.e.

hk =
∂Φ

∂k
=

∫
X(y,k)

f(x)
dHm−1(x)

|Dxsy(x, y)|
≥ 0 and (30)

hy = −g +
∂Φ

∂y
=−g(y)−

∫
X(y,k)

f(x)syy(x, y)

|Dxsy(x, y)|
dHm−1(x),
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adopting the notation Φ from (22).
In case (b) these derivative are continous outside of the closed negli-

gible set N . Since h(y, k(y)) = 0, if hk 6= 0 the implicit function theorem
then yields k ∈ C1

loc(Y \ Z), with k′ = −hy/hk, and the stated bounds
follow. In case (a), the Clarke implicit function theorem yields the re-
quired bound on k ∈ C0,1

loc (Y ) [9], provided we can provide a positive
lower bound for hk(y, k) a.e. in a neighbourhood of the graph y = k(y)
over compact subsets of Y . Since N ⊂ Y × R has measure zero, such
a bound follows from (30) provided we obtain a positive lower bound
for Hm−1[X(y, k)]. But this comes from lower semicontinuity of the rel-
ative perimeter of X≤(y, k) in X [14], given that 1X≤(y′,k′) → 1X≤(y,k)

Lebesgue a.e. as (y′, k′) → (y, k), and the fact that the m − 1 dimen-
sional submanifold X(y, k(y)) is non-empty due to the connectedness of
X. If Hm−1[X(y, k(y)] tends to zero at either endpoint of Y , then hk
tends to zero but hy(y, k(y)) → −g(y) does not, showing k′ = −hy/hk
diverges.

On compact subsets of Y , the outer normal velocity of ∂X≤(y0, k(y0))
at x0 comes from applying Lemma 6 with s(x, y) −

∫ y
k in place of s;

(the ‖syy‖W 1,1 bound hypothesized in that lemma is not needed for this
particular claim).

Corollary 8 (Dynamic criterion for nestedness) Adopting the hy-
potheses and notation of Theorem 7(b): If the model is nested then
k′ − syy ≥ 0 for all y ∈ Y \ Z and x ∈ X(y, k(y)), with strict inequality
holding at some x for each y. Conversely, if Z = ∅ and strict inequality
holds for all y ∈ Y and x ∈ X(y, k(y)), then the model is nested.

Proof. Away from Z, continuous differentiability of k = k± and the
fact that the outward normal velocity of X≤(y, k(y)) at x ∈ X(y, k(y)) is

given by k′−syy
|Dxsy | are established in Theorem 7. Differentiating ν[(−∞, y)] =

µ[X≤(y, k(y))] gives

g(y) =
d

dy

∫
X≤(y,k(y))

f(x)dmx

=

∫
X(y,k(y))

k′(y)− syy(x, y)

|Dxsy|
f(x)dHm−1(x), (31)

at each y ∈ Y \Z, according to Lemma 6. If the model is nested, so that
y ∈ Y 7→ X≤(y, k(y)) is increasing, this velocity must be non-negative at
each boundary point. Positivity of g in the formula above shows k′− syy
must be positive at some boundary point.

Conversely, if this velocity is positive at each boundary point, it
means X≤(y, k(y)) expands outwardly with y at each boundary point x,
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hence increases strictly with y over the interval Y . This confirms the
model is nested.

Remark 9 (Boundary transversality of indifference sets) If y ∈
Z in (28), the indifference set of y must intersect ∂X in a set of positive
area. This can only happen if the normal Dxsy to this indifference set
coincides with the normal to ∂∗X almost everywhere on their intersec-
tion.

A sufficient condition for the set Z
⋂
Y to be empty in (28) is there-

fore that the closure of any potential indifference set in X of a husband
type y ∈ Y intersects ∂X transversally. For a Lipschitz domain X this
transversality implies the intersection is a Lipschitz submanifold of codi-
mension 1 in ∂X via the Clarke implicit function theorem [9].

Remark 10 (Monge-Ampère type integrodifferential equation)
Identifying k = v′ and X(y, k(y)) = F−1(y), equation (31) should be
compared to the Monge-Ampère type equation

g(y) = ±f(F−1(y)) det[D2v −D2
yys]/ det

[
D2
xys
]
x=F−1(y)

(32)

which arises in the n = m framework of Ma, Trudinger and Wang [34].
This comparison highlights the fact that positivity of the normal veloc-
ity [v′′ − syy]y=F (x) plays a role in the multi-to-one dimensional problem
analogous to strict ellipticity for (32). Indeed, Corollary 22 of the final
section exploits this positivity to establish a Lipschitz bound on F and al-
low us to initiate our bootstrap to higher regularity. In the same section,
(49) shows the Jacobian version of the balance condition (31) analogous
to (4) takes the form expected from the co-area formula, namely

g(y) =

∫
F−1(y)

f(x)

|DF (x)|
dHm−1(x).

Corollary 11 (Unique splitting criterion for nestedness) A model
(s, µ, ν) satisfying the hypotheses of Theorem 7(b) with Z

⋂
Y = ∅ is

nested if and only each x ∈ X corresponds to a unique y ∈ Y splitting
the population proportionately, i.e. which satisfies∫

X≤(y,sy(x,y))

dµ =

∫ y

−∞
dν. (33)

In this case, the optimal map from µ to ν is given by F (x) = y.

Proof. First assume the model is nested, and suppose both (x, y) and
(x′, y′) satisfy (33), with y 6= y′, so k(y) = sy(x, y) and k(y′) = sy(x

′, y′).
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Taking y < y′ without loss of generality, the hypothesis g > 0 of Theo-
rem 7 combines with the conclusion x ∈ X≤(y, k(y)) ⊂ X<(y′, k(y′)) of
Theorem 4 to imply sy(x, y

′) < k(y′) = sy(x
′, y′). Thus y 6= y′ implies

x 6= x′ as desired.
Conversely, suppose each x ∈ X corresponds to a single y splitting

the population proportionately. To prove the model is nested, let us first
check that the outward velocity (k′ − syy)/|Dxsy| ≥ 0 of X≤(y, k(y)) at
x ∈ ∂X≤(y, k(y)) given by Theorem 7 is non-negative for all y ∈ Y ;
the moving boundary is a C0,1 submanifold of X according to the non-
degeneracy of Proposition 2.

