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Abstract

We show that the porous medium equation has a gradient �ow

structure which is both physically and mathematically natural� In or�

der to convince the reader that it is mathematically natural� we show

the time asymptotic behavior can be easily understood in this frame�

work� We use the intuition and the calculus of Riemannian geometry

to quantify this asymptotic behavior�

Contents

� The porous medium equation as a gradient �ow �

��� The porous medium equation � � � � � � � � � � � � � � � � � � �
��� Abstract gradient �ow � � � � � � � � � � � � � � � � � � � � � � �
��� Two interpretations of the porous medium equation as gradi�

ent �ow � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� A physical argument in favor of the new gradient �ow �

� A mathematical argument in favor of new gradient �ow �

��� Self similar solutions and asymptotic behaviour � � � � � � � � �
��� A new asymptotic result � � � � � � � � � � � � � � � � � � � � � �	
��� The asymptotic result expressed in a more traditional framework ��
��� Veri
cation of key ingredients to asymptotic result � � � � � � � ��
��� Derivation of asymptotic result by formal Riemannian calculus ��

�Department of Mathematics� University of California at Santa Barbara�

otto�math�ucsb�edu

�



� The geometry of 
M� g� ��

��� The isometric submersion � � � � � � � � � � � � � � � � � � � � ��
��� A property of the map � � � � � � � � � � � � � � � � � � � � � � ��
��� Identi
cation of geodesics and the induced distance � � � � � � ��
��� Computation of the Hessians HessE and HessM � � � � � � � � �	
��� Formula for the sectional curvature � � � � � � � � � � � � � � � ��
��� A natural time discretization � � � � � � � � � � � � � � � � � � � ��

� Rigorous results ��

��� Weak solutions of the porous medium equation � � � � � � � � � ��
��� The Wasserstein metric � � � � � � � � � � � � � � � � � � � � � � �	
��� The statement of the rigorous result � � � � � � � � � � � � � � � ��
��� Proof of the Proposition � � � � � � � � � � � � � � � � � � � � � ��
��� Proof of the Theorem� part I � � � � � � � � � � � � � � � � � � � ��
��� Proof of the Theorem� part II � � � � � � � � � � � � � � � � � � ��

� Acknowledgments 	�

� The porous medium equation as a gradient

�ow

��� The porous medium equation

The porous medium equation is given by

��

�t
�r��m � 	� 
��

Throughout the article� � � 	 should be thought of as a 
time�dependent�
density function on the whole N�dimensional space IRN � Here� ��

�t
denotes

the 
partial� derivative w� r� t� time t � �	���� r denotes the gradient with
respect to the spatial variables x � IRN � r� the divergence w� r� t� x and
r� the Laplacian w� r� t� x� In section �� we will give a brief derivation of

�� from assumptions on the physics of a gas �ow through a porous medium�
We restrict our attention to the case where the exponent satis
es m � �� �

N

and m � N
N��

� the reason for these restrictions will become apparent in the
sequel�

�



The porous medium equation is a parabolic equation� more precisely� a dif�
fusion equation for �� In case of m � �� the di�usion degenerates for � � 	�
This for instance has the e�ect of preserving a compact support and hence
is called �slow di�usion�� The case m � � is called fast di�usion� In a weak
setting� which will be intruduced in section �� the Cauchy problem for 
�� is
well�posed� Therefore� 
�� de
nes an evolution of densities on IRN � in other
words� a semi group on the space of densities on IRN � We will show that this
semi group has the structure of a gradient �ow�

��� Abstract gradient �ow

We claim that the porous medium equation can be interpreted as a gradient
�ow� Let us 
rst introduce the notion of a gradient �ow in the generality we
need� The mathematical structure required to make sense of a gradient �ow
is

� a di�erentiable manifoldM�

� a metric tensor g onM� which makes 
M� g� a Riemannian manifold�

� and a function
al� E onM�

We call the dynamical system in M given by the autonomous di�erential
equation

d�

dt
� �gradEj� 
��

the gradient �ow of E on 
M� g�� Observe that the metric tensor g is a
necessary ingredient to the notion� It converts the di�erential di� E of E�
which is a cotangent vector 
eld� into the gradient gradE of E� which is a
tangent vector 
eld�

g
gradE� s� � di�E�s for all vector 
elds s onM� 
��

Hence 
�� can be expanded into

g�

d�

dt
� s� � di�Ej��s � 	 for all vector 
elds s along �� 
��

We point out that the basic property of a gradient �ow is that the energy is
decreasing along trajectories�

d

dt
E
�� � di�Ej��

d�

dt

���
� �g�


d�

dt
�
d�

dt
�� 
��

�



��� Two interpretations of the porous medium equa�

tion as gradient �ow

It is actually well known that the porous medium equation can be interpreted
as a gradient �ow� We will introduce this �traditional� gradient �ow inter�
pretation in this section� Parallel to this� we will introduce a new gradient
�ow interpretation� In the following two sections� we will try to convince the
reader that our new way of interpreting the porous medium equation is more
natural than the traditional way�

The evolution de
ned by 
�� preserves non negativity of � and its mass
R
��

In both approaches� the manifold is accordingly given by

M �
n
non negative functions � on IRN with

R
� � �

o
�

We will be deliberately sloppy about the di�erential structure of the manifold
and think of the tangent space as follows

T�M �
n
functions s on IRN with

R
s � 	

o
�

We now come to the metric tensor� Both approaches are based on an iden�
ti
cation of the tangent vector space

T�M 	�
n
functions p on IRN

o
� 	 � 
��

where the identi
cation is de
ned via the elliptic equation

�r�p � s for the traditional approach 
��

and
�r � 
�rp� � s for the new approach� 
��

The �	� in 
�� is to indicate that we identify p�s which only di�er by an
additive constant� Now� the metric tensor is de
ned by

g�
s�� s�� �
Z
rp� � rp� for the traditional approach

and
g�
s�� s�� �

Z
�rp� � rp� for the new approach� 
��

�



where pi is related to si via 
�� resp� 
��� For further reference� we notice
that this implies

g�
s�� s�� �
Z
s� p� for both approaches� 
�	�

Finally the functional� It is given by

E
�� � �
m��

Z
�m�� for the traditional approach

and

E
�� �

���
��

�
m��

Z
�m for m 
� �Z

� ln � for m � �

���
�� for the new approach� 
���

Observe that the di�erential of the functional is given by

di� E
���s �
Z
�m s for the traditional approach 
���

and

di� E
���s �

���
��
Z

m
m��

�m�� s for m 
� �Z

ln � � �� s for m � �

���
�� for the new approach� 
���

We now have to show that the porous medium equation indeed coincides with
the gradient �ow of E on 
M� g� for both approaches� First the traditional
approach� According to 
�	� and 
���� the identity 
�� takes on the form

Z ��

�t
p �

Z
�m s � 	�

where p is related to s via �r�p � s� We substitute s accordingly and obtain

Z ��

�t
p �

Z
�mr�p � 	�

and after integration by parts

Z


��

�t
� r��m� p � 	�

�



Since p is arbitrary� we recover the porous medium equation�

Now the new approach� According to 
�	� and 
���� the identity 
�� takes
on the form ���

��
Z

��
�t
p � m

m��

Z
�m�� s � 	 for m 
� �Z

��
�t
p �

Z

ln � � �� s � 	 for m � �

���
�� �

where p is related to s via �r � 
�rp� � s� We substitute s accordingly and
obtain ���

��
Z

��
�t
p �

Z
m

m��
�m��r � 
�rp� � 	 for m 
� �Z

��
�t
p �

Z

ln �� ��r � 
�rp� � 	 for m � �

���
�� �

We obtain after integration by partsZ


��

�t
� r��m� p � 	�

Also here� we recover the porous medium equation�

In case of the traditional approach� g does not depend on � and therefore
is a scalar product on the space of functions s with mean value zero� In
fact� it is the homogeneous part of the H���scalar product� Hence� in the
traditional approach� the Riemannian space 
M� g� carries the structure of a
convex subspace of a Euclidean space� On the other hand� the new approach
is genuinely Riemannian� Hence we must bring forth good reasons for con�
sidering the more complicated� new structure� We will attempt to do this in
the next two sections�

