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Abstract. Consider an essentially nonbranching metric measure space with the measure
contraction property of Ohta and Sturm, or with a Ricci curvature lower bound in the sense
of Lott, Sturm and Villani. We prove a sharp upper bound on the inscribed radius of any
subset whose boundary has a suitably signed lower bound on its generalized mean curvature.
This provides a nonsmooth analog to a result of Kasue (1983) and Li (2014). We prove a
stability statement concerning such bounds and — in the Riemannian curvature-dimension
(RCD) setting — characterize the cases of equality.
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1 Introduction

Kasue proved a sharp estimate for the inscribed radius (or inradius, denoted InRad) of a smooth,
n-dimensional Riemannian manifold M with nonnegative Ricci curvature and smooth bound-
ary ∂M whose mean curvature is bounded from below by n − 1. More precisely, he concluded
InRadM ≤ 1 [30]. This result was also rediscovered by Li [40] and extended to weighted Rieman-
nian manifolds with Bakry-Emery curvature bounds by Li-Wei [39, 38] and Sakurai [48]. Their
result can be seen either as a manifold-with-boundary analog of Bonnet and Myers’ diameter
bound, or as a Riemannian analog of the Hawking singularity theorem from general relativity
[27] (for the precise statement see [44, Theorem 6.49]). There has been considerable interest
in generalizing Hawking’s result to a nonsmooth setting [37, 42, 26]. Motivated in part by this
goal, we give a generalization of Kasue’s result which is interesting in itself and can serve as a
model for the Lorentzian case. Independently and simultaneously, Cavalletti and Mondino have
proposed a synthetic new framework for Lorentzian geometry (also under investigation by one
of us independently [43]) in which they establish an analogue of the Hawking result [13].
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In this note we generalize Kasue and Li’s estimate to subsets Ω of a (potentially nonsmooth)
space X satisfying a curvature dimension condition CD(K,N) with K ∈ R and N > 1, provided
the topological boundary ∂Ω has a lower bound on its inner mean curvature in the sense of [34].
The notion of inner mean curvature in [34] is defined by means of the 1D-localisation (needle
decomposition) technique of Cavalletti and Mondino [11] and coincides with the classical mean
curvature of a hypersurface in the smooth context. We also assume that the boundary ∂Ω
satisfies a measure theoretic regularity condition that is implied by an exterior ball condition.
Hence, our result not only covers Kasue’s theorem but also holds for a large class of domains
in Alexandrov spaces or in Finsler manifolds. Kasue (and Li) were also able to prove a rigidity
result analogous to Cheng’s theorem [15] from the Bonnet-Myers context: namely that, among
smooth manifolds, their inscribed radius bound is obtained precisely by the Euclidean unit ball.
In the nonsmooth case there are also truncated cones that attain the maximal inradius; under
an additional hypothesis known as RCD, we prove that these are the only nonsmooth optimizers
provided Ω is compact and its interior is connected.

To state our results first we recall the following definition. For κ ∈ R we define cosκ : R→ R
as the solution of

v′′ + κv = 0, with v(0) = 1 and v′(0) = 0; (1.1)

The function sinκ : R → R is defined as solution of the same ordinary differential equation
(ODE) with initial values v(0) = 0 and v′(0) = 1. We define

πκ :=

{
π√
κ

if κ > 0,

∞ otherwise
(1.2)

and Ĩκ := [0, πκ). Let K,H ∈ R and N > 1. The Jacobian function is

r ∈ R 7→ JK,H,N (r) :=

(
cosK/(N−1)(r)−

H

N − 1
sinK/(N−1)(r)

)N−1

+

(1.3)

where (a)+ := max{a, 0} for a ∈ R. Since JK,H,N (r) = JK,−H,N (−r), its interval of positivity
around the origin is given by r ∈ (−rK,−H,N , rK,H,N ), where

rK,H,N := inf{r ∈ (0,∞) : JK,H,N (r) = 0}. (1.4)

In [30] and [48] the authors define

sκ,λ(r) = cosκ (r)− λ sinκ (r) (1.5)

for κ, λ ∈ R. They say the pair (κ, λ) satisfies the ball condition if the equation sκ,λ(r) = 0 has
a positive solution. The latter happens if and only if one of the following three cases holds: (1)
κ > 0 and λ ∈ R, (2) κ = 0 and λ > 0 or (3) κ ≤ 0 and λ >

√
|κ|. If (κ, λ) = ( K

N−1 ,
H
N−1), then

rK,H,N coincides with the smallest positive zero of sκ,λ if any exists; moreover sκ,λ(r) < 0 for all
r > rK,H,N if κ ≤ 0, while sκ,λ oscillates sinusoidally with mean zero and period greater than
2rK,H,N if κ > 0. In particular, rK,H,N <∞ if and only if ( K

N−1 ,
H
N−1) satisfies the ball-condition.

For Ω ⊂ X, letting Ωc := X \ Ω, our main theorem reads as follows:

Theorem 1.1 (Inscribed radius bounds for metric measure spaces). Let (X, d,m) be an essen-
tially nonbranching CD(K ′, N) space with K ′ ∈ R, N ∈ (1,∞) and spt m = X. Let K,χ ∈ R
such that ( K

N−1 , χ) satisfies the ball condition. Let Ω ⊂ X be closed with Ω 6= X, m(Ω) > 0
and m(∂Ω) = 0 such that Ω satisfies the restricted curvature-dimension condition CDr(K,N)
for K ∈ R (Definition 2.3) and ∂Ω = S has finite inner curvature (Definition 2.17). Assume
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the inner mean curvature H−S satisfies H−S ≥ χ(N − 1) mS-a.e. where mS denotes the surface
measure (Definition 2.15). Then

InRad Ω ≤ rK,χ(N−1),N (1.6)

where InRad Ω = supx∈Ω dΩc(x) is the inscribed radius of Ω.

The theorem generalizes previous results for Riemannian manifolds [30, 40] and weighted
Riemannian manifolds [39, 38, 48]. Moreover Theorem 1.1 also holds in the context of weighted
Finsler manifolds and Alexandrov spaces and seems to be new in this context.

We also show:

Theorem 1.2 (Stability). Consider (X, d,m) and Ω ⊂ X as in the previous theorem. Then,
for every ε > 0 there exists δ > 0 such that

InRad Ω ≤ rK̄,H̄,N̄ + ε

provided K ≥ K̄ − δ, H−S ≥ H̄ − δ mS-a.e. and N ≤ N̄ + δ for K̄, H̄ ∈ R and N̄ ∈ (1,∞).

Remark 1.3 (Definitions and improvements). Let us comment on the definitions in Theorem
1.1 and generalizations.

1. The curvature-dimension conditions CD(K,N) and the restricted curvature-dimension
condition CDr(K,N) for an essentially nonbranching metric measure space (X, d,m) are
defined in Definition 2.3. If (X, d,m) satisfies the condition CD(K,N) then Ω 6= ∅ trivially
satisfies CDr(K,N) for the same K. For this we note that for essentially nonbranching
CD(K,N) spaces, L2-Wasserstein geodesics between m-absolutely continuous probability
measures are unique [10].

2. Appendix A extends the conclusions of Theorems 1.1 and 1.2 to the case where the
CD(K,N) hypothesis is replaced by the measure contraction property MCP(K,N) pro-
posed in [49, 46], still under the essentially nonbranching hypothesis.

3. The backward mean curvature bound introduced in Appendix B also suffices for the con-
clusion of the above theorems, provided the finiteness assumed of the inner curvature of
∂Ω = S is replaced by the requirement that the surface measure mS0 be Radon. This
alternate framework also suffices for the rigidity result of Theorem 1.4 below. It is related
to but distinct from a notion presented in [13].

4. The property “having finite inner curvature” (Definition 2.17) rules out inward pointing
cusps and cones, and is implied by an exterior ball condition for Ω (Lemma 2.21). The
surface measure mS is defined in Definition 2.15.

5. For S with finite inner curvature, the definition of generalized inner mean curvature H−S
is given in Definition 2.17. Let us briefly sketch the idea. Using a needle decomposition
associated to the signed distance function dS := dΩ−dΩc , one can disintegrate the reference
measure m into needles, meaning into conditional measures {mα}α∈Q (for a quotient space
Q) that are supported on curves γα of maximal slope of dS . For q-almost every curve
γα with respect to the quotient measure q of m on Q, there exists a conditional density
hα of mα with respect to the 1-dimensional Hausdorff measure H1. Then the inner mean
curvature for mS-a.e. p = γα(t0) ∈ S is defined as d−

dt log hα(t0) = H−S (p). This left
derivative quantifies the extent to which a given collection of needles are spreading (i.e.
capturing more measure) as they exit Ω. We postpone details to the Sections 2.3 and
2.4. In the case (X, d,m) = (M,dg, volg) for a Riemannian manifold (M, g) and ∂Ω is a
hypersurface the inner mean curvature coincides with the classical mean curvature.
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6. Our assumptions cover the case of a Riemannian manifold with boundary: If (X, d,m) =
(M,dg, volg) for a n-dimensional Riemannian manifold (M, g) with boundary and Ricci
lower bound ricM ≥ K, then one can always construct a geodesically convex, n-dimensional
Riemannian manifold M̃ with boundary such that M isometrically embeds into M̃ , and
such that ricM̃ ≥ K

′ [51]. In particular, one can consider M as a CDr(K,n) space that is

a subset of the CD(K ′, n) space (M̃, dM̃ , volM̃ ) (Remark 5.8 in [34]).

1.1 Cones and spherical suspension

For smooth, n-dimensional Riemannian manifolds with non-negative Ricci curvature and bound-
ary that has mean curvature bounded from below by n− 1, equality in the inradius estimate is
obtained precisely by the Euclidean unit ball (see [30, 40, 39]). In the nonsmooth case, truncated
cones also attain the maximal inradius.

Let (X, d,m) be a metric measure space.

1. The Euclidean N -cone over (X, d,m) is defined as the metric measure space(
[0,∞)×X/ ∼, dEucl,mN

Eucl

)
=: [0,∞)×Nid X,

where the equivalence relation ∼ is defined by (s, x) ∼ (t, y) if and only if either s = t = 0
or (s, x) = (t, y). The tip of the cone is denoted by o. The distance dEucl is defined by

d2
Eucl((t, x), (s, y)) := t2 + s2 − 2ts cos [d(x, y) ∧ π] ,

where a ∧ b := min{a, b}, and the measure mN
Eucl is given by rNdr ⊗ dm.

If an EuclideanN -cone [0,∞)×NidX is a manifold thenX = Sn, N = n ∈ N and [0,∞)×nidSn
is isometric to Rn+1.

2. The hyperbolic N -cone is defined similarly:(
[0,∞)×X/ ∼, dHyp,mN

Hyp

)
=: [0,∞)×Nsinh X,

The distance dHyp is defined by

d2
Hyp((t, x), (s, y)) := cosh t cosh s− sinh t sinh s cos [d(x, y) ∧ π] ,

and the measure mN
Hyp is given by sinhN rdr ⊗ dm.

If a hyperbolic N -cone [0,∞)×NsinhX is a manifold then X = Sn, N = n and [0,∞)×nsinhSn
is isometric to the n dimensional hyperbolic plane.

3. Similar, the spherical N -suspension over (X, d,m) is defined as the metric space(
[0, π]×X/ ∼, dSusp,mN

Susp

)
=: [0, π]×Nsin X,

where the equivalence relation ∼ is now defined by (s, x) ∼ (t, y) if and only if either
s = t ∈ {0, π} or (s, x) = (t, y). The distance dSusp is defined by

cos dSusp((t, x), (s, y)) := cos t cos s+ sin t sin s cos[d(x, y) ∧ π],

and the measure mN
Susp is given by sinN tdt⊗ dm.

If a sphercial N -cone [0, π]×NsinX is a manifold then X = Sn, N = n ∈ N and [0, π]×nsin Sn
is isometric to the (n+ 1) dimensional standard sphere Sn+1.
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In each case 0 may also be used to denote the equivalence class of the points (0, x).