To derive a contradiction, suppose k′ − syy < 0 for some y0 ∈ Y and
x0 ∈ X(y0, k(y0)). Continuity shows this remains true for all nearby
y and x ∈ X(y, k(y)), thus the boundary of X≤(y, k(y)) moves contin-
uously inward near x0 as y increases through y0. Each point x′ in a
sufficiently small neighbourhood Nr := Br(x0) \X≤(y0, k(y0)) therefore
belongs to X(y′, k(y′)) for some y′ < y0. On the other hand,

lim
y↑ȳ

µ[X≤(y, k(y))] = lim
y↑ȳ

ν[(∞, y)] = 1

where ȳ := supY . Since µ(Nr) > 0 by hypothesis, we conclude Nr

intersects X≤(y, k(y)) for y > y0 sufficiently close to ȳ. Fix x′ from this
intersection and let y′′ denote the infimum of points y > y0 such that
x′ ∈ X≤(y, k(y)). Then x′ ∈ X(y′, k(y′)) ∩X(y′′, k(y′′)) for y′′ ∈ (y0, ȳ),
with both y′ < y0 and y′′ splitting the population proportionately at x′,
the desired contradiction.

This establishes y ∈ Y 7→ X≤(y, k(y)) is monotone non-decreasing.
It remains to confirm this monotonicity is strict. Unless X≤(y, k(y)) ⊂
X<(y′, k(y′)) for each pair of points y < y′ in Y , some x lies in the
boundary of both sets. But then both y and y′ split the population
proportionately at x. This contradiction implies the model is nested,
and Theorem 4 implies the stable matching is given by F (x) = y.

Remark 12 (Methodological limitations are sharp) This corollary
confirms that nestedness is essentially a sharp condition for our method
of solving the problem to work; in its absence the matching function F
given by the procedure above fails to be well-defined: when the level sets
X(y, k) and X(ȳ, k̄) selected to match with y 6= ȳ intersect at some x,
our construction would attempt to simultaneously assign both F (x) := y
and F (x) := ȳ.

6 Examples

In the next sections, we address the higher regularity of optimal maps
and potentials in nested problems. Before doing so, we discuss several
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related examples demonstrating the phenomena we subsequently ana-
lyze. The first is nested, the second is not and the third explores the
transition. All involve maximizing the bilinear surplus s(x, y) = x · y
between two probability measures on Rm, which is equivalent to mini-
mizing the quadratic cost c(x, y) = 1

2
|x − y|2. In the first example, the

target measure will be supported on a segment; in the second and third,
it will be supported on a circular arc. These examples admit unique
solutions given explicitly by optimal maps, but demonstrate that such
maps and the corresponding potentials u and v will not necessarily be
smooth at the boundary. Although these examples are solved using clas-
sical methods and symmetry, they guide our intuition for what to expect
from problems which do not admit explicit solution.

Besides arising frequently in different applications [12] [36] [44] [17]
[24], the bilinear surplus / quadratic cost is the easiest objective to
analyze when mn > 1. For these reasons it has played a seminal role
in theoretical developments [28] [4] [5] [6]. With this surplus function,
target measures supported on lower dimensional sets were considered
implicitly in [10] [45] [35] and explicitly in [21]. The basic result dating
to these early works is that the payoff functions u, v which optimize (5)
may be taken to be convex on Rm, and that γ optimizes (1) if and only
if it is supported in the subdifferential

∂u := {(x, y) ∈ Rm ×Rm | u(z) ≥ u(x) + y · (z − x) ∀z ∈ Rm}

of some convex u : Rm −→ R ∪ {+∞}. In particular, the optimal γ is
unique provided µ vanishes on Lipschitz hypersurfaces [35], or at least
on those hypersurfaces parameterized by convex differences [20] [22].

Example 13 (From convex volumes to segments) Fix s(x, y) = x·
y on Rm × Rm, and consider transporting volume from a convex body
X ⊂ Rm to a uniform meassure on a subsegment of the x1-axis. In
this case the convex payoff function u(x1, . . . , xm) = U(x1) turns out to
depend on x1 only, and the iso-husband sets consist of (hyper-)planes
of constant x1; convexity ensures that — apart from the two supporting
hyperplanes — these hit ∂∗X transversally, so Z is empty. Since these
hyperplanes do not intersect each other, Corollary 11 shows this problem
is nested. The optimal map y = F (x) = (U ′(x1), 0, . . . , 0) depends mono-
tonically on x1, and can be found by solving a problem in single variable
calculus, analogous to (3). Taking X to be a ball leads to elliptic integrals
not explicitly soluble, but transporting the solid paraboloid

X := {x ∈ Rm | 1

2

m∑
i=2

x2
i < x1 < const}
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to a segment Y = (0, Lê1) of the appropriate length yields the opti-

mal map F (x1, . . . , xm) = (x
(m+1)/2
1 , 0, . . . , 0) and potentials u(x) =

2
m+3

x
1+(m+1)/2
1 and v(y) = m+1

m+3
y1+2/(m+1) explicitly. Their behaviour

near the origin shows we cannot generally expect v to be better than

C1, 2
m+1 ; similarly, we expect F ∈ C

m
2
, 1
2 and u ∈ C

m
2

+1, 1
2 to be sharp

Hölder exponents near the origin, at least for m even and sufficiently
convex domains X. This lack of C2 smoothness of v at the boundary of
Y was predicted by Theorem 7; like the lack of higher order smoothness of
F and u at the boundary of X, it directly reflect the unequal dimensions
of the source and target.