� A physical argument in favor of the new

gradient �ow

We give a brief physical derivation of the porous medium equation� The
function � describes the mass density of a gas in a porous medium� The 
rst
assumption is conservation of mass� expressed in the continuity equation

��

�t
�r � 
� u� � 	� 
���

�



where the vector 
eld u on IRN describes the 
average� velocity of the gas�
The second assumption is Darcy�s law

u � �M�rp�

where the function p on IRN describes the pressure of the gas and the matrix
M describes the mobility of the gas in the porous medium� M depends on
the permeability of the medium and the viscosity of the gas� We assume
that the permeability is isotropic and homogeneous� so that K � id by an
appropriate non�dimensionalization�

u � �rp� 
���

The third assumption comes from thermodynamics�

p �
�E

��
� 
���

where E denotes the free energy and �E
��
its functional derivative with respect

to �� In case of a free energy of the form

E �
Z
e
���

where the function z �� e
z� describes how the free energy density e depends
on the density �� 
��� reads

p � e�
��� 
���

Hence 
���� 
��� and 
��� combine to

��

�t
�r��
�� � 	� 
���

where the function z �� �
z� describes how the osmotic pressure � depends
on the density � and is related to z �� e
z� via

�
z� � z e�
z�� e
z�� 
���

From 
��� we see that 
��� turns into the porous medium equation 
��� that
is�

�
z� � zm 
�	�

�



if and only if

e
z� �

	
�

m��
zm for m 
� �

z ln z for m � �



� 
���

Hence� only in the new formulation does E have a physical meaning�

Also the metric tensor g of the new formulation has a physical meaning�
For this we observe that the de
nition 
�� of g in the new approach can be
reformulated as

g�
s� s� � inf
�Z

� juj�
��� for all vector 
elds u on IRN

with s�r � 
� u� � 	 g �

���

Indeed� the minimizer u of the quadratic variational problem in 
��� satis
es

Z
v � u for all vector 
elds v on IRN with r � v � 	�

so that there exists a function p on IRN such that

u � �rp�

We now observe that the quantity
R
� juj� in 
��� has a physical meaning�

It is the rate of dissipation of kinetic energy by friction when the gas moves
with velocity u through the pores of the porous medium� Hence g�
s� s�
measures the minimal rate of dissipation of kinetic energy by friction required
to produce the rate of change s of the density �� This allows for a nice physical
interpretation of 
��� that is

d

dt
E
�� � �g�


d�

dt
�
d�

dt
��

The right hand side is the rate of change of the free energy� the left hand
side is the rate of dissipation of kinetic energy by friction� the dynamics are
such that both quantities are equal� In general terms� The merit of the
right gradient �ow formulation of a dissipative evolution equation is that it
separates energetics and kinetics� The energetics endow the state space M
with a functional E� the kinetics endow the state space with a 
Riemannian�
geometry via the metric tensor g�

�



� A mathematical argument in favor of new

gradient �ow

��� Self similar solutions and asymptotic behaviour

It is well�known that the long�time asymptotics of the porous medium equa�
tion is described by the Barenblatt solution� Let us make this more precise�
The porous medium equation allows for a self�similar solution of the form

��
t� x� �
�

tN�
���


x

t�
�

where the pro
le ��� is given implicitly in the �pressure variable� 
for a mo�
tivation of this wording see the previous section�

e�
���
y�� �

�����
����

m
m��

���
y�
m�� � maxf	� 
 �

�
jyj�� 	g for m � �

ln ���
y� � � � 	� 
 �
�
jyj� for m � �

m
m��

���
y�
m�� � 	� 
 �

�
jyj� for m � �

�����
���� �

Here


 �
�

N 
m� �� � �

and 	 is such that Z
��� � ��

These solutions were discovered by Barenblatt and Prattle ��� ����

The Barenblatt solution describes the long�time asymptotics of an arbitrary
solution � in the following sense� Rescale time and space according to

x � t� y and t � exp
���

In terms of density functions� this means� pass from � to �� given by

�
t� x� �
�

tN�
��
ln t�

x

t�
�

Then �� approaches the pro
le ��� of the Barenblatt solution for large times�
In case of m � �� Friedman� Kamin and Vazquez 
in ���� and ����� have
proved that the pro
les converge uniformly

lim
���

k��� ���kL��IRN � � 	 �

�



Their proof is based on a C��a priori estimates for the solution of the porous
medium equation by Ca�arelli and Friedman ����

��� A new asymptotic result

Hoping to convince the reader of our new approach� we will derive a new
and more quantitative asymptotic result using it� Our arguments are based
on a simple Riemannian calculus applied to the in
nite dimensional 
M� g��
From now on� the notation g and E pertains solely to the new approach�
that is� it is de
ned like in 
�� and 
���� Next to the metric tensor g� which
we also denote by h�� �i� and its induced norm j � j� we will need a few notions
from Riemannian geometry� like the gradient gradF � the Hessian HessF of a
function F on M� the latter being de
ned via the covariant derivative� see
for instance ��	� Section ������� and the induced distance d� see ��	� Section
�����

The three key ingredients for our asymptotic result are

� �� satis
es
d��

d�
� �gradFj��� 
���

In words� �� evolves according to the gradient �ow on the same Rieman�
nian manifold 
M� g� of an augmented functional F given by

F 
��� � E
��� � 
M
����

where M denotes the second moment of the density ��

M
��� �
Z

�
�
jyj� ��
y� dy�

� ��� satis
es
F 
���� F 
���� � 	 for all �� � M� 
���

In words� ��� is a minimizer of F onM� Hence it it is also a stationary
point of F � that is

	 � �gradFj���� 
���

�	



� F satis
es
HessFj�� � 
 id for all �� � M

in the sense of

hs�HessFj��si � 
 jsj� for all s � T��M and �� � M� 
���

In words� F is uniformly strictly convex on 
M� g�� This is a conse�
quence of

HessEj�� � 	 and HessMj�� � id for all �� � M� 
���

We will check 
��� and 
��� in subsection ���� 
��� will be established in
subsection ���� The condition m � � � �

N
is the one which ensures that E

is convex on 
M� g�� The condition m � N
N��

ensures that E
���� and M
����
are well�de
ned and 
nite�

As we will see in subsection ���� 
���� 
��� and 
��� yield by formal but basic
Riemannian calculus

d

d�



exp
�
 �� jgradFj��j

�
�
� 	� 
���

d

d�

exp
�
 �� 
F 
���� F 
������ � 	� 
���

d

d�



exp
�
 �� d
��� ����

�
�
� 	� 
�	�

We consider these three inequalities the main result of this paper� Observe
that 
���� 
��� and 
�	� express a single fact in di�erent form� The single fact
being� �� converges to ��� with rate 
� More precisely� 
 is an exponential rate
with respect to � or a polynomial rate with respect to t� The di�erent forms
being� jgradFj��j in 
��� measures how far �� is from being a stationary point
of F � F 
���� F 
���� in 
��� is measuring how far �� is from being a minimizer
of F and 
nally d
��� ���� in 
�	� is measuring how far �� is from ����

In subsection ���� we will identify jgradFj��j
� as the functional

jgradFj��j
� �

Z
�� jrpj� where p
y� � e�
��
y�� � 


�

�
jyj�

��



and e is the energy density given in 
���� In subsection ���� we will identify
the induced metric d with the Wasserstein metric� that is

d
���� ����
� � inf

��� 	 
����

Z
��� jid� �j

��

where � ��� denotes the push forward of the density ��� under the transfor�
mation � of IRN � By carefully mimicking the formal Riemannian calculus
from subsection ���� we will make the above results rigorous in Theorem � in
section �� A relationship� not in the above concise form though� between the
porous medium equation� its self similar solution and the Wasserstein metric
was discovered by the author in �����

In the linear case m � �� above results are known to the Fokker�Planck
community in a di�erent form� In this case�

jgradFj��j
� �

Z
�� jrpj�

�
Z
�� j
�

��
r��� 
 yj�

�
Z �
��
jr��j� � �
N

Z
��� 
�

Z
��jyj�

�
Z �
��
jr��j� � �
N � �
�M
����

In particular� 	 � jgradFj���j
� �

R �
���
jr���j

� � �
N � 
�M
����� so that

jgradFj��j
� �

Z �
��
jr��j� �

Z �

���
jr���j

� if M
��� � M
�����

The quantity
R �

��
jr��j� is called the �Fisher information functional�� Also in

this case

F 
���� F 
���� �
Z
�� ln ���

Z
��� ln ��� if M
��� � M
����

and the quantity
R
�� ln �� is called the �entropy functional�� The decay of

the Fisher information functional and the entropy functional expressed in

��� resp� 
��� for m � � seems to be due to McKean ���� and Toscani
��	�� Recently and independently of our work� these ideas for 
��� resp�

��




��� have been extended to the case m 
� � by Carrillo ! Toscani ���� 
for
m � �� and Dolbeault ! del Pino ���� 
for m � ��� Forerunners in this
Liapunov�functional based approach were also Newman ���� and Ralston
����� The novelty of our above results is their formulation� interpretation and
proof in framework of Riemannian geometry� which make the approach more
transparent and the calculations seem less arbitrary�

��� The asymptotic result expressed in a more tradi�

tional framework

Convergence with rate 
 in a more traditional way can be derived from 
���
with help of

� the inequalities

F 
���� F 
����

	
� H
��� ���� for m � �
� H
��� ���� for m � �



� 
���

where

H
���� ���� �
Z
fe
����� e
����� e�
���� 
��� � ����g � 	�

Here the e is the energy density� see 
���� and in the case m � �� we
set H
���� ���� � �� if ��� vanishes on a set of positive measure�

� the estimate for m � �

Z
j��� � ���j � C

�Z
����m�

� �
�

H
���� ����
�
� � 
���

where C is a constant which only depends on m�

It is conceivable that convergence of rate 
 in stronger traditional norms can
be derived from 
���� 
��� and 
�	�� But this is not the focus of this paper�

The inequality 
��� will be established in subsection ���� the non negativity
of H follows immediately from the convexity of e� In the case of m � �� we
have

e
z��� e
z��� e�
z�� 
z� � z�� �
z

z�
ln

z

z�
z� � 
z� � z���

��



so that

H
���� ���� �
Z ���
���
ln
���
���
���� 
���

Therefore� H
���� ���� is also called the relative entropy of ��� w� r� t� ���� The
estimate 
��� is known to the Fokker�Planck community under the name of
Csiszar�Kullback inequality �����

Let us now establish 
���� Since m � � implies

e��
w� � mwm�� � m for w � �	� ��

we have

�
m��

wm � �
m��

� m
m��

wm�� 
w � ��

� e
w�� e
��� e�
�� 
w � ��

� �
�
inf
�����

e�� 
w � ���

� m
�

w � ��� for all w � �	� ��� 
���

We observe that since Z

��� � ���� � 	�

we have Z
j��� � ���j � �

Z
f�������g

j��� � ���j�

On the other hand� setting

u �

���
��
���
���

if ��� � ���

� else

���
�� � �	� ���

we haveZ
f�������g

j��� � ���j

�
Z
��� ju� �j

�
�Z

����m�

Z
��m� 
u� ��

�
� �

�

��



����

�
�Z

����m�
�
m

Z
��m�

n
�

m��
um � �

m��
� m

m��
um�� 
u� ��

o� �
�

�

�Z
����m�

�
m

Z
f�������g

n
�

m��
��m� �

�
m��

��m� �
m

m��
��m��� 
��� � ����

o� �
�

�

��� Veri�cation of key ingredients to asymptotic result

Let us now check 
���� It is left to the reader to verify that �� satis
es the
equation

���

��
� r�

y ��
m � 
ry � 
�� y� � 	� 
���

"From now on� we drop the subscript y� We observe that the di�erential of
F is given by

di� F 
����s �

���
��
Z

 m
m��

��m�� � 
 �
�
jyj�� s for m 
� �Z


ln ��� � � 
 �
�
jyj�� s for m � �

���
�� �

According to this and 
�	�� the identity 
�� takes on the form
Z

���
��
p �

Z

 m
m��

��m�� � 
 �
�
jyj�� s � 	 for m 
� ��Z

���
��
p �

Z

ln �� � � � 
 �

�
jyj�� s � 	 for m � ��

where p is related to s via �r � 
��rp� � s� We substitute s accordingly and
obtain after an integration by partZ

f���
��

� r � ���r 
 m
m��

��m�� � 
 �
�
jyj���g p � 	 for m 
� ��Z

f���
��

� r � ���r 
ln �� � � � 
 �
�
jyj���g p � 	 for m � ��

Hence 
�� can be rewritten as

���

��
� r � ���r 


m

m� �
��m�� � 
 �

�
jyj��� � 	 for m 
� ��

���

��
� r � ���r 
ln ��� � � 
 �

�
jyj��� � 	 for m � ��

which turns into 
����

��



Let us now check that in the notation of 
����

F 
���� F 
����

	
� H
��� ���� for m � �
� H
��� ���� for m � �



� 
���

This validates both 
��� and 
���� In order to show 
��� in case of m 
� ��
we observe that by de
nition of H
��� ����

E
��� � E
���� �H
��� ���� �
Z

m
m��

��m��� 
��� �����

so that by de
nition of F �

F 
��� � F 
���� �H
��� ���� �
Z

 m
m��

��m��� � 
 �
�
jyj�� 
��� �����

In case of m � �� we have by de
nition of ���

m
m��

��m��� � 
 �
�
jyj� � 	�

so that we obtain

F 
��� � F 
���� �H
��� ���� � 	
Z

��� ���� � F 
���� �H
��� �����

In case of m � �� we have by de
nition of ����


 m
m��

��m��� � 
 �
�
jyj�� 
��� ���� � 	 
��� ���� for all y � IRN � 
���

Indeed� if y is such that 	�
 �
�
jyj� � 	 then m

m��
��m��� � 	�
 �

�
jyj� and the

inequality 
��� turns into an equality� On the other hand� if y is such that
	 � 
 �

�
jyj� � 	� ��� � 	 and the above inequality turns into 


�
�
jyj� �� � 	���

which is true since �� � 	� Hence we obtain in this case only an inequality

F 
��� � F 
���� �H
��� ���� � 	
Z

��� ���� � F 
���� �H
��� �����

The identity 
��� in case of m � � is also quite obvious� From de
nition of
F and ��� we obtain

F 
��� �
Z

ln �� � 
 �

�
jyj�� �� �

Z

ln ��� 	� ln ���� ��

����
� H
��� ���� � 	�

��



In particular F 
���� � 	� so that

F 
���� F 
���� � H
��� �����

As announced� we will now argue that

jgradFj��j
� �

Z
�� jrpj� where p
y� � e�
��
y�� � 


�

�
jyj��

Indeed� we have by the abstract de
nition 
�� of the gradient

�

�
g��
gradFj��� gradFj��� � sup

s�T��M

�
dFj���s�

�

�
g��
s� s�

�
�

By de
nition of our functional F �

dFj���s �
Z
p s with p as above�

By de
nition of our inner product

Z
p s�

�

�
g��
s� s� �

Z
��rp � rq �

Z
��
�

�
jrqj��

if s � T��M and the function q on IRN are related by

�r � 
��rq� � s�

Hence

�

�
g��
gradFj��� gradFj��� � sup

function pon IRN

� Z
��rp � rq �

Z
��
�

�
jrqj�

�

�
Z
��
�

�
jrpj��

��	 Derivation of asymptotic result by formal Rieman�

nian calculus

Let us now show how 
���� 
��� and 
��� imply 
���� 
��� and 
�	� by formal
Riemannian calculus� For this� we forget about where our structure 
M� g�

��



and F came from and work exclusively within the abstract framework� The
derivation of 
��� is easiest�

d

d�
jgradFj��j

� � � hgradFj���
D

D�
gradFj��i

� � hgradFj���HessFj��
d

d�
�i

����
� �� hgradFj���HessFj�� gradFj��i
��
�

� ��
 jgradFj��j
�� 
���

Here D
D�
denotes the covariant derivative along the curve ��� The 
rst equality

comes from the fundamental property of the covariant derivative ��	� Section
������� the second equality follows from the de
nition of the Hessian ��	�
Section �������

We now tackle 
��� and 
�	�� There are di�erent ways to derive 
��� and 
�	�
from 
���� 
��� and 
��� by Riemannian calculus� We choose the one we are
able to make rigorous in section �� We need the following auxiliary result�
We recall the de
nition of the induced metric d
���� ����

� as the in
mum of the

energy 
modulo a factor ��
R �
� j

d���
d	
j� d
 over all curves �	� �� 
 
 �� #��

� � M

which connect ��� to ����

d
���� ����
� �

n R �
� j

d���
d	
j� d
 j �	� �� 
 
 �� #��

� � M

with #��
	� � ���� #��
�� � ��� g �

Let �	� �� 
 
 �� #��

� denote a curve of least energy between ��� and ���� that
is�

d
���� ����
� �

Z �

�
j
d#��

d

j� d
� 
���

In particular� �	� �� 
 
 �� #��

� is a geodesic� that is

D

d


d#��

d

� 	� 
�	�

which implies
d

d

j
d#��

d

j� � � h

d��

d

�
D

d


d#��

d

i � 	� 
���

��



The auxiliary result we claim is

F 
����� F 
���� � h
d#��

d
 j		�
� gradFj���i� 


�

�
d
���� ����

�� 
���

Indeed� this is a consequence of

d

d

F 
#��� � h

d#��

d

� gradFj���i

and

d�

d
�
F 
#��� � h

D

d


d#��

d

� gradFj���i� h

d#��

d

�
D

d

gradFj���i

����
� h

d#��

d

�HessFj���

d#��

d

i

��
�

� 
 j
d#��

d

j�

���������
� 
 d
���� ����

��

By symmetry� we also have

F 
����� F 
���� � �h
d#��

d
 j		�
� gradFj���i� 


�

�
d
���� ����

�� 
���

Adding 
��� and 
��� yields

h
d#��

d
 j		�
� gradFj���i � h

d#��

d
 j		�
� gradFj���i � 
 d
���� ����

�� 
���

For later reference� we note that 
��� also implies

F 
���� F 
��� � �j
d#��

d
 j		�
j jgradFj��� j

���������
� d
���� ���� jgradFj��� j�

hence by symmetry�

jF 
���� F 
���j � d
���� ���� maxfjgradFj��� j� jgradFj���jg� 
���

��



We now derive 
�	� by formal Riemannian calculus� Because of 
���� ���
�� �
��� de
nes a 
stationary� solution of 
���� Hence it su$ces to show the con�
traction property

d�

d�
d
���� ����

� � �
d
���� ����
� 
���

for two solutions ��i of 
���� Here�
d�

d�
denotes

d�

d� j��
f � lim sup

����

f
��� f
���

� � ��
�

We 
x a ��� For any � � let �	� �� 
 
 �� #��
�� 
� � M be a curve between
#��
�� 	� � ���
�� and #��
�� �� � ���
��� We may arrange for that it is the curve
of least energy for � � �� and depends smoothly on � � so that

d
���� ����
�

������
�����
�

Z �

�
j
�#��

�

j� d
 for � � ��

�
Z �

�
j
�#��

�

j� d
 for any �

������
�����
� 
���

Hence for � � ���

d�

d� j��
d
���� ����

�
����

�
d

d� j��

Z �

�
j
�#��

�

j� d


� �
Z �

�
h
�#��

�

�
D

�� j��

�#��

�

i d


� �
Z �

�
h
�#��

�

�
D

�


�#��

�� j��
i d


� �
Z �

�

	
d

d

h
�#��

�

�
�#��

�� j��
i � h

D

�


�#��

�

�
�#��

�� j��
i



d


����
� �

Z �

�

d

d

h
�#��

�

�
�#��

�� j��
i d


� �

�
h
d#��

d
 j		�
�
d���
d�
i � h

d#��

d
 j		�
�
d���
d�
i

�

����
� ��

�
h
d#��

d
 j		�
� gradFj���i � h

d#��

d
 j		�
� gradFj���i

�

����

� ��
 d
���� ����
��

�	



which establishes 
����

We 
nally show how to get 
��� by formal Riemannian calculus� We need
the ingredient that

lim
���

F 
���� F 
����� � 	� 
���

which in a 
nite dimensional context would immediately follow from 
�	� in
the weakened form of

lim
���

d
��� ���� � 	� 
���

In our in
nite dimensional context� we obtain 
��� from 
��� and from 
���
in the weakened form of

lim
���

jgradFj��j � 	 
�	�

via the interpolation inequality

jF 
���� F 
����j � jgradFj��j d
��� ���� for all �� � M�

which we obtain from 
���� using gradFj���
����
� 	�

We now derive 
��� in form of

d

d�

F 
���� F 
����� � ��
 
F 
���� F 
������

We 
rst observe that

d

d�

F 
���� F 
����� � hgradFj���

d��

d�
i

����
� �jgradFj��j

�� 
���

Hence we get

d

d�

F 
���� F 
�����

����
� �jgradFj��j

�

����
�

Z �

�

d

d�
jgradFj��j

� d�

����

� ��

Z �

�
jgradFj��j

� d�

����
� �


Z �

�

d

d�

F 
���� F 
����� d�

����
� ��
 
F 
���� F 
������

��



� The geometry of �M� g�

The best way to understand the geometry of 
M� g� is� It is induced by a �at
Riemannian space 
M�� g�� via a submersion �� The intuition behind this
is the following� The porous medium equation describes the di�usion of gas
particles through a porous medium� M describes the state via the particle
densities � % an Eulerian description� M� will describe the state via the
particle coordinates or �ow map � % a Lagrangian description�

��� The isometric submersion �

We 
x a �� � M� We start by introducing the manifoldM� and the sub�
mersion ��M� � M� The manifold is the set of all di�eomorphisms of
IRN �

M� �
n
di�eomorphisms � of IRN

o
�

And � � �
�� is given by the push forward of the reference density �� under
the map �� More precisely�Z

� � �
Z
�� � � � for all functions � on IRN � 
���

We also use the notation
� � � ���

We now endowM� with a metric tensor g�� Again� we will be sloppy about
the di�erential structure ofM� and think of the tangent space as the space
of all vector 
elds on IRN

T
M
� �

n
vector 
elds v on IRN

o
�

which we endow with the scalar product

g�

v�� v�� �
Z
�� v� � v��

In other words� 
M�� g�� carries the geometry of the ambient L��space with
weight ��� In particular 
M

�� g�� is �at�

We now argue that � is an isometric submersion from 
M�� g�� into 
M� g��
for the notion of isometric submersion� see for instance ��	� Chapter ����� We

��



have to show� For any � � M� the tangential

T
��T
M
� � T�M 
���

of � at � has the property

g�
s� s� � inf
T��
v	s

g

v� v� for all s � T�M� 
���

where � � �
��� We observe that 
��� implies that T
� is an isometry when
restricted to the orthogonal complement 
kerT
��

	 of its kernel ker T
� �
T
M

�� In the language of di�erential geometry� A tangent vector in kerT
�
is called &vertical�� a tangent vector in 
ker T
��

	 is called &horizontal��

In order to establish property 
���� we give a characterization of the tangen�
tial T
� and the spaces ker T
� and 
ker T
��

	� It is convenient to do so
in terms of the identi
cation 
�� of tangent vectors s � T�M with potentials
p and the following identi
cation of tangent vectors v � T
M