The next result shows that in an appropriate setting, cones and suspensions are the only
maximizers of our inscribed radius bound. This requires the Riemannian curvature-dimension
condition RCD(K,N) (Definition 4.1), a strengthening of the curvature-dimension condition that
rules out Finsler manifolds and yields isometric rigidity theorems for metric measure spaces. This
condition is crucial in the proof of the next theorem, since it permits us to exploit the volume
cone rigidity theorem by DePhilippis and Gigli [17]. For K > 0 one can view Theorem 1.4 as a
version of the maximal diameter theorem [32] adapted to mean convex subsets of RCD spaces.
For rigidity results pertaining to other inequalities in nonsmooth or even discrete settings, see
recent work of Ketterer [33], Nakajima, Shioya [45] and Cushing et al [16].

Theorem 1.4 (Rigidity). Let (X, d,m) be RCD(K,N) for K ∈ R and N ∈ (1,∞) and let
Ω ⊂ X be closed with Ω 6= X, m(Ω) > 0, connected and non-empty interior Ω◦, and m(∂Ω) = 0.
We assume that K ∈ {N − 1, 0,−(N − 1)}, ∂Ω = S has finite inner curvature, S 6= {pt}, and
the inner mean curvature mS-a.e. satisfies H−S ≥ χ(N − 1) ∈ R. Then, there exists x ∈ X such
that

dΩc(x) = InRad Ω = rK,χ(N−1),N

if and only if max{K,χ} > 0 and there exists an RCD(N−2, N−1) space Y such that Ω◦ becomes
isometric to the ball BrK,χ(N−1),N

(0) of radius rK,χ(N−1),N around the cone tip in Ĩ K
N−1
×N−1

sinK/(N−1)

Y , when each is equipped with the induced intrinsic distance which it inherits from its ambient
space. Here Ĩ K

N−1
:= [0, π K

N−1
).

The theorem generalizes corresponding rigidity results for Riemannian manifolds [30, 40] and
weighted Riemannian manifolds [39, 38, 48].

Remark 1.5 (Easy direction). In the above rigidity theorem one direction is obvious. Let us
explore this just for the case K = 0 and χ = 1.

Let Y be an RCD(N − 2, N − 1) space. Both the Euclidean N -cone X = [0,∞) ×Nid Y
and its truncation Ω = [0, 1] ×Nid Y are geodesically convex and satisfy RCD(0, N) [31]. The
distance function dΩc from (X, d,m) restricted to Ω is given by dΩc(t, x) = 1− t. In particular,
r0,N−1,N = dΩc((0, x)) = dΩc(o) = 1.

Moreover, S has (inner) mean curvature equal to N − 1 in the sense of Definition 2.17 in
X = [0,∞)×N−1

id Y . Indeed, we can see that points (s, x) and (t, y) in Ω lie on the same needle if
and only if either x = y or st = 0. Hence, the needles in Ω for the corresponding 1D-localization

are t ∈ (0, 1) 7→ γ(t) = (1 − t, x), x ∈ Y . One can also easily check that h
1/N−1
γ (t) = t for all

needles γ in the corresponding disintegration of m |Ω. Hence H−∂Ω ≡ N − 1.

2 Preliminaries

2.1 Curvature-dimension condition

Let (X, d) be a complete and separable metric space and let m be a locally finite Borel measure.
We call (X, d,m) a metric measure space. We always assume spt m = X and X 6= {pt}.

The length of a continuous curve γ : [a, b]→ X is L(γ) = sup{
∑k−1

i=1 d(γ(ti), γ(ti+1))} ∈ [0,∞]
where the supremum is w.r.t. any subdivision of [a, b] given by a = t1 ≤ t2 ≤ · · · ≤ tk−1 ≤ tk = b
and k ∈ N. Obviously L(γ) ≥ d(γ(a), γ(b)); a geodesic refers to any continuous curve γ : [a, b]→
X saturating this bound. We denote the set of constant speed geodesics γ : [0, 1] → X with
G(X); these are characterized by the identity

d(γs, γt) = (t− s)d(γ0, γ1)
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for all 0 ≤ s ≤ t ≤ 1. For t ∈ [0, 1] let et : γ ∈ G(X) 7→ γ(t) be the evaluation map. A subset of
geodesics F ⊂ G(X) is said to be nonbranching if for any two geodesics γ, γ̂ ∈ F such that there
exists ε ∈ (0, 1) with γ|(0,ε) = γ̂|(0,ε), it follows that γ = γ̂.

Example 2.1 (Euclidean geodesics). When X ⊂ Rn is convex and d(x, y) = |x− y| then G(X)
consists of the affine maps γ : [0, 1]→ X.

The set of (Borel) probability measures on (X, d,m) is denoted with P(X), the subset of
probability measures with finite second moment is P2(X), the set of probability measures in
P2(X) that are m-absolutely continuous is denoted with P2(X,m) and the subset of measures
in P2(X,m) with bounded support is denoted with P2

b (X,m).

The space P2(X) is equipped with the L2-Wasserstein distance W2, e.g. [50]. A dynamical
optimal coupling is a probability measure Π ∈ P(G(X)) such that t ∈ [0, 1] 7→ (et)#Π is a
W2-geodesic in P2(X) where (et)#Π denotes the pushforward under the map γ 7→ et(γ) := γ(t).
The set of dynamical optimal couplings Π ∈ P(G(X)) between µ0, µ1 ∈ P2(X) is denoted with
OptGeo(µ0, µ1).

A metric measure space (X, d,m) is called essentially nonbranching if for any pair µ0, µ1 ∈
P2(X,m) any Π ∈ OptGeo(µ0, µ1) is concentrated on a set of nonbranching geodesics.

Definition 2.2 (Distortion coefficients). For K ∈ R, N ∈ (0,∞) and θ ≥ 0 we define the
distortion coefficient as

t ∈ [0, 1] 7→ σ
(t)
K,N (θ) :=

{ sinK/N (tθ)

sinK/N (θ) if θ ∈ [0, πK/N ),

∞ otherwise,

where πχ := ∞ if χ ≤ 0 and πχ := π√
χ if χ > 0. Here sinK/N was defined after (1.1), and

σ
(t)
K,N (0) = t. Moreover, for K ∈ R, N ∈ [1,∞) and θ ≥ 0 the modified distortion coefficient is

defined as

t ∈ [0, 1] 7→ τ
(t)
K,N (θ) := t

1
N

[
σ

(t)
K,N−1(θ)

]1− 1
N

where our conventions are 0 · ∞ := 0 and ∞0 := 1.

Definition 2.3 (Curvature-dimension conditions [49, 41]). An essentially nonbranching metric
measure space (X, d,m) satisfies the curvature-dimension condition CD(K,N) for K ∈ R and
N ∈ [1,∞) if for every µ0, µ1 ∈ P2

b (X,m) there exists a dynamical optimal coupling Π between
µ0 and µ1 such that for all t ∈ (0, 1)

ρt(γt)
− 1
N ≥ τ (1−t)

K,N (d(γ0, γ1))ρ0(γ0)−
1
N + τ

(t)
K,N (d(γ0, γ1))ρ1(γ1)−

1
N for Π-a.e. γ ∈ G(X),

(2.1)

where (et)#Π = ρt m.

Now instead suppose (X, d,m) satisfies CD(K ′, N ′) for some K ′ ∈ R and N ′ ≥ 1. We say a
subset Ω ⊂ X with m(Ω) > 0 satisfies the restricted curvature-dimension condition CDr(K,N)
if for every dynamical optimal coupling Π with (et)#Π(Ω) = 1 for all t ∈ [0, 1] and µ0, µ1 ∈
P2
b (X,m), (2.1) holds for all t ∈ [0, 1].

Remark 2.4 (Locally compact geodesic spaces). A CD(K,N) space (X, d,m) for N ∈ [1,∞)
is geodesic and locally compact. Hence, by the metric Hopf-Rinow theorem the space is proper
(i.e. Heine-Borel) [7, Theorem 2.5.28].
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2.2 Disintegration of measures

For further details about the content of this section we refer to [22, Section 452].

Let (R,R) be a measurable space, and let Q : R → Q be a map for a set Q. One can equip
Q with the σ-algebra Q that is induced by Q where B ∈ Q if Q−1(B) ∈ R. Given a measure m
on (R,R), one can define its quotient measure q on Q via the pushforward Q# m =: q.

Definition 2.5 (Disintegration of measures). A disintegration of a probability measure m that
is consistent with Q is a map (B,α) ∈ R×Q 7→ mα(B) ∈ [0, 1] such that it follows

• mα is a probability measure on (R,R) for every α ∈ Q,

• α 7→ mα(B) is q-measurable for every B ∈ R,

and for all B ∈ R and C ∈ Q the consistency condition

m(B ∩Q−1(C)) =

∫
C

mα(B)q(dα)

holds. We use the notation {mα}α∈Q for such a disintegration. We call the measures mα

conditional probability measures or conditional measures. A disintegration {mα}α∈Q consistent
with Q is called strongly consistent if for q-a.e. α we have mα(Q−1(α)) = 1.

The following theorem is standard:

Theorem 2.6 (Existence of unique disintegrations). Assume that (R,R,m) is a countably gen-
erated probability space and R =

⋃
α∈QRα is a partition of R. Let Q : R → Q be the quotient

map associated to this partition, that is α = Q(x) if and only if x ∈ Rα and assume the corre-
sponding quotient space (Q,Q) is a Polish space.

Then, there exists a strongly consistent disintegration {mα}α∈Q of m with respect to Q : R→
Q that is unique in the following sense: if {m′α}α∈Q is another consistent disintegration of m
with respect to Q then mα = m′α for q-a.e. α ∈ Q.

2.3 1D-localization

In this section we will recall the basics of the localization technique introduced by Cavalletti and
Mondino for 1-Lipschitz functions as a nonsmooth analogue of Klartag’s needle decomposition:
needle refers to any geodesic along which the Lipschitz function attains its maximum slope,
also called transport rays here and by Klartag and others [20, 21, 36]. The presentation follows
Sections 3 and 4 in [11]. We assume familiarity with basic concepts in optimal transport (for
instance [50]).

Let (X, d,m) be a proper metric measure space (with spt m = X as we always assume).

Let u : X → R be a 1-Lipschitz function. Then the transport ordering

Γu := {(x, y) ∈ X ×X : u(y)− u(x) = d(x, y)}

is a d-cyclically monotone set, and one defines Γ−1
u = {(x, y) ∈ X ×X : (y, x) ∈ Γu}.

Note that we switch orientation in comparison to [11] where Cavalletti and Mondino define
Γu as Γ−1

u .

The union Γu ∪ Γ−1
u defines a relation Ru on X ×X, and Ru induces the transport set with

endpoint and branching points

Tu,e := P1(Ru\{(x, y) : x = y ∈ X}) ⊂ X
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where P1(x, y) = x. For x ∈ Tu,e one defines Γu(x) := {y ∈ X : (x, y) ∈ Γu}, and similarly
Γ−1
u (x) and Ru(x). Since u is 1-Lipschitz, Γu,Γ

−1
u and Ru are closed, as are Γu(x),Γ−1

u (x) and
Ru(x).

The forward and backward branching points are defined respectively as

A+ :={x ∈ Tu,e :∃z, w ∈ Γu(x) & (z, w) /∈ Ru},
A− :={x ∈ Tu,e :∃z, w ∈ Γ−1

u (x) & (z, w) /∈ Ru}.

Then one considers the (nonbranched) transport set as Tu := Tu,e\(A+ ∪ A−) and the (non-
branched) transport relation as the restriction of Ru to Tu × Tu.

The sets Tu,e, A+ and A− are σ-compact ([11, Remark 3.3] and [8, Lemma 4.3] respectively),
and Tu is a Borel set. In [8, Theorem 4.6] Cavalletti shows that the restriction of Ru to Tu ×Tu
is an equivalence relation. Hence, from Ru one obtains a partition of Tu into a disjoint family
of equivalence classes {Xα}α∈Q. There exists a measurable section s : Tu → Tu [8, Proposition
5.2], such that if (x, s(x)) ∈ Ru and (y, x) ∈ Ru then s(x) = s(y), and Q can be identified with
the image of Tu under s. Every Xα is isometric to an interval Iα ⊂ R (c.f. [11, Lemma 3.1] and
the comment after Proposition 3.7 in [11]) via a distance preserving map γα : Iα → Xα where
γα is parametrized such that d(γα(t), s(γα(t))) = sign(γα(t))t, t ∈ Iα, and where signx is the
sign of u(x)−u(s(x)). The map γα : Iα → X extends to a geodesic also denoted γα and defined
on the closure Iα of Iα. We set Iα = [a(Xα), b(Xα)].