In fact, in the absence of strong convexity of X, we cannot even
expect this much smoothness up to the boundary. If we consider instead

X := {x ∈ Rm | 1

2

( m∑
i=2

x2
i

)k
< x1 < const}

for k ≥ 1, the optimal map takes the form F (x) = Cx
1+m−1

2k
1 . By choosing

k large enough, this shows that we cannot generally expect F ∈ C1,α up
to the boundary for any α > 0, unless we assume X has some uniform
convexity.

Note that the surplus in the preceding example is of pseudo-index form,
with index function I(x1, ..., xm) = x1. Generally speaking, the bilinear
surplus s(x, y) = x · y on an open set X ⊆ Rm and a smooth curve
Y ⊂ Rm is of index form if and only if Y is contained in a line. The
examples below treat the case where Y is a circular arc and therefore s is
not of pseudo-index form. Special cases of these examples were studied
in [41], before the notion of nestedness had been formulated.

Example 14 (From punctured ball to punctured circle) Let s(x, y) =
x · y on Rm × Rm and consider transporting volume µ = 1

Hm[X]
Hm

from the punctured ball X := {x ∈ Rm | 0 < |x| < 1} to arclength
ν = 1

H1[Y ]
H1 on the punctured circle Y = {y ∈ Rm | y2

1 + y2
2 = 1, y3 =

· · · = ym = 0 < y1 + 1}. Since the map F (x) = (x1,x2)

(x21+x22)1/2
pushes µ for-

ward to ν, and its graph lies in the subdifferential of the convex function
u(x) =

√
x2

1 + x2
2, we see F is optimal. Moreover u and its Legendre

transform

v(y) =

{
0 if |x| ≤ 1 and x3 = · · · = xm = 0,

+∞ else,

minimize the dual problem (5). Although v is smooth on Y , note F and
Du fail to be smooth on the codimension 2 submanifold x1 = 0 = x2,
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where they are discontinuous. The iso-husband sets F−1(y) consist of
connected hypersurfaces in X bounded by this singular set; they intersect
the boundary of X transversally. On the other hand, parameterizing
the punctured circle Y using −π < θ < π, the surplus function takes
the form s(x, θ) = x1 cos θ + x2 sin θ, and the payoff v(θ) = 0. The
potential indifference sets X(θ, k) := {x ∈ X | x1 sin θ − x2 cos θ = k}
are connected. The iso-husband set F−1(θ) occupies precisely half of
X(θ, v′(θ)) which shows the model is not nested.

This example illustrates a phenomenon which our subsequent analysis
shows to be intimately connected with nestedness: smoothness often holds
for the payoff on the lower dimensional space Y even when it fails for
the optimal map and payoff on the higher dimensional space X.

For the ball X, Examples 13 and 14 represent limits of a continuum
of examples consisting of circular arcs Y of angle |θ| < θ0 and radius
1/θ0. Having less symmetry, they are not explicitly solvable, but it is
natural to expect they remain nested for θ0 less than some critical value
θc ∈ (0, π), and become un-nested otherwise. For θ0 > θc it is not
at all obvious how the singularities in F may be located (though they
are characterized implicitly through duality). Note that the analysis
of Example 14 extends equally well to the case where X is a ball or
spherical shell {0 < r < |x| < R} instead of a punctured ball; in the
latter case F will be smooth.

One last example illustrates the transition from nestedness to non-
nestedness. In this example we also see the continuity of the map F :
X −→ Y shown in Theorem 4 need not extend to the closed set X.

Example 15 (From pie slice to circular arc) Fix 0 < θ0 < π and
r0 > 0. Let µ be uniform on the pie-shaped region X ⊂ R2 described
by r < r0 and |θ| < θ0 in polar coordinates. Let ν be uniform over the
circular arc r = 1 and |θ| < θ0. The optimal map F and potentials u
and v are the same as in Example (14), by the same arguments (or by
restriction). However this model is nested if and only if θ0 ≤ π/2; the if
implication is shown using Corollary 11, and the only if by the logic of
Example 14.

7 Regularity of husband’s payoff

Regularity of the map F and payoff functions u and v is a notoriously
delicate question which has recieved considerable attention in case m =
n > 1, reviewed in [13] and [37]. Priori to the work of Ma, Trudinger
and Wang [34], Villani [50] had described it as “Without any doubt, the
main open problem in the field”. When m > n, very little is known [41].
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For m > n = 1, Theorem 4 shows nestedness implies continuity of F on
the domain interior X = X0; Theorem 7 combines with Remark 9 to
give conditions guaranteeing v ∈ C2

loc(Y
0); Example 13 shows we cannot

expect k = dv/dy to have a Hölder exponent larger than 2
m+1

at the
endpoints of Y .

The present section is devoted to the following theorem, which shows
that higher regularity of the husband’s payoff v can be inferred from that
of (s, µ, ν) and ∂X under the same boundedness and transversality con-
ditions required by Theorem 7 and Remark 9. The strategy of the proof
is to iteratively combine our hypotheses with geometric measure theo-
retic level-set techniques to deduce sufficient smoothness of the function
h(y, k) from (29) whose level sets implicitly define k = dv/dy. The re-
sult then follows from the implicit function theorem as in Theorem 7.
We exercise care to localize the hypotheses in (x, y) where possible. We
discuss smoothness of the map F and wives’ payoffs u in a subsequent
section.

Theorem 16 (Regularity of the husband’s payoff) Fix an integer
r ≥ 1. Under the hypotheses of Theorems 4(b) and 7(b), suppose there
is an interval Y ′ = (y0, y1) ⊂ Y such that X ′ ∩ ∂X ∈ C1 intersects
X(y, k(y)) transversally for all y ∈ Y ′, where X ′ =

⋃
y∈Y ′ X(y, k(y)).