Then, the quotient map Q : Tu → Q given by the section s above is measurable, and we
set q := Q# m |Tu . Hence, we can and will consider Q as a subset of X, namely the image of
s, equipped with the induced measurable structure, and q as a Borel measure on X. By inner
regularity we replace Q with a Borel set Q′ such that q(Q\Q′) = 0 and in the following we
denote Q′ by Q (compare with [11, Proposition 3.5] and the following remarks).

In [12, Theorem 3.3], Cavalletti and Mondino extend Definition 2.5 to disintegrate measures
m which are merely σ-finite by using a positive function f on X to relate m to a probability
measure f(x)dm(x). Using the framework of this extension, which we also adopt, they prove:

Theorem 2.7 (Disintegration into needles/transport rays). Let (X, d,m) be a geodesic metric
measure space with spt m = X and m σ-finite. Let u : X → R be a 1-Lipschitz function, let
{Xα}α∈Q be the induced partition of Tu via Ru, and let Q : Tu → Q be the induced quotient map
as above. Then, there exists a unique strongly consistent disintegration {mα}α∈Q of m |Tu with
respect to Q.

Now, we assume that (X, d,m) is an essentially nonbranching CD(K,N) space for K ∈ R and
N > 1. Recall the Bishop-Gromov inequality holds and m is therefore σ-finite. The following is
[12, Lemma 3.4].

Lemma 2.8 (Negligibility of branching points). Let (X, d,m) be an essentially nonbranching
CD(K,N) space for K ∈ R and N ∈ (1,∞) with spt m = X. Then, for any 1-Lipschitz function
u : X → R, it follows m(Tu,e\Tu) = 0.

The initial and final points are defined by

a :=
{
x ∈ Tu,e : Γ−1

u (x) = {x}
}
, b :={x ∈ Tu,e : Γu(x) = {x}} .

In [9, Theorem 7.10] it was proved that under the assumption of the previous lemma there exists
Q̂ ⊂ Q with q(Q\Q̂) = 0 such that for α ∈ Q̂ one has Xα\Tu ⊂ a ∪ b. In particular, for α ∈ Q̂
we have

Ru(x) = Xα ⊃ Xα ⊃ (Ru(x))◦ ∀x ∈ Q−1(α) ⊂ Tu. (2.2)

where (Ru(x))◦ denotes the relative interior of the closed set Ru(x).
The following is [12, Theorem 3.5].
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Theorem 2.9 (Factor measures inherit curvature-dimension bounds). Let (X, d,m) be an es-
sentially nonbranching CD(K,N) space with spt m = X, K ∈ R and N ∈ (1,∞). For any
1-Lipschitz function u : X → R, let {mα}α∈Q denoted the disintegration of m |Tu from Theorem
2.7 which is strongly consistent with the quotient map Q : Tu → Q. Then there exists Q̃ such
that q(Q\Q̃) = 0 and ∀α ∈ Q̃, mα is a Radon measure with dmα = hαdH1|Xα and (Xα, d,mα)
verifies the condition CD(K,N). More precisely, for all α ∈ Q̃ it follows that

hα(γt)
1

N−1 ≥ σ(1−t)
K/N−1(|γ̇|)hα(γ0)

1
N−1 + σ

(t)
K/N−1(|γ̇|)hα(γ1)

1
N−1 (2.3)

for every affine map γ : [0, 1]→ (a(Xα), b(Xα)).

Remark 2.10 (Semiconcave densities on needles). The property (2.3) yields that hα is locally
Lipschitz continuous on (a(Xα), b(Xα)) [11, Section 4], and that hα : (a(Xα), b(Xα)) → (0,∞)
satisfies

d2

dr2
h

1
N−1
α +

K

N − 1
h

1
N−1
α ≤ 0 on (a(Xα), b(Xα)) in distributional sense; (2.4)

in particular, h
1

N−1
α is semiconcave on (a(Xα), b(Xα)), hence admits left and right derivatives at

each point.
Conversely, it is well-known that any function hα ≥ 0 satisfying (2.4) can be chosen to be

continuous up to its endpoints and that this extension then satisfies (2.3); see also Remark 2.12.

Remark 2.11. We observe the following from the proof of [11, Theorem 4.2]: when Ω ⊂ X
satisfies the restricted condition CDr(K

′, N) and the 1-Lipschitz function u = dΩc is chosen to
be the distance function to Ωc, then hγ satisfies (2.3) with K ′ replacing K.

Let us be a little bit more precise here. For the proof of Theorem 4.2 in [11] the authors
construct L2-Wasserstein geodesics between m-absolutely continuous probability measures such
that the corresponding optimal dynamical plans are supported on transport geodesics of the
1-Lipschitz function φ that appears in the statement of [11, Theorem 4.2].

In our situation, when φ is actually dΩc , all transport geodesics of positive length are inside of
Ω. Hence, the L2-Wasserstein geodesics constructed by Cavalletti and Mondino are concentrated
in Ω and the restricted condition CDr(K

′, N) applies. Then we can follow verbatim the proof
of Theorem 4.2 in [11].

Remark 2.12 (Extended densities). The Bishop-Gromov volume monotonicity implies that hα
can always be extended to continuous function on [a(Xα), b(Xα)] [12, Remark 2.14]. Then (2.3)
holds for every affine map γ : [0, 1]→ [a(Xα), b(Xα)]. We set (hα ◦ γα(r)) · 1[a(Xα),b(Xα)] = hα(r)

and consider hα as function that is defined everywhere on R. We also consider d
drhα : Xα → R

defined a.e. via d
dr (hα ◦ γα)(r) =: d

drhα(r).
It is standard knowledge that the derivatives from the right and from the left

d+

dr
hα(r) = lim

t↓0

hα(r + t)− hα(r)

t
,
d−

dr
hα(r) = lim

t↑0

hα(r + t)− hα(r)

t

exist for r ∈ [a(Xα), b(Xα)) and r ∈ (a(Xα), b(Xα)] respectively. Moreover, we set d+

dr hα = −∞
in b(Xα) and d−

dr hα =∞ in a(Xα).

Remark 2.13 (Generic geodesics). In the following we set Q† := Q̃∩ Q̂, where Q̃ and Q̂ index
the transport rays identified between Lemma 2.8 and Theorem 2.9. Then, q(Q\Q†) = 0 and

for every α ∈ Q† the inequality (2.3) and (2.2) hold. We also set Q−1(Q†) =: T †u ⊂ Tu and⋃
x∈T †u

Ru(x) =: T †u,e ⊂ Tu,e.
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2.4 Generalized mean curvature

Let (X, d,m) be a metric measure space as in Theorem 2.9. Let Ω ⊂ X be a closed subset, and
let S = ∂Ω such that m(S) = 0. The function dΩ : X → R is given by

dΩ(x) := inf
y∈Ω

d(x, y).

The signed distance function dS for S is given by

dS := dΩ − dΩc : X → R.

It follows that dS(x) = 0 if and only if x ∈ S, and dS ≤ 0 if x ∈ Ω and dS ≥ 0 if x ∈ Ωc. It is
clear that dS |Ω = −dΩc and dS |Ωc = dΩ. Setting v = dS we can also write

dS(x) = sign(v(x))d({v = 0}, x), ∀x ∈ X.

Since X is proper, dS is 1-Lipschitz [12, Remark 8.4, Remark 8.5]. Let Ω◦ denote the topological
interior of Ω.

Let TdS ,e be the transport set of dS with end- and branching points. We have TdS ,e ⊃ X\S. In
particular, we have m(X\TdS ) = 0 by Lemma 2.8 and m(S) = 0. Therefore, by Theorem 2.9 the
1-Lipschitz function dS induces a partition {Xα}α∈Q of (X, d,m) up to a set of measure zero for
a measurable quotient space Q, and a disintegration {mα}α∈Q that is strongly consistent with
the partition. The subset Xα, α ∈ Q, is the image of a distance preserving map γα : Iα → X
for an interval Iα ⊂ R with Iα = [a(Xα), b(Xα)] 3 0.

We consider Q† ⊂ Q as in Remark 2.13. One has the representation

m(B) =

∫
Q

mα(B)dq(α) =

∫
Q†

∫
γ−1
α (B)

hα(r)drdq(α)

for all Borel B ⊂ X.

For any transport rayXα with α ∈ Q†, it follows that dS(γα(b(Xα))) ≥ 0 and dS(γα(a(Xα))) ≤
0 (for instance compare with [12, Remark 4.12]).

Remark 2.14 (Measurability and zero-level selection). It is easy to see that A := Q−1(Q(S ∩
TdS )) ⊂ TdS is a measurable subset. The reach A ⊂ TdS is defined such that ∀α ∈ Q(A) we have
Xα ∩ S = {γ(tα)} 6= ∅ for a unique tα ∈ Iα. Then, the map ŝ : γ(t) ∈ A 7→ γ(tα) ∈ S ∩ TdS
is a measurable section (i.e. selection) on A ⊂ TdS , and one can identify the measurable set
Q(A) ⊂ Q with A ∩ S and can parameterize γα such that tα = 0.

This measurable section ŝ on A is fixed for the rest of the paper. The reach A is the union
of all disjoint needles that intersect with ∂Ω – possibly in a(Xα) (or in b(Xα)) provided a(Xα)
(respectively b(Xα)) belongs to Iα. We shall also define the inner reach Bin as the union of all
needles disjoint from Ωc and the outer reach Bout as the union of all needles disjoint from Ω.
The superscript † will be used indicate intersection with T †dS . Thus

A ∩ T †dS =: A† and
⋃
x∈A† RdS (x) =: A†e.

The sets A† and A†e are measurable, and also

B†in := Ω◦ ∩ T †dS\A
† ⊂ T †dS and B†out := Ωc ∩ T †dS\A

† ⊂ TdS (2.5)

as well as
⋃
x∈B†out

RdS (x) =: B†out,e and
⋃
x∈B†in

RdS (x) =: B†in,e are measurable.

The map α ∈ Q(A†) 7→ hα(0) ∈ R is measurable (see [9, Proposition 10.4]).
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Definition 2.15 (Surface measures). Taking S = ∂Ω as above, we use the disintegration of
Remark 2.14 to define the surface measure mS via∫

φ(x)dmS(x) :=

∫
Q(A†)

φ(γα(0))hα(0)dq(α)

for any bounded and continuous function φ : X → R. That is, mS is the pushforward of the
measure hα(0)dq(α)|Q(A†) under the map ŝ : γ ∈ Q(A†) 7→ γ(0) ∈ S.

Remark 2.16 (Surface measure via ray maps). Let us briefly explain the previous definition
from the viewpoint of the ray map [11, Definition 3.6] or its precursor from the smooth setting
[21]. For the definition we fix a measurable extension s0 : TdS → TdS such that s0|A† = ŝ as
in Remark 2.14. As was explained in Subsection 2.3 such a section allows us to identify the
quotient space Q with a Borel subset in X up to a set of q-measure 0. Following [11, Definition
3.6] we define the ray map

g : V ⊂ Q(A ∪Bin)× (−∞, 0]→ X

into Ω and its domain V via its graph

graph(g) = {(α, t, x) ∈ Q(A)× R× Ω : x ∈ Xα,−d(x, α) = t}
∪ {(α, t, x) ∈ Q(Bin)× R× Ω : x ∈ Xα,−d(x, γα(b(Xα))) = t}.

This is exactly the ray map as in [11] up to a reparametrisation for α ∈ Q(Bin). Note that
g(α, 0) = γα(0) = α and g(α, t) = γα(t) if α ∈ Q(A) but γα(t + d(b(Xα), α)) = g(α, t) for
α ∈ Q(Bin). Then the disintegration for a non-negative φ ∈ Cb(Ω) takes the form∫

Ω
φ dm =

∫
Q

∫
Vα
φ ◦ g(α, t)hα ◦ g(α, t)dL1(t)dq(α)

where Vα = P2(V ∩{α}×R) ⊂ R and P2(α, t) = t. With Fubini’s theorem the right hand side is∫
V
φ ◦ g(α, t)hα ◦ g(α, t)d(q⊗ L1)(α, t) =

∫ ∫
Vt
φ ◦ g(α, t)hα ◦ g(α, t)dq(α)dt

where Vt = P1(V ∩ Q × {t}) ⊂ Q and P1(α, t) = α. In particular, for L1-a.e. t ∈ R the map
α 7→ hα ◦ g(α, t) is measurable. Hence, for L1-a.e. t ∈ R we define dpt(α) = hα ◦ g(α, t)dq|Vt(α)
on Q. Then disintegration takes the form

m |Ω = m |Ω∩TdS =

∫
(g(·, t)#pt)dt.

Now, we can consider the pushforward mS0 = g(·, 0)#p0. When Bin 6= ∅ then mS0 may be
concentrated on a larger set than mS but by construction one recognizes that mS = mS0 |A† .

Definition 2.17 (Inner mean curvature). Set S = ∂Ω and let {Xα}α∈Q be the disintegration
induced by u := dS . Recalling (2.5), we say that S has finite inner (respectively outer) curvature

if m(B†in) = 0 (respectively m(B†out) = 0), and S has finite curvature if m(B†out ∪B
†
in) = 0. If S

has finite inner curvature we define the inner mean curvature of S mS-almost everywhere as

p ∈ S 7→ H−S (p) :=

{
d−

dr |r=0 log hα ◦ γα(r) if p = γα(0) ∈ S ∩A†,
∞ if p ∈ B†out,e ∩ S

where we set d−

dr log hα(γα(0)) = −∞ if hα(γα(0)) = 0.
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Remark 2.18 ((Sign) conventions). We point out two differences in comparison to [34]: For
the definition of A† we do not remove points that lie in a and b, and we switched signs in the
definition of inner mean curvature. The latter allows us to work with mean curvature bounded
below instead of bounded above.

Remark 2.19 (Smooth case). Let us briefly address the case of a Riemannian manifold (M, g)
equipped with a measure of the form m = Ψ volg for Ψ ∈ C∞(M) and Ω with a boundary S
which is a smooth compact submanifold. For every x ∈ S there exist ax < 0 and bx > 0 such
that γx(r) = expx(r∇dS(x)) is a minimal geodesic on (ax, bx) ⊂ R, and we define

U = {(x, r) ∈ S × R : r ∈ (ax, bx)} ⊂ S × R

and the map T : U → M via T (x, r) = γx(r). The map T is a diffeomorphism on U , with
volg(M\T (U)) = 0 and the integral of φ ∈ C(M) can be computed effectively by the following
formula:∫

φdm =

∫
S

∫ bx

ax

φ ◦ T (x, r) detDT(x,r)|TxSΨ ◦ T (x, r)drdvolS(x)

where volS is the induced Riemannian surface measure on S. By comparison with the needle
technique disintegration it is not difficult to see that dmS = Ψd volS . Moreover, the open needles
for dS are the geodesics γx : (ax, bx)→M and the densities hx(r) are given by c(x) detDT(x,r)Ψ◦
T (x, r) for some normalization constant c(x), x ∈ S.

A direct computation then yields

d

dr
log hx(0) = HS(x) + 〈∇dS(x),∇ log Ψ〉(x), ∀x ∈ S.

where HS is the standard mean curvature, i.e. the trace of the second fundamental form of S.

Definition 2.20 (Exterior ball condition). Let Ω ⊂ X and ∂Ω = S. Then S satisfies the
exterior ball condition if for all x ∈ S there exists rx > 0 and px ∈ Ωc such that d(x, px) = rx
and Brx(px) ⊂ Ωc. We say S satisfies a uniform exterior ball condition if there exists δ > 0 such
that rx ≥ δ for all x ∈ S.

Lemma 2.21 (Exterior ball criterion for finite inner curvature). Let Ω ⊂ X. If S = ∂Ω satisfies
the exterior ball condition, then S has finite inner curvature.

Proof. Let S satisfy the exterior ball condition. Then for every x ∈ S there exists a point
px ∈ Ωc and a geodesic γx : [0, rx] → Ωc from x to px such that L(γx) = d(x, px) = rx and
d(px, y) > rx for any y ∈ S\{x}. Hence, dS(px) = rx and the image of γx is contained in RdS (x).

Recall the definition of Q† ⊂ Q (Remark 2.13). Since Q† has full q-measure, it is enough to

show that for all α ∈ Q† the endpoint b(Xα) > 0. Then also B†in = ∅. Assume the contrary.
Let α′ ∈ Q† and let γ′ := γα′ be the corresponding geodesic such that b(Xα′) = 0, that is
Im(γ′|(a(Xα′ ),0)) ⊂ Ω. The concatenation γ′′ : (a(Xα′), rx) → X of γ′ with γx for x =γ′(0)
satisfies γ′′(0) = x and

d(γ′′(s), γ′′(t)) ≤ d(γ′′(s), x) + d(x, γ′′(t)) = dS(γ′′(t))− dS(γ′′(s))≤ d(γ′′(s), γ′′(t)). (2.6)

for s ∈ (a(Xα′), 0] and t ∈ [0, rx).

Thus the inequalities in (2.6) are actually equalities. Hence, Im(γ′′) ⊂ RdS (γ′′(s)), the points
that are RdS -related to γ′′(s). These are exactly the points y that satisfy (2.6) with γ′′(t) replaced
with y. But this contradicts the requirement Xα′ = RdS (γ′′(s)) from the definition of Q†. �
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Remark 2.22 (Partial converse). As was pointed out to us by one of the referees the converse
implication in Lemma 2.21 holds in the following sense. If for x ∈ S ∩ A then there exists
p ∈ X that either belongs to Ωc or Ω◦ such that Br(p) is either fully contained in Ωc or Ω◦ with
r = d(p, x).

Remark 2.23 (Related literature). We note that the previous notion of mean curvature under
the assumption that S has finite inner curvature, allows to assign to any point p ∈ S ∩ A† a
number that is the mean curvature of S at p. This was useful for proving the Heintze-Karcher
inequality in [34].

If one is just interested in lower bounds for the mean curvature, one can adapt a definition
of Cavalletti-Mondino [13]. They define achronal future timelike complete Borel subsets in a
Lorentz length space having forward mean curvature bounded below. We will not recall their
definition for Lorentz length spaces but we give a corresponding definition for CD(K,N) metric
measure spaces in the appendix of this article and outline how analogs of our results also hold
for this notion of lower mean curvature bounds.

3 Proof of inradius bounds and stability (Theorems 1.1 and 1.2)

Recall the Jacobian JK,H,N (r) and its maximal interval r ∈ (−rK,−H,N , rK,H,N ) of positivity
around the origin defined in (1.1)–(1.4). To prove our main theorems requires a sort of below-
tangent implication (3.2) of distorted power concavity (3.1) from [34]:

Lemma 3.1 (Comparison inequality). Let h : [a, b]→ [0,∞) be continuous such that a ≤ 0 < b
and every affine map γ : [0, 1]→ [a, b] satisfies

h(γt)
1

N−1 ≥ σ(1−t)
K/(N−1)(|γ̇|)h(γ0)

1
N−1 + σ

(t)
K/(N−1)(|γ̇|)h(γ1)

1
N−1 ∀ t ∈ [0, 1]. (3.1)

Then

(h(r))
1

N−1 ≤ (h(0))
1

N−1 cos K
N−1

(r) +
d+

ds

∣∣∣
s=0

(h(s))
1

N−1 sin K
N−1

(r) ∀ r ∈ [a, b]. (3.2)

If h(0) > 0, it follows h(r)h(0)−1 ≤ JK,H,N (r) where H = −d+

dr

∣∣
r=0

log h(r) and in particular
b ≤ rK,H,N .

Proof. If a < 0, the lemma is exactly the statement of Corollary 4.3 in [34].

For a = 0 we pick rn ↓ 0. Then, the statement follows since d+

dr h(r) is continuous from the
left for a semiconcave function h. �

Remark 3.2 (Reverse parameterization). If instead h : [a, b]→ [0,∞) is continuous and every
affine map γ : [0, 1] → [a, b] satisfies (3.1) but a < 0 ≤ b, then applying Lemma 3.1 to h̃(r) :=

h(−r) yields −a ≤ rK,H̃,N with H̃ = d−

dr

∣∣
r=0

log h(r).

Proof of Theorem 1.1. Let (X, d,m) be a CD(K ′, N) space and consider Ω ⊂ X satisfying
CDr(K,N) as assumed in Theorem 1.1. Let u = dS be corresponding signed distance function.
Let {Xα}α∈Q be the decomposition of TdS and

∫
mα dq(α) be the disintegration of m given by

Theorem 2.9 and Remark 2.14. In Remark 2.13 we define Q† ⊂ Q. Recall that Q† is a subset of
Q with full q-measure and for all α ∈ Q† one has dmα = hαdH1, Xα,e = Xα and hα satisfies

(h
1

N−1
α )′′ +

K

N − 1
h

1
N−1
α ≤ 0 on (a(Xα), 0) (3.3)
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in the distributional sense.
Assume K ∈ R and H−S ≥ χ(N − 1) mS-a.e. Recall that

H−S (γα(0)) =
d−

dr

∣∣∣
r=0

log hα(r)

In particular, hα(0) > 0 for q-a.e. α ∈ Q†, since hα(0) = 0 yields d−

dr log hα(r) = −∞ <
χ(N − 1) by Definition 2.17. Now (3.3) implies hα can be represented by a continuous function
on [a(Xα), 0] which satisfies the hypotheses of Remark 3.2. That remark then asserts −a(Xα) ≤
rK,χ(N−1),N for any α ∈ Q†.

Since (mα |Ω)α∈Q† is a disintegration of m |Ω, and since mα |Ω is supported on Im(γα|[a(Xα),0])

where γα : [a(Xα, 0] → Ω is a geodesic, it follows that for m-almost every x ∈ Ω there exists
α ∈ Q† and t ∈ [a(Xα), 0] such that x = γα(t). For such x it follows that dΩc(x) = −t ≤
−a(Xα) ≤ rK,χ(N−1),N . Hence dΩc ≤ rK,χ(N−1),N for m-almost everywhere in Ω.

By continuity of dΩc and X = spt m it follows that dΩc(x) ≤ rK,χ(N−1),N for all x ∈ Ω. In
particular, the inscribed radius satisfies InRad Ω ≤ rK,χ(N−1),N . �

Proof of Theorem 1.2. Assume K ≥ K̄ − δ, H−S ≥ H̄ − δ mS-a.e. and N ≤ N̄ + δ. Since
δ > 0 and X ∈ CD(K,N) imply X ∈ CD(K̄ − δ, N̄ + δ), Theorem 1.1 yields

InRad Ω ≤ rK̄−δ,H̄−δ,N̄+δ.

Now for any ε > 0 there exists δ > 0 such that rK̄−δ,H̄−δ,N̄+δ ≤ rK̄,H̄,N̄ + ε since the

function s K
N−1

, H
N−1

(r) = cos K
N−1

(r)− H
N−1 sin K

N−1
(r) whose first positive zero defines rK,H,N is

continuously differentiable with respect to K, H, N and r, and its derivative is non-zero at
r = rK̄,H̄,N̄ ; the implicit function theorem then gives continuous differentiability of rK̄,H̄,N̄ with

respect to its parameters near any ( K̄
N−1 ,

H̄
N−1) satisfying the ball condition. If the ball condition

is not satisfied, then rH̄,K̄,N̄ =∞ and the theorem holds trivially. �

4 Rigidity

4.1 The Riemannian curvature-dimension condition

We recall briefly the Riemannian curvature-dimension condition that is a strengthening of the
CD(K,N) condition and the result of the combined efforts by several authors [4, 23, 19, 1, 5, 9].