Then ‖k‖Cr,1(Y ′) is controlled by the following quantities, all assumed
positive and finite: ‖ log f‖Cr−1,1(X′), ‖ log g‖Cr−1,1(Y ′), ‖sy‖Cr,1(X′×Y ′),
‖n̂X‖(Cr−2,1∩W 1,1)(X′∩∂X), Hm−1[∂∗X],

inf
y∈Y ′
Hm−1 [X(y, k(y))] (proximity to ends of Y ), (34)

inf
x∈X′,y∈Y ′

|Dxsy(x, y)| (non-degeneracy), (35)

inf
x∈X′∩∂X,y∈Y ′

1− (n̂X · n̂X=)2 (transversality) (36)

where n̂X=(x, y) = Dxsy/|Dxsy|, and Hm−2
[
X(y0, k(y0)) ∩ ∂X

]
.

To establish this theorem, we study the motion of the interiorX≤(y, k)
and boundary X≤(y, k) ∩ ∂X level sets of sy with respect to changes in
y and in k. The normal velocities for this motion are given by

V ±(x, y) := ∓(syy)
(1±1)/2

|Dxsy|
n̂X= , n̂X=(x, y) :=

Dxsy
|Dxsy|

, (37)

and

V ±∂X(x, y) :=
V ± · n̂X=√

1− (n̂X · n̂X=)2
n̂∂, n̂∂(x, y) :=

n̂X= − (n̂X= · n̂X)n̂X√
1− (n̂X · n̂X=)2

,

(38)
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respectively. We shall also employ the divergence operators ∇X on X
and ∇∂X on ∂X.

We remark the outward normal velocity of X≤∩∂X is given by V ±∂X ,
since n̂∂ is the outward unit normal to X≤∩∂X in ∂X, and V ± coincides
with the projection of V ±∂X onto n̂X= . As it will play an important role in
what follows, let us also remark on the smoothness of the domain X and
its boundary divergence operator. Any ∂X ∈ C1 can be parameterized
locally as a graph of a function w ∈ C1(Rm−1); in this parameterization
its metric tensor takes the form g = I + Dw ⊗ Dw, and ∇∂X · W =
∂iW

i + Γii`W
`, where the Christoffel symbol Γii` involves first derivatives

of g. Thus we need n̂X ∈ W 1,1(∂X) to define ∇∂X , and if ∂X ∈ Cr−1,1

then ∇∂X ·W ∈ Cr−3,1 provided the vector field W is smooth enough
(say W ∈ Cr−2,1), with C−1,1 = L∞ conventionally.

Our first lemma shows the size of the indifference sets X(y, k(y)) and
their boundaries are controlled uniformly on (y0, y1) by the constants
listed in the theorem.

Lemma 17 (Size of indifference sets) Under the hypotheses of The-
orem 7(a), the area A(y) = Hm−1[X(y, k(y))] of the indifference set is
controlled by

A(y) ≤
‖sy‖W 1,1(X)

inf
x∈X
|Dxsy(x, y)|

+Hm−1[∂∗X]. (39)

Under the hypotheses of Theorem 16, it satisfies

sup
y∈Y ′

A(y) ≤
‖Dxsy‖C0,1(X′×Y ′)

inf
(x,y)∈X′×Y ′

|Dxsy|
Hm(X ′) +Hm−1(X ′ ∩ ∂X) + inf

y∈Y ′
A(y)

(40)

while the area of its boundary B(y) := Hm−2
[
X(y, k(y)) ∩ ∂X

]
satisfies

sup
y∈Y ′

B(y) ≤ B(y0) + ‖∇∂X · n̂∂‖L1(X′∩∂X), (41)

hence both are controlled by the constants named in that theorem.

Proof. Let Xy
≤ := X≤(y, k(y)) and Xy

= := X(y, k(y)). We claim bounds
on

A(y) :=

∫
Xy

=

(n̂X=(x, y) · n̂X=(x, y))dHm−1(x) and (42)

B(y) :=

∫
Xy

=∩∂X
(n̂∂(x, y) · n̂∂(x, y))dHm−2(x). (43)
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Note both depend continuously on y ∈ Y by Lemma 6 and Theorem 7.
The generalized Gauss-Green theorem (24) yields

A(y) =

∫
Xy
≤

(∇X · n̂X=)dHm −
∫
Xy
≤∩∂∗X

(n̂X= · n̂X)dHm−1

from which (39) follows immediately. Now suppose the infimum (34) is
attained at z ∈ Y ′. If z ≤ y the Gauss-Green theorem yields

A(y) =

∫
Xy
≤\X

z
≤

(∇X · n̂X=)dHm −
∫

[Xy
≤\X

z
≤]∩∂X

(n̂X= · n̂X)dHm−1

+

∫
Xz

=

n̂X=(x, y) · n̂X=(x, z)dHm−1(x),

where the nestedness Xz
≤ ⊂ Xy

≤ assumed in Theorem 16 has been used.
If z > y a similar formula holds, with the roles of y and z interchanged.
In either case (40) follows.

Similarly, the Riemannian version (24) of generalized Gauss-Green
theorem asserts

B(y) =

∫
[Xy
≤\X

y0
≤ ]∩∂X

(∇∂X ·n̂∂)dHm−1+

∫
X
y0
= ∩∂X

n̂∂(x, y)·n̂∂(x, y0)dHm−2,

which implies (41). It is easy to see the quantities appearing in (40)–(41)
are controlled by those listed in Theorem 16.

Remark 18 If n̂X ∈ C0,1(∂X), a similar argument using a Kirszbraun
extension to ∂X can be used to bound B(y) independently of B(y0).

We next adapt Lemma 6 to the differentiation of boundary fluxes.