The Cheeger energy Ch : L2(m)→ [0,∞] of a metric measure space (X, d,m) is defined as

2 Ch(f) := lim inf
Lip(X)3un

L2
→f

∫
(Lipun)2dmX (4.1)

where Lip(X) is the space of Lipschitz functions on (X, d,m) and Lipu(x) := lim supy→x
|u(x)−u(y)|
d(x,y)

is the local slope of u ∈ Lip(X). The L2-Sobolev space is defined as W 1,2(X) = {f ∈ L2(m) :
Ch(f) <∞} and equipped with the norm ‖f‖2 := ‖f‖2

L2(m)
+ 2 Ch(f) [2, 3].

For u ∈W 1,2(X) the Cheeger energy can be written as

2 Ch(u) =

∫
X
|∇u|2dm

for a measurable density |∇u| : X → [0,∞) that is identified as the minimal weak upper gradient
of u. For more details about the minimal weak upper gradients and its characterizations we refer
to [2, 14].
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Definition 4.1 (Riemannian curvature-dimension condition). A metric measure space (X, d,m)
satisfies the Riemannian curvature-dimension condition RCD(K,N) if (X, d,m) satisfies the
condition CD(K,N) and W 1,2(X) is a Hilbert space, meaning the 2-homogeneous Cheeger
energy (4.1) satisfies the parallelogram law:

Ch(f + g) + Ch(f − g) = 2 Ch(f) + 2 Ch(g).

When (X, d,m) is an RCD space, one can introduce a symmetric bilinear form 〈·, ·〉 on the
Sobolev space W 1,2(X) with values in L1(m) via

(f, g) ∈W 1,2(X)×W 1,2(X) 7→ 〈∇f,∇g〉 :=
1

4
|∇(f + g)|2 − 1

4
|∇(f − g)|2 ∈ L1(m).

4.2 Volume cone implies metric cone

The following theorem by Gigli and De Philippis will be crucial in the proof the main result.

Theorem 4.2 (Volume cone implies metric cone [17, Theorem 4.1]). Let K ∈ {−(N−1), 0, N−
1}, N ∈ [1,∞) and (X, d,m) an RCD(K,N) space with spt m = X. Assume there exists o ∈ X
and R > r > 0 such that

m(BR(o)) =

∫ R

0

(
sin K

N−1
u
)N−1

du∫ r

0

(
sin K

N−1
v
)N−1

dv

m(Br(o)). (4.2)

Then exactly one of the following three cases holds:

(1) If ∂BR/2(o) contains only one point, then X is isometric to [0,diamX ] (or [0,∞) if X
is unbounded) with an isometry that sends o to 0 either way. The measure m |BR(o) is

proportional to (sinN−1
K
N−1

x)dx.

(2) If ∂BR/2(o) contains exactly two points then X is a 1-dimensional Riemannian manifold,
possibly with boundary, and there exists a bijective, locally distance preserving map from
BR(o) to (−R,R) that sends o to 0 under which the measure m |BR(o) becomes proportional

to (sinN−1
K
N−1

|x|)dx.

(3) If ∂BR/2(o) contains more than two points then N ≥ 2 and there exists an RCD(N −
2, N − 1) space Z with diamZ ≤ π and a local isometry U : BR(o) → [0, R) ×Nsin K

N−1

Z

sending o to 0 that is also a measure preserving bijection.

Remark 4.3 (Excluding the middle case). In the second case the conclusion also implies that
N = 1: otherwise X is locally isomorphic to (−R,R) equipped with a measure proportional
to (sinN−1

K/N−1 |x|)dx. But for N > 1 this space does not satisfy the CD condition because the
density of the reference measure vanishes at 0. This means the density is not semi-concave which
is a necessary condition for the measure on a 1D space to satisfy the CD condition.

Remark 4.4. In the proof of Theorem 4.2 Gigli and De Philippis show that the map U has an
inverse V : BR(0)→ BR(o) that is also a local isometry.
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4.3 Distributional Laplacian and strong maximum principle

We recall the notion of the distributional Laplacian for RCD spaces (cf. [23, 12]).

Let (X, d,m) be an RCD space, and Lipc(Ω) denote the set of Lipschitz functions compactly
supported in an open subset Ω ⊂ X. A Radon functional over Ω is a linear functional T :
Lipc(Ω) → R such that for every compact subset W in Ω there exists a constant CW ≥ 0 such
that

|T (f)| ≤ CW max
W
|f | ∀f ∈ Lipc(Ω) with spt f ⊂W. (4.3)

One says T is non-negative if T (f) ≥ 0 for all f ∈ Lipc(Ω) satisfying f ≥ 0.

The classical Riesz-Markov-Kakutani representation theorem says that for every non-negative
Radon functional T from (4.3) there exists a non-negative Radon measure µT such that T (f) =∫
fdµT for all f ∈ Lipc(Ω).

Definition 4.5 (Nonsmooth Laplacian). Let Ω ⊂ X be an open subset and let u ∈ Lip(X).
One says u is in domain of the distributional Laplacian on Ω provided there exists a Radon
functional T over Ω such that

T (f) =

∫
〈∇u,∇f〉dm ∀f ∈ Lipc(Ω).

In this case we write u ∈ D(∆,Ω). If T is represented as a measure µT , one writes µT ∈∆u|Ω,
and if there is only one such measure µT by abuse of notation we will identify µT with T and
write µT = ∆u|Ω.

We also recall that u ∈ W 1,2
loc (Ω) for an open set Ω ⊂ X if and only if for any Lipschitz

function φ with compact support in Ω we have φ
cdotu ∈W 1,2(X). In particular, if u ∈ Lip(X) then u ∈W 1,2

loc (Ω).

Remark 4.6 (Locality and linearity). (i) If u ∈ D(∆,Ω) and Ω′ is open in X with Ω′ ⊂ Ω,
then u ∈ D(∆,Ω′) and for µ ∈∆u|Ω it follows that µ|Ω′ ∈∆u|Ω′ .

(ii) If u, v ∈ D(∆,Ω), then u+ v ∈ D(∆,Ω) and for µu ∈∆u|Ω and µv ∈∆vΩ it follows that
µu + µv ∈∆(u+ v)|Ω.

Recall that u ∈W 1,2(Ω) is sub-harmonic if∫
Ω
|∇u|2dm ≤

∫
Ω
|∇(u+ g)|2dm ∀g ∈W 1,2(Ω) with g ≤ 0.

One says u is super-harmonic if −u is sub-harmonic, and u is harmonic if it is both sub- and
super-harmonic. The following can be found in [24, Theorem 4.3].

Theorem 4.7 (Characterizing super-harmonicity). Let X be an RCD(K,N) space with K ∈ R
and N ∈ [1,∞), let Ω ⊂ X be open and u ∈ W 1,2

loc (Ω). Then u is super-harmonic if and only if
u ∈ D(∆,Ω) and there exists µ ∈∆u|Ω such that µ ≤ 0.

The following is [6, Theorem 9.13] (see also [25]):

Theorem 4.8 (Strong Maximum Principle). Let X be an RCD(K,N) space with K ∈ R and
N ∈ [1,∞), let Ω ⊂ X be a connected open set with compact closure and let u ∈W 1,2

loc (Ω)∩C(Ω)
be sub-harmonic. If there exists x0 ∈ Ω such that u(x0) = maxΩ̄ u then u is constant.

Let us recall another result of Cavalletti-Mondino :
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Theorem 4.9 (Laplacian of a signed distance, [12, Corollary 4.16]). Let (X, d,m) be a CD(K,N)
space, and Ω and S = ∂Ω as above. Then dS ∈ D(∆, X\S), and one element of ∆dS |X\S that we
also denote with ∆dS |X\S is the Radon functional on X\S given by the representation formula

(∆dS)|X\S = (log hα)′m |X\S +

∫
Q

(hαδa(Xα)∩{dS<0} − hαδb(Xα)∩{dS>0})dq(α).

We note that the Radon functional ∆dS |X\S can be represented as the difference of two measures
[∆dS ]+ and [∆dS |X\S ]− such that

[∆dS |X\S ]+reg − [∆dS |X\S ]−reg = (log hα)′ m -a.e.

where [∆dS |X\S ]±reg denotes the m-absolutely continuous part in the Lebesgue decomposition of
[∆dS |X\S ]±. In particular, −(log hα)′ coincides with a measurable function m-a.e.

To prove the rigidity asserted in Theorem 1.4, we need one more lemma:

Lemma 4.10 (Riccati comparison). Let u : [0, b] → R be non-negative and continuous such
that u′′ + κu ≤ 0 in the distributional sense, u(0) = 1 and u′(0) ≤ d. Let v : [0, b̄] → R be the
maximal non-negative solution of v′′ + κv = 0 with v(0) = 1 and v′(0) = d. That is, v = sκ,−d
from (1.5). Then b̄ ≥ b and d+

dt log u ≤ (log v)′ on [0, b).

Proof. Note that v(r) = cosκ(r) + d sinκ(r) and b̄ = rκ(N−1),−d(N−1),N . Then Lemma 3.1
already yields that b ≤ b̄ and u ≤ v on [0, b]. Therefore, without loss of generality we restrict v
to [0, b].

We pick ϕ ∈ C2
c (R) compactly supported in (−1, 1) with

∫
ϕdL1 = 1 and define ϕε(x) =

εϕ(xε ). Let ε̄ > 0 and ε ∈ (0, ε̄), and let uε =
∫
ϕε(t)u(s − t)dt be the mollification of u by ϕε.

One can check that uε is well-defined on [ε̄, b− ε̄] and uε ∈ C2([ε̄, b− ε̄]) satisfies

u′′ε + (κ+ δ)uε ≤ 0

in the classical sense with δ = δ(ε) → 0 for ε → 0. Since u is continuous, uε(t) → u(t) for all
t ∈ [ε̄, b− ε̄]. Moreover, u′ε(t)→ u′(t) for every t ∈ [ε̄, b− ε̄] where u is differentiable.

Let vε : [0, b̄ε]→ [0,∞) be the maximal positive solution of v′′ε +(κ+δ(ε))vε = 0 with vε(0) = 1
and v′ε(0) = d. Since δ(ε) → 0 for ε → 0 we have b̄ε → b̄, vε → v and v′ε → v pointwise on [0, b̄]
if ε→ 0.

We pick ε̄ ∈ (0, b) and t ∈ [ε̄, b− ε̄] where u is differentiable. Then

0 ≥
∫ t

ε̄

[
vε(u

′′
ε + (κ+ δ)uε)− uε(v′′ε + (κ+ δ)vε)

]
dL1

=

∫ t

ε̄

{[
vεu
′
ε

]′ − [uεv′ε]′} dL1

= vε(t)u
′
ε(t)− uε(t)v′ε(t) + uε(ε̄)v

′
ε(ε̄)− vε(ε̄)u′ε(ε̄)

→ v(t)u′(t)− u(t)v′(t) + u(ε̄)v′(ε̄)− v(ε̄)u′(ε̄)

Since u is semiconcave and continuous on [0, b], the right derivative d+

dt u : [0, b] → R ∪ {∞} is
continuous from the right. Hence, for ε̄ ↓ 0 and any t ∈ (0, b) it follows

0 ≥ v(t)
d+

dt
u(t)− u(t)v′(t) + u(0)v′(0)− v(0)

d+

dt
u(0) ≥ v(t)

d+

dt
u(t)− u(t)v′(t)

Hence d+

dt log u =
d+

dt
u

u ≤ v′

v = (log v)′ as desired. �
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We obtain the following improved Laplace comparison statement for distance functions in
CD(K,N) spaces that may be of interest in its own right. In the smooth context the result was
obtained by Kasue [29, Corollary 2.44] for Riemannian manifolds and by Sakurai [48, Lemma
3.3] for weighted Riemannian manifolds. For weighted Finsler manifolds that satisfy a lower
Bakry-Emery Ricci curvature bound in the sense of [47] the result seems to be new.

Corollary 4.11 (Improved Laplace comparison). Let (X, d,m) be an essentially nonbranching
CD(K ′, N) space with K ′ ∈ R, N ∈ (1,∞) and spt m = X. For K,χ ∈ R, let Ω ⊂ X be closed
with Ω 6= X, m(Ω) > 0 and m(∂Ω) = 0 such that Ω satisfies CDr(K,N) and ∂Ω = S has finite
inner curvature. Assume the inner mean curvature H−S satisfies H−S ≥ (N − 1)χ mS-almost
everywhere. Then

(∆dΩc)|Ω◦ ≤ (N − 1)
s′ K
N−1

,χ
(dΩc)

s K
N−1

,χ(dΩc)
m |Ω◦ .

where sκ,λ was defined in equation (1.5).

Proof. Let u = dS be the signed distance function of S. Let {Xα}α∈Q be the decomposition of
Tu and

∫
mα dq(α) be the disintegration of m given by Theorem 2.7 and Remark 2.14. Recall

that mα = hαH1 for q-a.e. α ∈ Q. We consider Q† ⊂ Q that has full q-measure as defined in
Remark 2.13. For every α ∈ Q† we have that mα = hαH1, Xα,e = Xα and hα is continuous on
[a(Xα), 0] by Remark 2.12 and satisfies

(h
1

N−1
α )′′ +

K

N − 1
h

1
N−1
α ≤ 0 on (a(Xα), 0) ∀α ∈ Q†, (4.4)

in the distributional sense. Note that we have the constant K because of Remark 2.11. As
usual we write hα = hα ◦ γα. We also have the properties of hα as discussed in Remark 2.10.
The function r ∈ [0,−a(Xα)] 7→ h̃α(r) := hα(−r) is also continuous and (4.4) is still holds on
(0,−a(Xα)). Recall that by the lower mean curvature bound the set of α’s in Q with hα(0) = 0
has q-measure 0. Hence hα(r) > 0 for q-a.e. α.

Therefore, for q-a.e. α ∈ Q† we have that [h̃α(r)/h̃α(0)]
1

N−1 =: u(r) satisfies u′′(r) +
K
N−1u(r) ≤ 0 in the distributional sense with u(0) = 1. Moreover, we have

χ(N − 1) ≤ H−S (γα(0)) =
d−

dr

∣∣∣
r=0

log hα(r) = −d
+

dr

∣∣∣
r=0

log h̃α(r)

and therefore

d+

dr

∣∣∣
r=0

u(r) =
d+

dr

∣∣∣
r=0

[
h̃α(r)

h̃α(0)

] 1
N−1

≤ −χ.

By Theorem 4.9, dS ∈ D(∆, X\S) and

(∆dS)|X\S = (log hα)′m |X\S +

∫
Q

(hαδa(Xα)∩{dS<0} − hαδb(Xα)∩{dS>0})dq(α).

Recall that −dS |Ω◦ = dΩc |Ω◦ and by locality of the distributional Laplacian ((∆dS)|X\S)|Ω◦ =
∆(dS |Ω◦) = ∆(−dΩc |Ω◦). Hence

∆(−dΩc |Ω◦) = (log hα)′m |Ω◦ +

∫
Q

(hαδa(Xα)∩{dS<0} − hαδb(Xα)∩{dS>0}dq(α).
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Any γα for α ∈ Q that starts inside of Ω◦ satisfies γα(b(Xα)) ∈ Ωc. Hence
∫
Q hαδb(Xα)∩Ω◦dq(α) =

0. Recall that −(log hα)′(r) = (log h̃α)′(−r). It follows that

(∆dΩc)|Ω◦ = −∆(−dΩc)|Ω◦ ≤ −(log hα)′m |Ω◦ = (log h̃α)′m |Ω◦ .

In the first equality it seems as one would use linearity of the Laplacian to pull the minus sign
in front of ∆. But if one examines the proof of Theorem 4.9, one can easily observe that this
is possible also in CD (or even MCP context) because replacing dS with −dS just results in
reversing the parametrization of the geodesics γα.

Now the corollary follows immediately from the curvature bounds and the Riccati comparison
lemma (Lemma 4.10). �

4.4 Proof of rigidity (Theorem 1.4)

1. We assume that K ∈ {N − 1, 0,−(N − 1)}.
Now dS |Ω◦ = −dΩc |Ω◦ ∈ D(∆,Ω◦) and by Corollary 4.11 we have

1

N − 1
∆dΩc |Ω◦ ≤

s′ K
N−1

,χ
(dΩc)

s K
N−1

,χ(dΩc)
m |Ω◦ =

− K
N−1 sin K

N−1
dΩc − χ cos K

N−1
dΩc

cos K
N−1

dΩc − χ sin K
N−1

dΩc
m |Ω◦ . (4.5)

Assume equality holds in the inradius bound (1.6), meaning dΩc(p) = rK,χ(N−1),N < ∞ for
some p ∈ Ω◦ by Remark 2.4. In particular, there exists a geodesic γ∗ : [a, b] → Ω of length
L(γ∗) = d(γ∗(a), γ∗(b)) = rK,χ(N−1),N such that γ∗(a) = p and γ∗(b) ∈ S := ∂Ω. Moreover
BrK,χ(N−1),N

(p) ⊂ Ω◦ and

1

N − 1
∆dp|Ω◦\{p} ≤

cos K
N−1

dp

sin K
N−1

dp
m |Ω◦\{p} (4.6)

by the Laplace comparison theorem [23, Corollary 5.15] (heuristically the limit χ → ∞ in
inequality (4.5); see also [12, Theorem 1.1]).

We will add the previous inequalities (4.5) and (4.6). We first note that

sin K
N−1

(dp)
[
cos K

N−1
dΩc − χ sin K

N−1
dΩc

]
= sin K

N−1
(dp)

[
s K
N−1

,χ(dΩc)
]
> 0 m-a.e. on Ω◦.

This is true because on the one hand JK,χ(N−1),N (dΩc) = (sK/(N−1),χ(dΩc))
N−1 > 0 m-a.e. on

Ω◦. The latter is easy to see using the disintegration induced by dΩc on Ω◦ and Theorem 1.1.
For the other factor recall when K = N −1 > 0 that dp ≤ π for any p ∈ X by the Bonnet-Myers
diameter estimate (e.g. [49]) with at most one point q 6= p where dp(q) = π [46].

Adding the inequalities (4.5) and (4.6) and using the linearity of the Laplace operator yields(
sin K

N−1
(dp)

[
s K
N−1

,χ(dΩc)
]) ∣∣∣

Ω◦\{p}

∆(dp + dΩc)

N − 1

∣∣∣
Ω◦\{p}

≤
([

cos K
N−1

dp

] [
cos K

N−1
dΩc

]
−
[
sin K

N−1
dp

] K

N − 1

[
sin K

N−1
dΩc

])
m |Ω◦\{p}

− χ
([

sin K
N−1

dp

] [
cos K

N−1
dΩc

]
+
[
cos K

N−1
dp

] [
sin K

N−1
dΩc

])
m |Ω◦\{p}

=
(

cos K
N−1

(dp + dΩc)− χ sin K
N−1

(dp + dΩc)
)

m |Ω◦\{p}

= s K
N−1

,χ(dp + dΩc) m |Ω◦\{p}

≤ 0.



20 A. Burtscher, C. Ketterer, R. J. McCann, E. Woolgar

The last inequality follows from rK,χ(N−1),N ≤ dp+dΩc ≤ 2rK,χ(N−1),N by the triangle inequality,
the definition of rK,χ(N−1),N , the period < 2rK,χ(N−1),N of the sinusoid s K

N−1
,χ, and Theorem

1.1.
Hence dp+dΩc on Ω◦\{p} is a super-harmonic function that attains its minimum rK,χ(N−1),N

inside Ω◦\{p} along the geodesic γ∗. Therefore, dp + dΩc = rK,χ(N−1),N on the connected
component Ω∗ of γ∗ in Ω◦\{p} by the strong maximum principle (Theorem 4.8).

In particular, it follows that Ω∗ ⊂ BrK,χ(N−1),N
(p) and a(Xα) = −rK,χ(N−1),N for q-a.e. α ∈ Q

such that Imγα intersects with Ω∗ (and therefore γα(Iα) ⊂ Ω∗). Moreover, both inequalities (4.5)
and (4.6) are saturated throughout Ω∗:

∆dΩc |Ω∗ = (N − 1)
− K
N−1 sin K

N−1
dΩc − χ cos K

N−1
dΩc

cos K
N−1

dΩc − χ sin K
N−1

dΩc
m |Ω∗ .

By Theorem 4.9,

(∆dp) ◦ γα(r) = −(∆dΩc) ◦ γα(r) = (log hα)′ ◦ γα(r)

for r ∈ [−rK,χ(N−1),N , 0) and q-a.e. α ∈ Q. Recall that (log hα)′ ◦ γα(r) is in fact given by
(log hα)′(r) for the density hα of mα with respect to L1 on [a(Xα), b(Xα)].

Solving the resulting ODE for hα yields

hα(r) = hα(0)JK,χ(N−1),N (−r) for r ∈ [−rK,χ(N−1),N , 0) and q-a.e. α ∈ Q.

Proportionality of s K
N−1

,χ(rK,χ(N−1),N − r) to sin K
N−1

(r) therefore provides λ > 0 such that

m(BR(p) ∩ Ω∗) = λ

∫ R

0
(sin K

N−1
r)N−1dr ∀R ∈ [0, rK,χ(N−1),N ].

Hence BrK,χ(N−1),N
(p) ∩ Ω∗ = Ω∗ is a volume cone in the sense of (4.2).

2. We will show that Ω◦\{p} is connected. We argue by contradiction and outline the idea
first. We can construct explicitly a Wasserstein geodesic between δq for a point q ∈ Ω◦\(Ω∗∪{p})
and another m-absolutely continuous measure concentrated in Ω∗. If Ω◦\{p} is not connected
but Ω◦ is, this Wasserstein geodesic is concentrated on branching geodesics unless the metric
measure space is isomorphic to an interval equipped with a measure that has a non-negative
and semiconcave density w.r.t. L1. Since the former contradicts the essentially non-branching
property of RCD spaces, the latter must hold. But in this case the volume cone property of m
on Ω∗ contradicts that spt m = X and that the L1 density of m must be positive in the interior
of the interval because of semiconcavity.

Now, we give the precise construction. Assume Ω◦\{p} is not connected. Then we can pick
q′ ∈ Ω∗∗ := (Ω◦\{p})\(Ω∗). One can see that Ω∗∗ is open. Since Ω∗∗ is open, it has positive
measure. Thus we can pick q′ as above such that there is a unique arclength parameterized
geodesic r ∈ [0, d(p, q′)] 7→ γ̂ between p = γ(0) and q′, and such that γ̂ is inside Ω. Choose δ > 0
small enough such that B2δ(p) ⊂ Ω and set q := γ̂(δ).

The set Ω∗∩Bδ(p) is open and hence has positive m measure. Let µ0 = 1
m(Ω∗∩Bδ(p)) m |Ω∗∩Bδ(p)

and (µt)t∈[0,1] be the Wasserstein geodesic between µ0 and δq = µ1. Since we assume that
Ω◦ = Ω∗ ∪ Ω∗∗ ∪ {p} is connected, but Ω∗ ∪ Ω∗∗ = Ω◦\{p} is not connected, we have that the
unique L2-Wasserstein geodesic (µt)t∈[0,1] (for uniqueness see [10] for instance) must be given by
µt = (et)#Π with Π ∈ P(G(X)) supported on geodesics that are reparametrized concatenations
of the geodesic segments r ∈ [0, δ] 7→ γα(−rK,χ(N−1),N + δ − r) and γ̂|[0,δ]. (Note that any
geodesic that connects q with a point in Ω∗ must stay in B2δ(p) ⊂ Ω and since we assume Ω\{p}
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is not connected, such geodesics must go through p. And for m-a.e. x in Ω∗ ∩Bδ(p) the unique
geodesic that connects x with p is given by the restriction of some geodesic γα for α ∈ Q.)