Lemma 19 (Derivative of a flux through a moving boundary)
Suppose X ′ ⊂ X ⊂ Rm, Y ′ ⊂ Y ⊂ R, (s, f, g) and k satisfy the hypothe-
ses of Theorem 16 for some r ≥ 1. Choose a neighbourhood U ⊂ Y ×R
such that X(y, k) ⊂ X ′ for all (y, k) ∈ U . If a : X ′ × Y ′ −→ Rm is
Lipschitz, then

Φ(y, k) :=

∫
X(y,k)

a(x, y) · n̂X=(x, y)dHm−1(x) (44)

is Lipschitz on U , with partial derivatives (Φ+,Φ−) := (∂Φ
∂y
, ∂Φ
∂k

) given
a.e. by

Φ±(y, k) =

∫
X(y,k)

[(∇X · a)V ± +
1± 1

2

∂a

∂y
] · n̂X=dHm−1 (45)

−
∫
X(x,y)∩∂X

(a · n̂X)(V ±∂X · n̂∂)dH
m−2.
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Similarly, if r ≥ 2 and b : (X ′ ∩ ∂X) × Y ′ −→ T∂X denotes a jointly
Lipschitz family of sections of the tangent bundle of X ′ ∩ ∂X, then

Ψ(y, k) :=

∫
X(y,k)∩∂X

b(x, y) · n̂∂(x, y)dHm−2(x) (46)

is Lipschitz on U , with partial derivatives (Ψ+,Ψ−) := (∂Ψ
∂y
, ∂Ψ
∂k

) given
a.e. by

Ψ±(y, k) =

∫
X(y,k)∩∂X

[(∇∂X · b)V ±∂X +
1± 1

2

∂b

∂y
] · n̂∂ dHm−2. (47)

Proof. To see that the proof of (47) is completely analogous to the
proof of (45), let us argue the latter for Rm replaced by a complete
Riemannian manifold M with gij ∈ C ∩W 1,1, such as M = ∂X. Note
∂X ∈ C1,1 if r ≥ 2; its lack of boundary accounts for the comparative
simplicity of (47) relative to (45).

Choose a C1,1 smooth family aε : X ′ × Y ′ −→ TX ′ of sections of
the tangent bundle converging to a in Lipschitz norm, so that both
∇X · aε and ∂

∂y
(∇X · aε) ∈ L∞. Define Φε by (44) with a replaced by aε.

Let Y ′ = (y0, y1), so that X ∩ ∂X ′ = X(y0, k(y0)) ∪ X(y1, k(y1)). The
generalized Gauss-Green theorem (24) theorem yields

Φε(y, k) =

∫
X≤(y,k)\X≤(y0,k(y0))

∇X · aεdHm

−
∫

[X≤(y,k)\X≤(y0,k(y0))]∩∂X
aε · n̂XdHm−1

+

∫
X(y0,k(y0))

aε(x, y) · n̂X=(x, y0)dHm−1(x)

Lemma 6 then asserts Φε is Lipschitz on U , with

Φ+
ε =

∫
X(y,k)

(∇X · aε)V + · n̂X=dHm−1 +

∫
X≤(y,k)\X≤(y0,k(y0))

∇X ·
∂aε
∂y

dHm

−
∫
X(x,y)∩∂X

(aε · n̂X)(V +
∂X · n̂∂)dH

m−2 −
∫

[X≤(y,k)\X≤(y0,k(y0))]∩∂X
n̂X ·

∂aε
∂y

dHm

+

∫
X(y0,k(y0))

∂aε
∂y

(x, y) · n̂X=(x, y0)dHm−1(x)

=

∫
X(y,k)

[(∇X · aε)V + +
∂aε
∂y

] · n̂X=dHm−1 −
∫
X(x,y)∩∂X

(aε · n̂X)(V +
∂X · n̂∂)dH

m−2

a.e.; the generalized Gauss-Green identity has again been used. A similar
formula holds for Φ−ε with (V +, V +

∂X ,
∂
∂y

) replaced by (V −, V −∂X ,
∂
∂k

). In
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particular, ‖Φε‖C0,1(Y×R) can be bounded independently of ε by ‖w‖C0,1 ,
‖(V ±, V ±∂X)‖C0 , (21) and (41). Since ‖aε − a‖C0,1(X×Y ;TX) → 0 we can
pass to the ε→ 0 limit to bound ‖Φ‖C0,1(Y×R) using the same quantities,
and obtain (45) from the dominated convergence theorem.

When r ≥ 2, approximating b by bε analogously, the same reasoning
yields Ψε Lipschitz on U with

Ψ±ε (y, k) =

∫
X(y,k)∩∂X

[(∇∂X · bε)V ±∂X +
1± 1

2

∂bε
∂y

] · n̂∂ dHm−2

a.e. Since ‖bε−b‖C0,1([X′∩∂X]×Y ′;T∂X) → 0, we see ‖Ψε‖C0,1(U) is controlled
as before by ‖z‖C0,1 , ‖V ±∂X‖C0 and (41), permitting passage to the ε→ 0
limit.

Corollary 20 (Iterated differentiation of fluxes) Under the hypothe-
ses and notation of Lemma 19, if r ≥ 2 or b = 0 then

(Φ + Ψ)± =

∫
X(y,k)

a± · n̂X=dHm−1 +

∫
X(y,k)∩∂X

b± · n̂∂dHm−2

a.e. on U , where
(
a±

b±

)
= A±

(
a
b

)
are given by the first-order differential

operators

A±

(
a
b

)
:=

(
(∇X · a)V ± + 1±1

2
∂a
∂y

(∇∂X · b− n̂X · a)V ±∂X + 1±1
2

db
dy

)
.