But RCD spaces are essentially non-branching (see also Remark 4.12 below). Hence it follows
that Π must be concentrated on non-branching geodesics. Hence, there exists a single geodesic
γ̃ such that Π is concentrated on γ̃. In particular (Ω∗ ∩ Bδ(p),m |Ω∗∩Bδ(p)) is isomorphic to an
interval. Then by [35, Theorem 1.1] (X, d,m) is isomorphic to a 1-dimensional manifold. Let us
assume p = 0 ∈ R and q = −d(0, q) = −δ ∈ R and Ω∗ ⊂ (0,∞). By the volume cone property
that we proved in the previous step we have dm |Ω∗(r) is proportional to sinN−1

K/(N−1) |r|dr. Since

the density of m w.r.t. L1 must be semi-concave [35, Theorem 1.1] and positive for interior
points but must vanish at the origin, we have a contradiction. Hence Ω◦\{p} = Ω∗ is connected.

3. We can finish the proof of the main theorem by application of Theorem 4.2. Recall that
Theorem 4.2 provides a measure space isomorphism U between (Ω◦,m |Ω◦) and a truncated
cone such that U and its inverse are locally distance preserving. This yields that U must be
an isometry with respect to the induced intrinsic distances. Though this conclusion might be
obvious to experts, we provide the proof in the following.

We observe first that S = ∂BrK,χ(N−1),N
(p) must contain more than two points: our hypothe-

ses rule out S ⊂ {pt}, while if S consists of precisely two points, Remark 4.3 asserts N = 1 and
that is also excluded by assumption.

Hence, only the last case in Theorem 4.2 remains relevant to us. By Remark 4.4 there
exist local isometries U and V between Ω◦ = BrK,χ(N−1),N

(p) and the ball BrK,χ(N−1),N
(o) in the

corresponding cone that are also measure preserving bijections.

Now, it is standard knowledge that U is an isometry with respect to the induced intrinsic
distances.

Let us be more precise. Set rK,χ(N−1),N = R and let d̃ε be the induced intrinsic distance

on B̄R−ε(p). We denote by d∗ the cone (or suspension distance) and by d̃∗ and d̃∗ε the induced
intrinsic distances of BR(o) and B̄R−ε(o), respectively. Then U is an isometry between B̄R−ε(p)
and B̄R−ε(o) with respect to the induced intrinsic distances.

To prove this let γ : [0, 1]→ B̄R−ε(p) be a geodesic with respect to d̃ε between x, y ∈ B̄R−ε(p).
We can divide γ into k ∈ N small pieces γ|[ti−1,ti] with i = 1, . . . , k and t0 = 0, tk = 1 such that
each piece stays inside a small ball that is mapped isometrically with respect to d via U to a
small ball in BR(o). We obtain

k∑
i=1

d∗(U(γ(ti−1)), U(γ(ti))) =
k∑
i=1

d(γ(ti−1), γ(ti)) ≤
k∑
i=1

d̃ε(γ(ti−1), γ(ti)) = d̃ε(x, y).

The first equality holds because U is an isometry with respect to d and d∗ on the small balls
that contain γ|[ti−1,ti]. The last equality holds because γ is geodesic with respect to d̃ε and the
inequality holds because the intrinsic distance is always equal or larger than d itself.

On the left hand side we can take the supremum with respect to all such subdivisions
(ti)i=0,...,k−1. This yields d̃∗ε (U(x), U(y)) ≤ L(U ◦ γ) ≤ d̃ε(x, y) where L(U ◦ γ) is the length
of the continuous curve U ◦ γ. In particular U ◦ γ is a rectifiable curve(that means has finite
length) in B̄R−ε(o).

We can argue in the same way for the inverse map V and obtain that U : B̄R−ε(p)→ B̄R−ε(o)
is an isometry with respect to the induced intrinsic distances d̃ε and d̃∗ε .

Finally, we let ε→ 0 and observe that d̃ε → d̃ on B̄R−ε(p) and the same for d̃∗ε and d̃∗. This
finishes the proof. �

Remark 4.12. A deep new result by Qin Deng [18] shows that RCD spaces are in fact non-
branching. In this case the middle step of the previous proof simplifies: If Ω◦\{p} is not
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connected but Ω◦ is connected, this yields almost immediately the existence of a branching
geodesic unless the space is isomorphic to an interval equipped with a measure. The proof of
Deng’s result is quite long and involved. Therefore we provide a proof that only relies on the
relatively weak property that the space is essentially non-branching.

A Substituting measure contraction for lower Ricci bounds

In this appendix we will sketch why the results of Theorem 1.1 also hold when one replaces the
condition CD(K,N) with the weaker measure contraction property MCP(K,N) that was intro-
duced in [49, 46]. We will not repeat the technical details but focus on necessary modifications
for this setup.

For a proper metric measure space (X, d,m) that is essentially nonbranching there are several
equivalent ways to define the MCP(K,N). The following one can be found in [9, Section 9].

Definition A.1 (Measure contraction property). Let (X, d,m) be proper and essentially non-
branching. The measure contraction property MCP(K,N), K ∈ R and N ∈ (1,∞) holds if
for every pair µ0, µ1 ∈ P2(X) such that µ0 is m-absolutely continuous there exists a dynamical
optimal plan Π such that (et)#Π = µt ∈ P2(m) and

ρt(γt)
− 1
N ≥ τ (1−t)

K,N (d(γ0, γ1))ρ0(γ0)−
1
N for Π-a.e. geodesic γ.

where µt = ρt m.
For Ω ⊂ X with m(Ω) > 0 the restricted measure contraction property MCPr is defined

similarly as the condition CDr (compare with Definition 2.3).

All the technical results in Section 2.3 still hold when we replace the condition CD(K,N)
with MCP(K,N) (c.f. [12]). Only in Theorem 2.9 the density hα of the conditional measure mα

need not satisfy (2.3) and therefore need not be semiconcave, although it does remain locally
Lipschitz on (a(Xα), b(Xα)) and extends continuously to the endpoints. Instead one has only

hα(γt)
1

N−1 ≥ σ(1−t)
K,N (|γ0 − γ1|)hα(γ0)

1
N−1 (A.1)

for every affine function γ : [0, 1]→ [a(Xα), b(Xα)] in general where we consider hα as a contin-
uous function on [a(Xα), b(Xα)].

Considering Ω ⊂ X with ∂Ω = S and m(S) = 0 then Definition 2.15 for mS continues
to make sense. We also can define the notion of finite inner curvature of Ω. However, since
hα is not semiconcave in general, the right and the left derivative might not exist for every
t ∈ [a(Xα), b(Xα)]. Therefore, for a continuous function f : [a, b]→ R we set

d−

dt
f(t) = lim sup

h↑0

1

h
[f(t+ h)− f(t)] for t ∈ (a, b].

We can set up a definition of mean curvature for subsets in MCP spaces in the following way.

Definition A.2 (Inner mean curvature revisited in the MCP setting). Set S = ∂Ω and let
{Xα}α∈Q be the disintegration induced by u := dS . Recalling (2.5), we say that S has finite

inner (respectively outer) curvature if m(B†in) = 0 (respectively m(B†out) = 0). If S has finite
inner curvature we define the inner mean curvature of S mS-almost everywhere as

p ∈ S 7→ H−S (p) :=

{
d−

dr |r=0 log hα ◦ γα if p = γα(0) ∈ S ∩A†,
∞ if p ∈ B†out,e ∩ S

(A.2)

where we set d−

dr log hα(γα(0)) = −∞ if hα(γα(0)) = 0.
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Theorem A.3 (Inscribed radius bounds under MCP). Let (X, d,m) be an essentially non-
branching MCP(K ′, N) space with K ′ ∈ R, N ∈ (1,∞) and spt m = X. Consider K,H ∈ R
such that ( K

N−1 ,
H
N−1) satisfies the ball condition. Let Ω ⊂ X be closed with Ω 6= X, m(Ω) > 0

and m(∂Ω) = 0 such that Ω satisfies the restricted curvature-dimension condition MCPr(K,N)
for K ∈ R and ∂Ω = S has finite inner curvature. Assume the inner mean curvature H−S
satisfies H−S ≥ H mS-a.e., where mS denotes the surface measure. Then

InRad Ω ≤ rK,H,N

where InRad Ω = supx∈Ω dΩc(x) is the inscribed radius of Ω.

Proof. Let η : [0, 1] → [a(Xα), 0] be an affine function with a(Xα) < η1 < η0:= 0. We note
that |η0 − η1| = d(γα(η0), γα(η1)). From (A.1) we have

hα(η(t))
1

N−1 ≥ σ(1−t)
K/N−1(|η0 − η1|)hα(η0)

1
N−1

for any α ∈ Q†. It follows

d−

dr

∣∣∣
r=η0

hα = lim sup
ηt→η0

1

ηt − η0
[hα(ηt)− hα(η0)] ≤ 1

η1 − η0

d

dt

∣∣∣
t=0

σ
(1−t)
K/N−1(|η0 − η1|)N−1hα(η0).

If the inner mean curvature is bounded below by H, then

H ≤ 1

η1 − η0

d

dt

∣∣∣
t=0

σ
(1−t)
K/N−1(|η0 − η1|)N−1 =

−|η0 − η1|
η1 − η0

(N − 1)
cosK/(N−1)(|η0 − η1|)
sinK/(N−1)(|η0 − η1|)

.

Hence H
N−1 ≤

cosK/(N−1)(|η0−η1|)
sinK/(N−1)(|η0−η1|)

for q-a.e. α ∈ Q†. The sharp Bonnet-Myers diameter bound

[41] [49] for CD(K,N) spaces yields |η0 − η1| < π K
N−1

from (1.2). Thus the denominator above

is non-negative and

0 ≤ cosK/(N−1)(|η0 − η1|)−
H

N − 1
sinK/(N−1)(|η0 − η1|).

Since this expression holds for all η1 ∈ (a(Xα), 0) we conclude d(γα(η0), γα(η1)) = |η0 − η1| ≤
rK,H,N . Otherwise |η0 − η1| > rK,H,N implies that the right hand side in the last inequality is
negative by the definition of rK,H,N .

Now, taking η1 → a(Xα), one can finish the argument exactly as for CD(K,N) spaces. �

B A different form of mean curvature bound also suffices

Inspired by [13], in this appendix we introduce another new notion of mean curvature bounded
from below which yields Theorems 1.1 and Theorem 1.4 without requiring finite inner curva-
ture of Ω but assuming that the measure p0 in Remark 2.16 is a Radon measure on Q. Let
L1
−loc(Q, dp0) denote the class of p0-measurable functions k : Q −→ [−∞,∞] whose negative

part min{0, k} belongs to L1
loc(Q, dp0), i.e. is locally p0-summable.

Definition B.1 (Backward mean curvature bounded below). Let (X, d,m) be an essentially
nonbranching metric measure space that satisfies MCP or CD. Recall the family of measures
{pt}t∈(−∞,0] on Q given by dpt(α) = hα ◦ g(α, t)dq|Vt(α) that we introduced in Remark 2.16,
and its image mSt = g(·, t)#pt on X. Recall that Q is constructed as a Borel subset of X and
(α, t) 7→ g(α, t) is the ray map constructed in that remark.
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Then S = ∂Ω has backward mean curvature bounded from below by k ∈ L1
−loc(Q, dp0) if the

measure p0 is a Radon measure, hα ◦ g(α, 0) > 0 for q-a.e. α ∈ Q, and

d−

dt

∣∣∣
t=0

∫
Y
dpt := lim sup

t↑0

1

t

(∫
Y
dpt −

∫
Y
dp0

)
≥
∫
Y
k(q)dp0(q) (B.1)

for any bounded measurable subset Y ⊂ Q. Moreover, S has backward-lower mean curvature
bounded from below by k if the same inequality holds when lim sup is replaced by lim inf.
Heuristically, these limits quantify the relative rate of change of surface area of the level sets of dS ,
as when Y = Q ⊂ X is bounded. We may denote the greatest lower bounds k± ∈ L1

−loc(Q, dp0)
for the backwards and backwards-lower mean curvature for k+ and k− respectively.

Remark B.2. Since it is not assumed that pt for t < 0 is a Radon measure,
∫
Y dpt can be

infinite.