For each integer 0 ≤ i ≤ r − 2, the operator A± : Bi −→ Bi−1 gives a
bounded linear transformation from the Banach space

Bi := Ci,1(X ′ × Y ′; Rm)⊕ Ci,1([X ′ ∩ ∂X]× Y ′;T∂X)

of Ci,1 families of sections of the tangent bundle to Bi−1; its norm

‖A±‖Bi→Bi−1
≤ Cm,i(1+‖V ±‖Ci−1,1(X′×Y ′)+(1+‖n̂X‖Ci−1,1(X′∩∂X))‖V ±∂X)‖Ci−1,1([X′∩∂X]×Y ′))

is controlled by ‖sy‖Ci,1(X×Y ′), ‖n̂X‖Ci−1,1(∂X), (35) and (36). Similarly,

‖A±‖Cr−1,1(X×Y ′)⊕{0}→Br−2
≤ Cm,r−1(1+‖V ±‖Cr−2,1(X×Y ′)+‖V ±∂X⊗n̂X‖Cr−2,1(∂X×Y ′))

is controlled by ‖sy‖Cr−1,1(X×Y ′), ‖n̂X‖Cr−2,1(∂X) and (35).

Proof. The corollary follows directly from Lemma 19. The norms of
the first order differential operators A± are elementary to estimate.

Finally, we are ready to iterate derivatives using the preceding lemma
and its corollary to deduce Theorem 16 from Theorem 7.
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Proof of theorem. Theorem 7 asserts h(y, k) := µ[X≤(y, k)] −
ν[(−∞, y)] is continuously differentiable on the set U of Lemma 19.
Apart from the additive term g(y), its partial derivatives (h+, h−) :=
(g + ∂h

∂y
, ∂h
∂k

) are given in (30) as flux integrals

h±(y, k) =

∫
X(y,k)

fV ± · n̂X=dHm−1.

over the indifference set X(y, k). Taking a = fV ± ∈ Cr−1,1(X ′×Y ′; Rm)
and b = 0, Corollary 20 allows us to compute and bound r derivatives
of h± on U iteratively.

Taking 0 ≤ i ≤ j ≤ r, in the notation of that corollary,

∂jh±
∂kj−i∂yi

=

∫
X(y,k)

aji · n̂X=dHm−1 +

∫
X(y,k)∩∂X

bji · n̂∂ dHm−2 (48)

where
(
aji
bji

)
:= Aj−i− Ai+

(
fV ±

0

)
∈ Br−j−1. Furthermore, ‖

(
aji
bji

)
‖Cr−1−j,1

is controlled by quantities named in the theorem: ‖f‖Cr−1,1(X′), ‖sy‖Cr,1(X′×Y ′),

‖n̂X‖Cr−2,1(X′∩∂X), (34)–(36), Hm−1[∂∗X] and Hm−2[X(y0, k(y0) ∩ ∂X],
in view of Lemma 17. Since all but the final derivatives provided by the
Corollary are continuous we may order them as convenient, and discover
‖h‖Cr,1(U) is controlled by the listed quantities.

Now k solves h(y, k(y)) = 0, so the implicit function theorem result
provided by Theorem 7 shows k inherits the same smoothness as h.
Using (30) to bound hk(y, k(y)) > 0 away from zero by the product
of ‖Dxsy/f‖L∞ with (34), we deduce ‖k‖Cr,1(Y ′) is controlled by the
quantities named in the theorem.

8 Regularity of optimal maps and potentials

Having found conditions guaranteeing smoothness of the husband’s pay-
off v(y) in the preceding section, we now turn to the wife’s payoff u(x)
and the optimal correspondence F : X −→ Y between wives and hus-
bands.

Our main conclusions are as follows: Lipschitz continuity of F is
equivalent to a strong form of nestedness, which requires a lower bound
on the local speed of the motion of F−1(y) with respect to changes in
y ∈ Y . On regions F−1([a, b]) where this holds, higher regularity of F
and u (up to the boundary) are inherited from interior regularity of v
via the first order conditions

(Du(x), Dv(F (x))) = (Dxs(x, F (x)), Dys(x, F (x))

from (7).
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We begin with a logically independent proposition, which will then
be combined with results of the preceding section to harvest the desired
results.

Proposition 21 (Optimal maps have locally bounded variation)
The hypotheses of Theorem 4(c) and 7(a) imply u ∈ C1(X), F ∈
(BVloc ∩ C)(X), Dxsy(·, F (·)) ∈ (BVloc ∩ C)(X), F ∈ DomDk on a
set of |DF | full measure, and

(k′(F (x))− syy(x, F (x)))DF (x) = Dxsy(x, F (x)). (49)

Proof. Since k+ = k− and log f and log g are bounded on compact
subsets of X and Y , we conclude F is defined and coincides with the
continuous function F̄ throughout X from Theorem 4(c).

It is well-known that the dual problem (5) admits minimizers (u, v)
which inherit Lipschitz and semiconvexity bounds from s ∈ C2(X × Y )
[50]. Then u ∈ C0,1(X) is differentiable Lesbesgue a.e. on X, and

Du(x) = Dxs(x, F (x)) (50)

for each x ∈ DomDu according to (7). The right hand side is continuous
and bounded, whence u ∈ C1(X).

Since u is also semiconvex, its directional derivatives lie in BV (X).
We next use (50) to deduce F ∈ BVloc(X), which means its directional
weak derivatives are signed Radon measures on X. Fix x′ ∈ X and set
y′ = F (x′) ∈ Y . Since Dxsy(x

′, y′) 6= 0, at least one of its components

— say ∂2s
∂x1∂y

(x, y) — is non-vanishing in a neighbourhood of (x′, y′).

The inverse function theorem guarantees the map (x, y) 7→ (x, ∂s
∂x1

)
has a continuously differentiable inverse defined on a neighbourhood of
(x′, ∂s

∂x1
(x′, y′)). From (50) and the continuity of F and Du we therefore

deduce

F (x) =

[
∂s

∂x1

(x, ·)
]−1(

∂u

∂x1

(x)

)
expresses F as the composition of a C1 map and a BV map near x′.
This shows F ∈ BVloc(X) [2].

On the other hand, k = dv
dy
∈ C0,1

loc (Y ) is locally Lipschitz according

to Theorem 7(a). According to [2], F ∈ DomDk on a set of |DF | full
measure, and differentiating k(F (x)) = sy(x, F (x)) yields (49) in the
sense of measures; DF has no jump part since F is continuous.

Corollary 22 (Maps are C1 where level set speed is non-zero) The
hypotheses of Proposition 21 imply ‖F‖C0,1(X′) ≤ `−1‖Dxsy‖C(X′×F (X′)) <
+∞ for any open set X ′ ⊂ X having a speed limit

` := inf
x∈X′

k′(F (x))− syy(x, F (x)) > 0. (51)

34



They also imply F is continuously differentiable on X \ F−1(Z) at pre-
cisely those points x where k′(F (x)) > syy(x, F (x)).

Proof. The right hand side of (49) belongs to C(X), so the left hand
side is also continuous and bounded. Thus we deduce `‖Df‖L∞(X′) ≤
‖Dxsy‖L∞(X′×F (X′)) ≤ ‖s‖C2(X×Y ) < +∞ as desired.

Since k′(F (x)) − syy(x, F (x)) depends continuously on x ∈ X \
F−1(Z), (49) implies the same is true of DF (x) provided k′(F (x)) >
syy(x, F (x)). Conversely, non-degeneracy of Dxsy prevents DF from
being locally bounded where k′(F (x))− syy(x, F (x)) vanishes.

We now proceeed to the main result of this section, which uses con-
dition (51) to bootstrap higher regularity for F and u from that already
established for v

Corollary 23 (Regularity of optimal maps and potentials) Suppose
X ′ ⊂ X ⊂ Rm, Y ′ ⊂ Y ⊂ R, (s, f, g) and k satisfy the hypotheses of
Theorem 16 for some r ≥ 1. If the speed limit condition ` > 0 from
(51) holds, then the restriction of the optimal map F : X → Y to X ′

lies in Cr,1(X ′) and ‖F‖Cr,1(X′) is controlled by `, ‖sy‖Cr,1(X′×Y ′) and
‖k‖Cr,1(Y ′). Furthermore, if s ∈ Cr+1,1(X ′ × Y ′) then there exist mini-
mizers (u, v) of (5) whose restrictions lie in Cr+1,1(X ′)×Cr+1,1(Y ′) with
norms controlled by the same constants plus ‖s‖Cr+1,1(X′×Y ′).

Proof. Since k = dv/dy, the regularity asserted for v follows directly
from Theorem 16. That asserted for F then follows from the implcit
function theorem after recalling that k(F (x)) = sy(x, F (x)); this in turn
implies that asserted for u through (50).

Appendices

Appendix A Self contained proof that nesting for
all marginals reduces dimension

We now offer a self contained proof of Proposition 5. Our proof requires
an additional definition and preliminary lemma. We say that the level
sets of x 7→ ∂s

∂y
(x, y) are independent of y if for any y0, y1 ∈ Y , S ⊆ X

is a level set of x 7→ ∂s
∂y

(x, y0) if and only if it is a level set of x 7→
∂s
∂y

(x, y1). In other words, for each k0 ∈ R there exists k1 ∈ R such

that X(y0, k0) = X(y1, k1), and conversely for each k1 there exists k0

satisfying the same conclusion.
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Lemma 24 Under the assumptions of Proposition 5, the surplus s takes
pseudo-index form if and only if the level sets of x 7→ ∂s

∂y
(x, y) are

independent of y. If s has pseudo-index form then the mixed partials
∂2σ
∂I∂y

= ∂2σ
∂y∂I

exist and are continuous throughout I(X)× Y .

Proof. If s(x, y) = σ(I(x), y) + α(x) is of pseudo-index form, we have

∂s

∂y
(x, y) =

∂σ

∂y
(I(x), y). (52)

Therefore, for every y, each level set of I(x) is contained in a level set of
x 7→ ∂s

∂y
(x, y). If, in addition, we show that I 7→ ∂σ

∂y
(I, y) is injective, then

the opposite inclusion will hold, and so the level sets of x 7→ ∂s
∂y

(x, y) will

be exactly the level sets of I(x), which are clearly independent of y.
If σ ∈ C2, then

Dx
∂s

∂y
(x, y) =

∂2σ

∂I∂y
(I(x), y)DI(x), (53)

the non-degeneracy condition implies that ∂2σ
∂I∂y

is nowhere vanishing on

I(X) × (a, b). As the continuous image of a connected set, I(X) is
connected, and hence an interval; we must therefore have either ∂2σ

∂I∂y
< 0

everywhere or ∂2σ
∂I∂y

> 0 everywhere (i.e., the Spence-Mirrlees sub- or

super-modularity condition holds). Therefore,

I 7→ ∂σ

∂y
(I, y)

is injective, and so we conclude that the level sets of x 7→ ∂s
∂y

(x, y) are
independent of y .

If σ ∈ C1 \ C2, we shall use the non-degeneracy of s ∈ C2 and
identity (19) to argue that the mixed partials exist and are continuous,
in which case the analysis of the preceding paragraph applies. For fixed
x, non-degeneracy implies

Dxs(x, y) =
∂σ

∂I
(I(x), y)DI(x) (54)

cannot vanish in any subinterval of (a, b), whence DI(x) 6= 0. Using
the inverse function theorem (e.g. along an integral curve of the vector
field DI), we deduce differentiability of σy(I, y) with respect to I, and
continuous dependence of the resultant derivative on both (I, y) from
(52) noting s ∈ C2, thereby justifying (53) and the resulting conclusions.
On the other hand, we can also differentiate (54) with respect to y to
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obtain the other mixed partial, and compare the result to (53) to deduce
the equality of mixed partials.