Similarly, when we want to distinguish between upper and lower limits, we refer to (A.2) as
the inner mean curvature, and to the analogous quantity with lim inf in place of lim sup, as the
inner-lower mean curvature. In a CD(K,N) space, these two notions coincide.

Lemma B.3 (Backward versus inner mean curvature in MCP). Let (X, d,m) be an essentially
nonbranching MCP(K,N) space. Assume that S = ∂Ω for some Borel set Ω that has finite
inner curvature in the sense of Definition A.2 and that hα ◦ g(α, 0)dq(α) = dp0(α) is a Radon
measure with hα ◦ g(α, 0) > 0 for q-a.e. α ∈ Q. Then mS-almost everywhere, the inner mean
curvature H−S (x) of S is bounded from below by k(x) if S has backward mean curvature bounded
from below by k ◦ g(·, 0) ∈ L1

−loc(Q, dp0).

Conversely, the backward-lower mean curvature is bounded from below by k ◦ g(·, 0) if k ◦
g(·, 0) ∈ L1

−loc(Q, dp0) and there exists δ > 0 such that (i) the inner-lower mean curvature of
S is bounded from below by k(x) for mS-almost every x ∈ S, and (ii) b(Xα) > δ holds for
q-a.e. α ∈ Q. Note (ii) is satisfied if Ω satisfies a uniform exterior ball condition.

Proof.
1. Assume backward mean curvature bounded below by k ◦ g(·, 0) ∈ L1

−loc(Q, dp0). Then, by
monotonicity of the right hand side in (B.1) the backward mean curvature is also bounded below
by kM := min{k,M} ∈ L1

loc(Q, dp0) for M > 0 arbitrary.

We can compute for t < 0 and a bounded measurable set Y ⊂ Q:

∫
Y
dpt −

∫
Y
dp0 =

∫
Y

(1Vt(α)hα ◦ g(α, t)− 1V0(α)hα ◦ g(α, 0)) dq(α).

There exists a measurable subset Q∗ ⊂ Q† with q[Q† \Q∗] = 0 such that the mapM : α ∈ Q∗ 7→
−a(Xα) ∈ [0,∞) is measurable (for instance compare with step 1 in the proof of Theorem 7.10 in
[9] or Remark 3.4 in [28]). Then, we consider the family of measurable sets Qm =M−1([ 1

m ,m])
for m ∈ N that satisfy

⋃
m∈NQm = Q∗. As in [9]

1

hα ◦ g(α, 0)

1

r
(hα ◦ g(α, r)− hα ◦ g(α, 0)) ≤ (N − 1)

cos−|K|/(N−1)(−a(Xα))

sin−|K|/(N−1)(−a(Xα))
≤ C(K,N,m)
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∀r ∈ (a(Xα), 0), ∀α ∈ Qm. Thus Fatou’s lemma yields

∫
Y ∩Qm∩V0

(kMhα)◦g(α, 0)dq(α) =

∫
Y ∩Qm

kM ◦ g(α, 0)dp0(α)

≤
∫
Y ∩Qm

lim sup
t↑0

1

t
(1Vt(α)hα ◦ g(α, t)− 1V0(α)hα ◦ g(α, 0)) dq(α)

≤
∫
Y ∩Qm

lim sup
t↑0

1

t
(1Vt∩V0(α)hα ◦ g(α, t)− 1V0(α)hα ◦ g(α, 0)) dq(α)

=

∫
Y ∩Qm∩V0

d−

dt
|t=0hα ◦ g(α, t)dq(α)

for any bounded measurable Y ⊂ Q. It follows that

(kMhα) ◦ g(α, 0) ≤ d−

dt
|t=0hα ◦ g(α, t) for q-a.e. α ∈ V0. (B.2)

We assumed hα ◦ g(α, 0) > 0 for q-almost every α ∈ V0. Therefore, it follows that

∫
Y ∩V0

(kMhα) ◦ g(α, 0)dq(α) ≤
∫
Y ∩V0

d−

dt
|t=0hα ◦ g(α, t)dq(α)

=

∫
Y ∩V0

d−

dt
|t=0 log(hα ◦ g(α, t))hα ◦ g(α, 0)dq(α)

Now, we recall that V0 ⊂ Q(A†)∪B†in with q(Q(A†∪B†in)\V0) = 0 and m(B†in) = q(Q(B†in)) = 0
(because we assume finite inner curvature). Moreover g(α, t) = γα(t), hα ◦ g(α, t) = hα ◦γα(t) =
hα(t) and α = γα(0) if α ∈ Q(A). Hence mS = mS0 = g(·, 0)#p0 and

∫
Y
kMdmS =

∫
Y ∩Q(A†)

kM ◦ γα(0)hα(0)dq(α)

≤
∫
Y ∩Q(A†)

H−S ◦ γα(0)hα(0)dq(α) =

∫
Y
H−S dmS .

and consequently kM ≤ H−S mS-almost everywhere. Letting M →∞ yields k ≤ H−S mS-almost
everywhere.

2. Now assume for some k ◦ g(·, 0) ∈ L1
−loc(Q, dp0) that mS-a.e. the inner-lower mean curvature

is bounded from below by k. We also assume that b(Xα) > δ > 0 for q-almost every α ∈ Q and
some δ > 0. This implies Bin = ∅ and hence mS0 = mS . Recall from the proof of Lemma 2.21
that this is true if Ω satisfies a uniform exterior ball condition.

Again as in [9]

−C(K,N, δ) ≤ −(N − 1)
cos−|K|/(N−1)(b(Xα)− a(Xα))

sin−|K|/(N−1)(b(Xα)− a(Xα))
≤ (hα ◦ g(α, r)− hα ◦ g(α, 0))

r · hα ◦ g(α, 0)

∀r ∈ (a(Xα), b(Xα)).
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Using Fatou’s lemma again, it follows that∫
Y
k ◦ γα(0)dp0(α) =

∫
Y ∩V0

(khα) ◦ g(α, 0)dq(α)

=

∫
Y ∩Q(A†)

k(γα(0))hα(0)dq(α)

≤
∫
Y ∩V0

lim inf
t↑0

log hα(t)− log hα(0)

t
hα(0)dq(α)

≤ lim inf
t↑0

∫
Y

1

t
(1Vt(α)hα(t)− 1V0(α)hα(0)) dq(α)

= lim inf
t↑0

1

t

(∫
Y
dpt −

∫
Y
dp0

)
,

for any bounded measurable set Y ⊂ Q. Thus the backward-lower mean curvature is bounded
below by k ◦ g(·, 0) as desired. �

Corollary B.4 (Backward versus inner mean curvature in CD). Let (X, d,m) be an essentially
nonbranching CD(K,N) space. Assume that S = ∂Ω for some Borel set Ω satisfies a uniform
external ball condition and that hα◦g(α, 0)dq(α) = dp0(α) is a Radon measure with hα◦g(α, 0) >
0 for q-a.e. α ∈ Q. Then S has a backwards mean curvature bound k ∈ L1

−loc(Q, dp0) from below

if and only if S has inner mean curvature H−S ∈ L1
−loc(S, dmS). When either holds, then p0-

almost everywhere on Q, the backward and backward-lower mean curvatures k± of S both coincide
with H−S ◦ g(·, 0).

Proof. Recall that the uniform external ball condition assumed implies S has finite inner cur-
vature by Lemma 2.21, and that mS = mS0 . Let H−S denote the inner mean curvature of S,

which agrees with its inner-lower mean curvature mS-a.e. due to the semiconcavity of h
1/(N−1)
α

in CD(K,N) spaces.

If S has a backwards mean curvature bound k ◦ g(·, 0) ∈ L1
−loc(Q, dp0) from below, it admits

a greatest such bound k+ ◦ g(·, 0). Lemma B.3 asserts H−S ◦ g(·, 0) ≥ k+ ◦ g(·, 0) holds p0-a.e.,
which implies H−S ∈ L1

−loc(S, dmS).

Conversely, if S has inner mean curvature H−S ∈ L1
−loc(S, dmS), then Lemma B.3 asserts S

has backwards-lower mean curvature k− ◦ g(·, 0) ≥ H−S ◦ g(·, 0) ∈ L1
−loc(Q, dp0). We conclude

k− ◦ g(·, 0) is also a backwards (i.e. backwards-upper) mean curvature lower bound for S.

Since k+◦g(·, 0) ≥ k−◦g(·, 0) by definition, in either (and hence both) cases above we conclude
equalities hold p0-a.e. in all three of the inequalities preceding, to conclude the proof. �

We state a theorem under MCP. The corresponding statement for CD then follows since CD
implies MCP for essentially nonbranching proper metric measure spaces.

Theorem B.5 (Inradius bounds under backward mean curvature bounded below). Let (X, d,m)
be an essentially nonbranching MCP(K,N) space with K ∈ R, N ∈ (1,∞) and spt m = X. Let
Ω ⊂ X be closed with Ω 6= X, m(Ω) > 0 and m(∂Ω) = 0. Assume ∂Ω = S has backward mean
curvature bounded from below by H ∈ R. Then

InRad Ω ≤ rK,H,N .

Proof. As in the previous appendix we have

hα(t)
1

N−1 ≥ σ
(

1− t
a(Xα)

)
K/N−1 (−a(Xα))hα(0)

1
N−1
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for any t ∈ (a(Xα), 0) and any α ∈ Q†. Therefore, it follows that

d−

dt

∣∣∣
t=0

hα ◦ g(α, t) = lim sup
t↑0

1

t
(hα(g(α, t))− hα(g(α, 0)))

≤ d−

dt

∣∣∣
t=0

σ

(
a(Xα)−t
a(Xα)

)
K/N−1 (−a(Xα))N−1hα(g(α, 0)).

Since the backward mean curvature is bounded below by H, for Y ⊂ Q bounded and measurable
it follows that

H

∫
Y ∩V0

hα ◦ g(α, 0)dq(α) ≤
∫
Y ∩V0

d−

dt
|t=0hα ◦ g(α, t)dq(α). (B.3)

We obtain the inequality (B.2) exactly as in the beginning of step 1 of the proof of Lemma B.3.
By the definition of backward-lower mean curvature bounds we have hα(0) = hα ◦ g(α, 0) > 0
for q-almost every α. Hence

H

N − 1
≤ 1

N − 1

d−

dt

∣∣∣
t=0

log hα ◦ g(α, t) ≤
cosK/(N−1)(−a(Xα))

sinK/(N−1)(−a(Xα))

for q-a.e. α ∈ V0 = Q(A ∪Bin).

At this point it is clear that we can finish the proof as in Theorem A.3. �

Theorem B.6 (Rigidity under backward mean curvature bounded from below). Let (X, d,m)
be RCD(K,N) for K ∈ R and N ∈ (1,∞) and let Ω ⊂ X be compact with Ω 6= X, m(Ω) > 0,
connected and non-empty interior Ω◦ and m(∂Ω) = 0. We assume that K ∈ {N−1, 0,−(N−1)},
∂Ω = S 6= {pt} and S has backward mean curvature bounded below by χ(N − 1) ∈ R. Then,
there exists x ∈ X such that

dS(x) = InRad Ω = rK,χ(N−1),N

if and only if max{K,χ} > 0 and there exists an RCD(N−2, N−1) space Y such that (Ω◦, d̃Ω◦)
is isometric to (BrK,χ(N−1),N

(0), d̃) in Ĩ K
N−1
×N−1

sinK/(N−1)
Y , where d̃Ω and d̃ are the induced intrinsic

distances of Ω◦ and BrK,χ(N−1),N
(0), respectively.

Proof. In the end of the proof of Theorem B.5 we obtained H ≤ d−

dt

∣∣∣
t=0

log hα ◦g(α, t) for q-a.e.

α ∈ V0 with H = χ(N − 1), so in particular for α ∈ Q(Bin). Then using the Riccati comparison
and the maximum principle we can follow verbatim the same proof as in Section 4. �
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[2] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Density of Lipschitz functions and equivalence of weak
gradients in metric measure spaces. Rev. Mat. Iberoam., 29(3):969–996, 2013.

[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Calculus and heat flow in metric measure spaces and
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