Conversely, suppose that the level sets of x 7→ ∂s
∂y

(x, y) are indepen-

dent of y and set I(x) = ∂s
∂y

(x, a+b
2

). We claim that, for all y,

x 7→ s(x, y)− s(x, a+ b

2
)

is constant along the level sets of I(x). This will complete the proof,
as then we can define unambiguously the function σ(z, y) := s(x, y) −
s(x, a+b

2
), where x ∈ I−1(z), which implies

s(x, y) = σ(I(x), y) + s(x,
a+ b

2
)

and hence σ ∈ C1, noting continuity of DI(x) = Dxsy(x,
a+b

2
) 6= 0.

To see the claim, let x, x̄ lie in a level set of I, ie, I(x) = I(x̄);
we need to show h(y) := s(x, y) − s(x, a+b

2
) − s(x̄, y) + s(x̄, a+b

2
) = 0

for all y ∈ (a, b). We clearly have h(a+b
2

) = 0. On the other hand,
differentiating yields

h′(y) =
∂s

∂y
(x, y)− ∂s

∂y
(x̄, y).

Now I(x) = I(x̄) implies h′(a+b
2

) = 0. The assumed independence of
the level sets therefore asserts h′(y) = 0 for all y ∈ (a, b), yielding the
desired result.

We are now ready to prove the proposition.
Proof of Proposition 5. First assume s has a pseudo-index structure;
by nondegeneracy, we can assume, without loss of generality, that ∂2σ

∂I∂y
>

0; the derivatives in question exist by Lemma 24. In this case, for
any probability measures µ and ν, and y1 > y0 ∈ Y , the same lemma
implies that sets X<(y0, k

±(y0)) and X<(y1, k
±(y1)) correspond exactly

to sublevel sets of I(x):

X<(yi, k
±(yi)) = {x : I(x) < c±(yi)}

where [c−(y), c+(y)] is the maximal interval such that I#µ[(−∞, z)] =
ν[(−∞, y)] for all z ∈ [c−(y), c+(y)]. As we have

µ
[
X<(y0, k

+(y0))
]

= ν[(0, y0)] ≤ ν[(0, y1)] = µ
[
X<(y1, k

−(y1))
]

(55)

this implies that c+(y0) ≤ c−(y1) and so

X<(y0, k
+(y0)) ⊂ X<(y1, k

−(y1)). (56)
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If, in addition, ν[(y0, y1)] > 0, the inequality in (55) is strict, and so we
must have strict containment in (56). Therefore, the model is nested.

On the other hand, assume that s does not have a pseudo-index form;
we will construct measures µ and ν for which nestedness fails.

We claim that there exist y0, y1, k0, k1 such that the pairwise disjoint,
open sets

A<< = {x | ∂s(x, y0)

∂y
< k0,

∂s(x, y1)

∂y
< k1}

A<> = {x | ∂s(x, y0)

∂y
< k0,

∂s(x, y1)

∂y
> k1}

A>< = {x | ∂s(x, y0)

∂y
> k0,

∂s(x, y1)

∂y
< k1}

A>> = {x | ∂s(x, y0)

∂y
> k0,

∂s(x, y1)

∂y
> k1}

are all nonempty. Their union is X, minus a set of Hausdorff dimension
n− 1, thanks to non-degeneracy and Proposition 2.

We first show that the claim implies the desired result, and then prove
the claim. We can assume, after rescaling, that Y = (0, 1). Assuming
without loss of generality that y1 > y0, for some small ε > 0, we can
take µ to be a probability measure assigning the following values:

µ(A<<) = y0 − ε,
µ(A<>) = ε,

µ(A><) = y1 − y0 + ε,

µ(A>>) = 1− y1 − ε.

Taking ν to be uniform measure, the above choice of µ leads to
k(y0) = k0 and k(y1) = k1. In particular, this implies that the (nonempty)
set A>< ⊆ X≤(y1, k(y1)) but that A>< is disjoint from X≤(y0, k(y0)),
violating nestedness.

To see the claim, we invoke the lemma to conclude that there exists
y0, y1 and k0, such that the level set

X(y0, k0) = {x | ∂s(x, y0)

∂y
= k0}

is not a level set of x 7→ ∂s(x,y1)
∂y

. Choose any x̄ ∈ X(y0, k0) and set

k1 = ∂s(x̄,y1)
∂y

and X(y1, k1) := {x | ∂s(x,y1)
∂y

= k1}. As we cannot have
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X(y0, k0) = X(y1, k1),

we assume, without loss of generality, that there exists x ∈ X(y1, k1)

such that ∂s(x,y0)
∂y

< k0.

Now, if the C1 hypersurfaces X(y1, k1) and X(y0, k0) interesect tran-
versally at x̄, the result follows easily: in this case X(y1, k1) must in-
tersect both X<(y0, k0) and X>(y0, k0) and at the intersection points,
one can move slightly off the set X(y1, k1), into either of X<(y1, k1) or
X>(y1, k1), and remain in X<(y0, k0) or X>(y0, k0).

If not, the intersection in tangential at x̄. The nondegeneracy condi-
tion ensures that we may choose k′1 close to k1 such that the set X(y1, k

′
1)

intersects X>(y0, k0) near x̄ (simply by moving a small distance from
x̄ in the direction Dx

∂s
∂y

(x̄, y0) to obtain a new point x̄′ and setting

k′1 = ∂s
∂y

(x̄′, y1)). This implies that A>< and A>> are both nonempty,
after replacing k1 with k′1. Nondegeneracy and the implicit function
theorem also implies that X(y1, k

′
1) intersects X<(y0, k0) near x, which

implies that A<< and A<> are both nonempty, completing the proof of
the claim.
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blais. Histoire de l’Académie Royale des Sciences de Paris, avec les

41
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