� with velocity

elds u�

T
M
� 	�

n
vector 
elds u on IRN

o

���

via
v � u � ��

We observe that in terms of u� the metric tensor g� assumes the form

g�

v�� v�� �
Z
� u� � u�� where � � �
��� 
���

We now show that in terms of p and u�

� T
��u is the function p on IR
N 
determined up to additive constants�

which solves
�r � 
�rp� � �r � 
� u�� 
���

� u � kerT
� if and only if the vector 
eld u on IR
N satis
es

r � 
� u� � 	� 
���

� u � 
kerT
��
	 if and only if the vector 
eld u on IRN satis
es

u � rp for some function p on IRN � 
���

��



The line 
��� follows immediately from 
���� The line 
��� follows from 
���
easily� Because of 
��� and 
���� u � 
kerT
��

	 meansZ
w � u � 	 for all vector 
elds w on IRN with r � w � 	�

which implies 
��� by elementary vector calculus�

It remains to establish 
���� which we will do in the variational formZ
�rp � r� �

Z
� u � r� for all functions � on IRN � 
�	�

Obviously�
� #�

�



� � u � #�

�� #�
	� � � 
���

de
nes a curve 
 �� #�

� � M� which for 
 � 	 passes through � and
has tangent u there� Now consider the image 
 �� #�

� of this curve under
�� It su$ces to show that its tangent p at 
 � 	 satis
es 
�	�� Indeed� by
de
nition of ��Z

#�

� � �
Z
�� 
� � #�

�� for all functions � on IRN � 
���

which we di�erentiate w� r� t� 
 and evaluate at 
 � 	�

Z �#�

�
 j		�
�

�
��
�

Z
�� 
r� � �� � 
u � ��

�
Z
�r� � u for all functions � on IRN �

On the other hand� we have by de
nition 
�� of p� after integration by parts�

Z
�r� � rp �

Z �#�

�
 j		�
� for all functions � on IRN �

This establishes 
�	��

In view of the de
nition 
�� and of 
���� the identity 
��� turns intoZ
� jrpj� � inf

T��
u	p

Z
� juj��

which now is an immediate consequence of the characterization 
�	� of T
��u�

��



��� A property of the map �

The map � has the following important property� Let 
 �� �

� be a geodesic
on 
M�� g��� Then

d�

d


	� � 
kerT
�����

	 implies
d�

d



� � 
kerT
�	���

	 for all 
� 
���

Let us establish this property� Since 
M�� g�� carries the geometry of the
ambient Euclidean L��space with weight ��� the geodesic equation is

���

�
�
� 	�

We express the geodesic equation in terms of the tangent 
eld 
 �� u

�
given by by

��

�

� u � �� 
���

Since

���

�
�
�
��
�

�

�


u � ��

�
�u

�

� � � 
Du � ���

��

�

�
��
�

�
�u

�

�Du�u

�
� ��

where Du denotes the Jacobian of u w� r� t� the spatial variables� the geodesic
equation reads

�u

�

�Du�u � 	� 
���

According to 
���� the left hand side of 
��� means that there exists a function
p� on IRN such that u
	� � rp�� Now let the function #p

� x� solve the
Hamilton�Jacobi equation

�#p

�

�
�

�
jr#pj� � 	 with initial data p��

Then its spatial gradient #u � r#p solves

�#u

�

�D#u�#u � 	 with initial data rp��

��



Hence #u and u solve the same evolution equation with identical initial data�
Therefore� #u and u coincide� In particular�

u

� � r#p

� for all 
�

which according to 
��� entails the right hand side of 
����

��� Identi�cation of geodesics and the induced dis�

tance

We will 
rst characterize geodesics and the induced distance on 
M� g� in
terms of geodesics and the induced distance on 
M�� g��� For this� we forget
about where our structure �� 
M�� g��� 
M� g� came from and work exclu�
sively within the abstract framework of a Riemannian submersion with the
additional property established in the previous subsection�

The 
rst observation states how the &energy� of curves transforms under ��
Let 
 �� �

� be a curve onM�� Consider its image 
 �� �

� onM under
�� that is� �

� � �
�

��� Then

Z
g�


d�

d

�
d�

d

� d
 �

Z
g�



d�

d

�
d�

d

� d
 
���

with equality if
d�

d

� 
kerT
��

	�

Indeed� we have d�
d	
� T
��

d

d	
� and therefore� according to 
����

g�

d�

d

�
d�

d

� � g�



d�

d

�
d�

d

��

with equality if d

d	
� 
kerT
��

	�

The second observation states what happens to geodesics under ��

If 
 �� �

� is a geodesic on 
M�� g�� with d

d	
� 
kerT
��

	�
then its image 
 �� �

� is a geodesic on 
M� g��




���

If 
 �� �

� is a geodesic on 
M� g� with �
	� � ��� then there
exists a geodesic 
 �� �

� on 
M�� g�� with �
	� � id�d


d	
�


kerT
��
	 and such that 
 �� �

� is its image under ��

���
�� 
���

��



Indeed� for 
���� it su$ces to show that 
 �� �

� has lowest energy among
all small variations on small 
�intervals� using the fact that 
 �� �

� has
the same property� Let 
�� 
� �� #�
�� 
� be a given variation of 
 �� �

�� that
is� #�
	� 
� � �

�� Since T�� is an isomorphism of 
kerT���

	 onto T��
�M�
and since d


d	
� 
kerT
��

	� we can &lift� the variation 
�� 
� �� #�
�� 
� to a

variation 
�� 
� �� #�
�� 
� of 
 �� �

�� that is� �
#�
�� 
�� � #�
�� 
�� with
d�

d	

� 
kerT�
��
	� Therefore the energy of 
 �� �

� does not exceed the

energy of the variation 
 �� #�
�� 
� for any ��Z
g�


d�

d

�
d�

d

� d


�

�
�

Z
g�



d�

d

�
d�

d

� d


�
Z
g��



d#�

d

�
d#�

d

� d


�

�
�

Z
g��


d#�

d

�
d#�

d

� d
�

The argument for 
��� goes as follows� Let 
 �� �

� be a geodesic on 
M� g�
with �
	� � ��� Let 
 �� �

� be the geodesic on 
M�� g�� with �
	� � id
and

T
�����
d�

d


	� �

d�

d


	� and

d�

d


	� � 
kerT
�����

	�

According to the previous subsection� namely 
���� the last property is pre�
served along the geodesic�

d�

d



� � 
kerT
�	���

	 for all 
�

By 
���� this implies that the image under �� 
 �� �
�

��� is a geodesic on

M� g�� By construction� it has the same initial data as 
 �� �

�� Hence
both geodesics coincide�

�
�

�� � �

� for all 
�

The third observation states what happens to the induced distance under ��
Let d� denote the induced distance on 
M�� g�� and d the one on 
M� g��
Let � � M be arbitrary� then

� For all � with �
�� � ��

d
��� ��
� � d�
id����� 
���

��



� There exists a � with �
�� � � and

d
��� ��
� � d�
id����� 
�	�

We observe that 
��� and 
�	� imply

d
��� ��
� � inf

��
�	�
d�
id����� 
���

Let us start with 
���� Indeed� let �	� �� 
 
 �� #�

� be any curve on M�

with #�
	� � id and #�
�� � �� Consider its image �	� �� 
 
 �� #�

� under
�� By assumption� #�
�� � �� and by de
nition of �� #�
	� � ��� Therefore

d
��� ��
� �

Z �

�
g��


d#�

d

�
d#�

d

� d


�

�

�
Z �

�
g��



d#�

d

�
d#�

d

� d
�

Since #� was an arbitrary curve connecting id to �� this inequality yields 
����
Now let �	� �� 
 
 �� #�

� be a curve connecting �� to � with minimal energy�
According to 
���� there exists a curve �	� �� 
 
 �� #�

� on 
M�� g�� such
that

d#�

d

� 
kerT�
��

	� #�
	� � id and �
#�

�� � #�

��

In particular� � �� #�
�� satis
es �
�� � �� and we have

d
��� ��
� �

Z �

�
g��


d#�

d

�
d#�

d

� d


�

�
�

Z �

�
g��



d#�

d

�
d#�

d

� d


� d�
id�����

This establishes 
�	��

We will now use the above characterization of geodesics on 
M� g� in terms
of geodesics on 
M�� g�� and our good understanding of the latter to identify
the former� Since 
M�� g�� carries the geometry of the ambient L��space
with weight ��� geodesics 
 �� �

� are characterized by

���

�
�
� 	� 
���

��



Now let 
 �� �

� be a geodesic on 
M� g� with the initial data

�
	� � �� and
d�

d


	� � s� 
���

We represent the tangent vector s � T��M by

�r � 
��rp� � s� 
���

According to 
���� there exists a geodesic 
 �� �

� on 
M�� g�� with �
	� �
id�d


d	
� 
kerT
��

	 and such that 
 �� �

� is its image under �� that is

�

� � �

� �� for all 
�

Since in particular� �
	� � id and

Tid��
d�

d


	� � s and

d�

d


	� � 
kerTid��

	�

we must have by our characterization of Tid�

��

�


	� � rp�

Together with 
���� we infer that �

� is of the form

�

� � r

�

�
jyj� � 
 p��

Therefore� we have characterized our geodesic 
 �� �

� with initial data

��� as

�

� �
�
r

�

�
jyj� � 
 p�

�
 ��� 
���

where p is related to s by 
����

We will now use the above characterization of the induced distance on 
M� g�
in terms of the induced distance on 
M�� g�� and our good understanding of
the latter to identify the former� Since 
M�� g�� carries the geometry of the
ambient L��space with weight ��� d

� is given by

d�
������
� �

Z
�� j�� � ��j

��

We therefore obtain from 
��� that

d
��� ��
� � inf

�	
���

Z
�� jid� �j

� 
���

Hence we have identi
ed the induced distance onM with what is called the
Wasserstein distance� which we formally introduce in section ��

��



��� Computation of the Hessians HessE and HessM

The Hessian HessF of a function F on a Riemannian manifold 
M� g� can be
computed by taking second derivatives of F along geodesics� More precisely�
if 
 �� �

� is a geodesic on 
M� g� with

�
	� � �� and
d�

d


	� � s�

then

g��
s�HessFj��s� �
d�

d
�
F 
�

��j		�� 
���

As always� we represent the tangent vector s � T��M by

�r � 
��rp� � s�

In the previous subsection� we characterized the geodesic 
 �� �

� as

�

� � r�

� ��� 
���

where the function �

� on IRN is given by

�

� y� �
�

�
jyj� � 
 p
y�� 
���

Hence convexity of a function F on the Riemannian manifold 
M� g� reduces
to McCann�s &displacement convexity� ���� McCann introduced� established
and used this notion for our energy functional E to prove uniqueness for a
variational problem onM % without referral to the Riemannian structure�
As a guideline for our rigorous arguments in the next section� it will be
convenient to explicitly 
nd HessEj�� 
as opposed to just showing that it is
positive semi de
nite�� Therefore the calculation which now follows deviate
a bit from McCann�s�

We observe that 
��� can be reformulated as

detD��

� 
�

� � r�

�� � ���

so that

E
�

�� �
Z
e

�
��

det D��

�

�
detD��

�� 
�	�

�	



where D��

� denotes the N � N�matrix of second spatial derivatives of
�

� and e the energy density� as de
ned in 
����

Guided by the above� we consider a curve 
 �� A

� in the space of symmetric
and positive de
nite N � N�matrices and a positive number z � 	� Let us
recall that the energy density e and the osmotic pressure � 
de
ned in 
�	��
are related by

�
z� � z e�
z�� e
z��

Therefore� we have

d

d


�
e
�

z

detA

�
detA

�
� ��

�
z

detA

�
d

d

detA�

d�

d
�

�
e
�

z

detA

�
detA

�
� ��

�
z

detA

�
z


detA��


d

d

detA��

� �
�

z

detA

�
d�

d
�
detA�

By elementary linear algebra�

d

d

detA � tr
A�� �A

�

� detA�

d�

d
�
detA � �tr

�
A�� �A

�


��

detA�

�
tr
A�� �A

�

�

��

detA

� tr
A�� d
�A

d
�
� detA�

Hence if the curve 
 �� A

� additionally satis
es d�A
d	�
� 	� we obtain

d�

d
�

�
e
�

z

detA

�
detA

�
� 
w ��
w�� �
w��



tr 
A��B�

��
detA

� �
w� tr


A��B

��
detA�

where we have used the abbreviations

B ��
dA

d

and w ��

z

detA
�

Since


A��B�� � A����C�A��� with C �� A����BA�����

��



where C is a symmetric matrix� we have

tr


A��B

��
� trC� �

�

N

trC�� �

�

N



tr 
A��B�

��
� 
���

Since �
w� � wm � 	� we therefore obtain

d�

d
�

�
e
�

z

detA

�
detA

�
� 
w ��
w�� 
��

�

N
� �
w��



tr 
A��B�

��
detA�

Since w ��
w� � 
� � �
N
� �
w� � 
m � 
� � �

N
��wm � 	 by our assumption

m � �� �
N
� this implies

d�

d
�

�
e
�

z

detA

�
detA

�
� 	� 
���

For later reference� we notice that if in addition A
	� � id�

d�

d
� j		�

�
e
�

z

detA

�
detA

�
� 
z ��
z�� �
z�� 
trB�� � �
z� trB�� 
���

Now consider D��

�� We observe that �� D��

� is symmetric� �� D��

� is
positive de
nite 
for su$ciently small 
� since D��
	� � id� �� ��

�	�
D��

� � 	

because of 
���� Hence we may apply the above to A

� � D��

� and obtain

d�

d
�
E
�

��

����
�

Z ��

�
�

�
e
�

��
detD�

�
detD�

�
����

� 	�

Since �
�	 j		�

D��
����
� D�p and D��
	� � 	� we also get

d�

d
� j		�
E
�

�� �

Z ��

�
� j		�

�
e

�
��

detD��

�
detD��

�

����
�

Z n

��
��� �� � �
���� 
r

�p�� � �
��� tr 
D
�p��

o
�

We conclude by

g��
s�HessEj�� s�
����
�

d�

d
� j		�
E
�
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�
Z n
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��� �� � �
���� 
r

�p�� � �
��� tr 
D
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o
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This establishes the 
rst part of 
���� Let us point out again that it is the
condition m � �� �

N
which ensures that E is convex on 
M� g��

Let us now identify HessMj��� It follows immediately from 
��� that

M
�

�� �
Z
��
�

�
jr�

�j��

Hence we obtain

g��
s�HessMj��s�
����
�

d�

d
� j		�
M
�

��

����
�

Z
�� j

�r�

�
 j		�
j�

����
�

Z
�� jrpj

�

���
� g��
s� s�� 
���

This establishes the second part of 
����

��	 Formula for the sectional curvature

In this section� we derive a formula for the sectional curvature 
see for in�
stance ��	� Section ������ or ���� ��� De
nition�� of 
M� g�� This is not re�
quired for our program� but might be enlightening� O�Neill discovered a sim�
ple relation between the sectional curvature of two Riemannian manifolds

M�� g�� and 
M� g� under an isometric submersion �� 
M�� g�� � 
M� g��
see for instance ��	� ��� Exercises� exercise ��� or ���� ���� Theorem�� If

M�� g�� is �at� as in our case� one so obtains a formula for the sectional
curvature of 
M� g�� In order to state this formula� we need some notation�
For any vector 
eld u onM� we de
ne the vector 
eld uv onM� via

uv
�� is the g�
�orthogonal projection of u
�� onto kerT
��

For two vector 
elds u��u� onM
�� let �u��u�� denote their bracket� �u��u��

is itself a vector 
eld on M�� see for instance ���� Chapter � C�� Now let
p��p� be two vector 
elds onM and let u��u� be two vector 
elds onM

�

related to p��p� via

ui
�� � 
kerT
��
	 and T
��ui
�� � pi
�
��� for all � � M��


���

��



Then� according to O�Neill� for 
xed � � M��

�u��u��
v
�� depends only on p�
���p�
�� where � � �
��

and the sectional curvature K� of 
M� g� in � is given by

K�
p�
���p�
��� det
�
g�
p�
���p�
��� g�
p�
���p�
���
g�
p�
���p�
��� g�
p�
���p�
���

�

�
�

�
g�

�u��u��

v
��� �u��u��
v
���� 
���

Let us now derive what 
��� means in our concrete case� Again� it is con�
venient to do so in terms of the identi
cation 
�� of elements of the tangent
space T�M with functions p on IRN and the identi
cation 
��� of elements
of the tangent space T
M

� with vector 
elds u on IRN � In this sense� for
any two functions p�� p� on IR

N � 
��� turns into

K�
p�� p�� det
�
g�
p�� p�� g�
p�� p��
g�
p�� p�� g�
p�� p��

�
�
�

�

Z
� juj�� 
���

where the vector 
eld u on IRN and the function p on IRN are given by

u � rp� �rp��rp�� and r � �� 
rp� �rp��rp���� � 	� 
���

Here �u�� u�� denotes the bracket of the vector 
elds u� and u� on IR
N � that

is
�u�� u�� � Du��u� �Du��u��

Let us now argue why 
��� turns into 
���� To this purpose� consider the
vector 
elds p��p� onM and the vector 
elds u��u� onM

� given by

pi
�� � pi for all � � M and ui
�� � rpi for all � � M�� 
�	�

According to 
��� and 
���� pi and ui are related as in 
���� Let us argue
that in case of �constant� vector 
elds ui onM

� like in 
�	�� that is

ui
�� � ui for all � � M��

also the bracket is a constant vector 
eld onM�� that is�

�u��u��
�� � �u�� u�� for all � � M�� 
���

��



with the understanding that the r� h� s� bracket is the bracket for vector 
elds
on IRN � Indeed� for given vector 
eld v on IRN � consider the function
al� V
onM� de
ned via

V
�� �
Z
v � � for all � � M��

According to the identi
cation 
���� we have for any vector 
eld u on M�

that

di�V�u�
�� �

Z
v � 
u
�� � �� for all � � M�� 
���

In particular for our constant vector 
elds u��u�


di�V�ui�
�� �
Z
v � 
ui � �� for all � � M��

and therefore� again using 
����


di� 
di�V�ui��uj�� 
�� �
Z
v � 

Dui�uj� � �� for all � � M��

so that by de
nition of �u��u�� and �u�� u�� we obtain


di�V��u��u��� 
��

� 
di� 
di�V�u���u��� di� 
di�V�u���u��� 
��

�
Z
v � 

Du��u� � Du��u�� � ��

�
Z
v � 
�u�� u�� � �� for all � � M�� 
���

On the other hand� 
��� implies


di�V��u��u���
�� �
Z
v � 
�u��u��
�� ��� for all � � M�� 
���

Since v was an arbitrary vector 
eld on IRN � we infer from 
��� and 
��� that

�u��u��
�� � � � �u�� u�� � � for all � � M��

which implies 
����

According to 
��� and the de
nition 
�	�� we have

�u��u��
�� � �rp��rp�� for all � � M��

��



It follows from 
���� 
��� that

�u��u��
v
�� � u for all � � M�� 
���

where u is given by 
���� We therefore obtain

g�

�u��u��
v
��� �u��u��

v
���
����
� g�

u� u�

��
�
�

Z
� juj��

This shows that 
��� turns into 
����

We may learn two things from 
����

� 
M� g� is a space of non negative curvature�

� 
M� g� is �at for N � � and non �at for N � ��

The 
rst point is immediate from 
���� Also the �atness of 
M� g� for N � �
follows immediately from 
���� The fact that 
M� g� is not �at for N � �
can be seen as follows� Let the density function � on IRN and the functions
p�� p� on IR

N be given� assume that � � 	 on all of IRN � Then according to

���� K�
p�� p�� � 	 if and only if u � 	 in IR

N � which according to 
��� is
true if and only if �rp��rp�� is a gradient� By elementary vector calculus�
this is true if and only if D�rp��rp�� is pointwise symmetric� But since

D�rp��rp��� 
D�rp��rp���
t � �



D�p��D

�p� � D
�p��D

�p�
�
�

D�rp��rp�� is pointwise symmetric if and only if D
�p� and D

�p� point�
wise commute� Since there are symmetric matrices which do not commute�
it is clear that we can construct many functions p�� p� on IRN such that
K�
p�� p�� � 	�

We remark that the geometry of 
M� g� is �orthogonal� to the geometry
of Arnold�s group of volume preserving di�eomorphisms ���� The geometry
of this group is of interest� since the geodesic equation is the Lagrangian
formulation of the Euler equations for an incompressible� inviscid �uid� The
geometry and its pathologies is well�studied� see ����� ����� ��� and ���� Let
us make more precise what we mean when we say that their geometry is
orthogonal to ours� To this purpose� we replace IRN by the N�dimensional
torus TN and let �� be the uniform density on TN � Then ���
f��g� is the

��



space of volume preserving transformations� Hence they study the geometry
of the �kernel� ���
f��g� of �� endowed with the Riemannian structure
induced from 
M�� g��� We on the other hand study the geometry of the
�image� �
M�� of �� endowed with the Riemannian structure induced from

M�� g��� Since 
M�� g�� is �at� this is also re�ected by the fact that the
curvature of �
M�� is positive� whereas the curvature of ���
f��g� is mostly
negative�

��
 A natural time discretization

Also this section is not required for our program but makes the connection
to earlier work of the author�

Let us return to the abstract gradient �ow setting from subsection ���� The
dynamical system 
��� that is

d�

dt
� �gradEj�� 
���

has a natural time�discretization� which we will introduce now� Let h � 	

the time step size� be given� Consider the algorithm

��k� minimizes
�
� h

d
��k���� ��� � E
��

among all � � M

�����
���� � 
���

where d denotes the induced distance on 
M� g�� Let us now argue why 
���
is a discretization of 
����

To this purpose� we derive the 
rst variation of the minimization problem in

���� Let �	� �� 
 
 �� #��k� � M denote a curve of least energy connecting
��k��� to ��k�� Consider a variation ��k�
 of ��k�� that is� a curve � �� ��k�
 � M
which passes through ��k� for � � 	� Let �	� �� 
 
 �� #��k�
 � M be a curve
connecting ��k��� to ��k�
 which coincides with �	� �� 
 
 �� #��k� � M for
� � 	� We have by 
��� and the de
nition of the induced distance that

�

� h

Z �

�
j
d#��k�

d

j�d
 � E
��k�� �

�

� h
d
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��k��
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�
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d
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h

Z �

�
h
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d

�
D
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i d
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�
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h
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d

�
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d� j
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D
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�
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� hgradEj��k��
d��k�


d� j
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h
h
d#��k�

d
 j		�
�
d��k�


d� j
	�
i� hgradEj��k��

d��k�


d� j
	�
i�

Since d�
�k�
�

d
 j
	�
varies freely in T�M� we obtain

�

h

d#��k�

d
 j		�
� gradEj��k� � 	� 
���

which is the 
rst variation� Hence in a Euclidean setting� the 
rst variation
of 
��� coincides with the implicit Euler method for 
���� Now consider the
interpolation

�
t� � #��k�

t� 
k � �� h

h
� for t � �
k � �� h� k h��

Then the curve �	��� 
 t �� �
t� � M is continuous and piecewise di�eren�
tiable with

�
k h� � ��k� and
d�

dt

k h�� �

�

h

d#��k�

d
 j		�
�

��



Together with the 
rst variation 
���� we obtain

d�

dt

k h�� � �gradEj��k h��

This visualizes that 
��� is a discretization of 
����

In our non�smooth in
nite�dimensional setting� this time discretization pro�
vides a connection between the the partial di�erential equation 
�� on one
side and the Wasserstein metric d 
��� and the energy functional E 
��� on
the other side� without referring to the shaky di�erential structure of 
M� g��
Indeed� In ���� 
see also ������ we rigorously proved convergence of the scheme
for m � �� N � �� in ����� we proved convergence for m � � and arbitrary
N � Kinderlehrer and Walkington work on numerical schemes for 
�� based
on the time discretization 
����

� Rigorous results

	�� Weak solutions of the porous medium equation

In case of m � � and for non�zero initial data with compact support� there
is no 
classically� di�erentiable solution of the porous medium equation� We
therefore must work with the notion of a weak solution� The well�established
existence and uniqueness theory for weak solutions is based on the traditional
gradient �ow approach� as presented in the subsection ���� In particular� ex�
istence is based on the identity 
�� in subsection ���� which in the traditional
approach reads as

d

dt

Z
�

m��
�
t�m�� � �

Z
jr�m
t�j��

This identity yields the essential a priori estimates� Uniqueness is based on
the convexity of the functional in the traditional approach� which leads to a
contraction property of the semi group in the induced norm 
remember that
in the traditional approach� the space carries the geometry of a convex subset
of a euclidean function space� so that intrinsic convexity of the functional
reduces to ordinary convexity�� Here that means that if ��� �� are solutions�
then

d

dt

Z
jrp
t�j �

Z

��
t�� ��
t�� 
��
t�

m � ��
t�
m� � 	�

��



where� in the spirit of 
���

�r�p
t� � ��
t�� ��
t��

De
nition � Let �� be a measurable and non negative function on IRN withZ
�

m��
�m��
� � ��

Let � be a measurable and non negative function on �	���� IRN with

ess sup
t������

Z
�

m��
�
t�m�� � ��

Then �m is locally integrable� more precisely

ess sup
t������

Z

�m
t���m���� � ��

where 
m� ��� denotes the dual exponent to m� �� Assume further that �m

has a distributional spatial gradient r�m satisfyingZ �

�

Z
jr�m
t�j� dt � ��

Then � is called a weak solution of the porous medium equation with initial
data �� if

Z
�����
IRN

	
��

��

�t
�r�m � r�



�

Z
�� �
	�

for all � � C�
� 

������ IRN��

	�� The Wasserstein metric

In subsection ���� we formally derived that the induced metric d on 
M� g�
is given by

d
��� ���
� � inf

��	
���

Z
�� jid� �j

��

Morally speaking� this is the Wasserstein metric� The precise de
nition of
the Wasserstein metric relaxes the above variational problem� This is done

�	



by embedding the set of one�to�one transformations � with �� � � �� into
the set of all probability measures � on IRN � IRN with marginals given by
the Lebesgue densities ��� �� via

� � 
id� �� ��� 
���

that is Z
�
x�� x���
dx�dx�� �

Z
��
x�� �
x���
x��� dx�

for all � � C�
� 
IR

N � IRN��

Then Z
�� jid� �j

� �
Z
jy� � y�j

� �
dy�� dy���

and it is the latter functional one minimizes on the set of all probability
measures � with marginals �� dy� and �� dy�� The relaxed variational problem
is one version of the Monge�Kantorowicz mass transference problems� the
��s are called �transference plans�� the function jy� � y�j

� is the �cost� of
transferring a unit mass from y� to y��

De
nition � For two non negative Borel measures �� and �� of equal mass�
we introduce

P 
��� ���

�
n

non negative Borel measure � on IRN � IRN
���Z

�
y���
dy� dy�� �
Z
�
y����
dy�� andZ

�
y���
dy� dy�� �
Z
�
y����
dy�� for all � � C�

� 
IR
N�

o
�

d
��� ���
� is de�ned as

d
��� ���
� � inf

��P �������

Z
jy� � y�j

� �
dy� dy�� � 
�		�

If �� and �� have Lebesgue densities �� � �� dy� resp� �� � �� dy�� we also
write

d
��� ���
� � d
��� ���

��

��



The space P 
��� ��� always contains the product measure �� � ��� Hence
d
��� ��� � �	��� is well de
ned� If the second moments of �� and �� are

nite� then the transference plan �� � �� has 
nite cost� so that d
��� ��� �
�	���� It is then an easy exercise in soft methods that the variational problem

�		� admits a minimizer of 
nite cost� It has been known to the probabilists
for a long time that d indeed de
nes a metric on the space of probability mea�
sures on IRN with 
nite second moments� This distance function is popular
in probability theory since it metrizes the topology of weak�' convergence

up to second moments�� We found the few results on d we need in ���� or
����� We summarize them in the following Lemma�

Lemma � Let f����g��� and f����g��� be two sequences of non negative
Borel measures on IRN � We assume that the masses of ���� and ���� are
�nite and equal and that there exist two non negative Borel measures �� and
�� on IRN of �nite mass such that

Z
� d�i � lim

���

Z
� d�i�� for all � � C�

� 
IR
N � and i � 	� ��

Then
d
��� ���

� � lim inf
���

d
����� �����
��

If in addition

Z �
�
jyj� d�i � lim

���

Z �
�
jyj� d�i�� for i � 	� ��

then
d
��� ���

� � lim
���

d
����� �����
��

The variational problem in 
�		� has recently received some attention by
analysts� If the measures �� and �� have bounded support and Lebesgue
densities �� � �� dy� resp� �� � �� dy�� Brenier ��� has shown uniqueness of
the minimizing transference plan � and proved that the support of � is the
graph of the gradient of a 
generically non smooth� convex function� more
precisely�

� � 
id�r�� ��� 
�	��

��



A glance back to 
��� then shows that the initial relaxation from one�to�
one transformations � to transference plans � is non essential and just of
technical convenience� In particular� 
�	�� yields that

�� � r� ��� 
�	��

We also invite the reader to compare 
�	�� with 
��� in subsection ����

Ca�arelli ��� and Gangbo ! McCann ���� ��� �	� have extended Brenier�s re�
sult to more general strictly convex cost functions� The case of cost functions
of degenerate convexity ���� and concave cost functions ��	� is qualitatively
di�erent�

	�� The statement of the rigorous result

Theorem � Let m satisfy m � N
N��

and m � � � �
N
� Let � be a weak

solution of the porous medium equation with initial data �� in the sense of
De�nition �� We assume that additionally

Z
�� � � and

Z
��
�

�
jxj� � ��

We consider the function �� on 
������ IRN given by

�
t� x� �
�

tN�
��
ln t�

x

t�
��

where 
 � �
�m���N��

� Then� in a distributional sense�

d

d�

h
exp
�
 �� jgradFj�����j

�
i
� 	�

d

d�
�exp
�
 �� 
F 
��
���� F 
������ � 	�

d

d�

h
exp
�
 �� d
��
��� ����

�
i
� 	�

with the understanding that the quantities in the square brackets are �nite
for � � ��� The precise meaning of jgradF��j

� and F 
����F 
���� is given in
���	
 resp� ����
� d denotes the Wasserstein distance as in De�nition ��

��



Let us now explain what we understand by jgradF��j
� and F 
��� � F 
���� in

Theorem �� In subsection 
����� we have identi
ed jgradF��j
� as

jgradFj��j
� �

Z
�� jrpj� where p
y� � e�
��
y�� � 


�

�
jyj��

We observe that thanks to the fundamental relationship z e��
z� � ��
z� be�
tween energy density 
��� and osmotic pressure 
�	�� we have

�

��
r�
��� � ��re�
���

and thus Z �
��
jr�
��� � 
 �� yj� �

Z
�� jrpj�� 
�	��

provided �� is locally bounded away from zero� Observe that even if this is
not the case� the l� h� s� of 
�	�� is well de
ned as a number in �	���� since
r�
��� vanishes almost everywhere on the set where �� vanishes� It is this
weak formulation

jgradF��j
� �

Z �
��
jr�
��� � 
 �� yj�� 
�	��

we use in Theorem ��

By F 
���� F 
���� we understand

F 
���� F 
���� 
�	��

�

��
�

R

e
��� � 

R
�� �
�
jyj�

�
�

R

e
���� � 

R
���

�
�
jyj�

�
for m � ��R

fe
���� e
����� e�
���� 
��� ����g for m � �

��
� �

The second line is inspired by the identity 
��� in subsection ���� We point
out that in both lines� the integrands are non negative� hence the number
F 
���� F 
���� � �	��� is well de
ned�

The main technical di$culty in mimicking the Riemannian calculus is the
possible lack of regularity of solutions of the porous medium equation� Our
approach is to mimic the Riemannian calculus in a completely smooth setting

Proposition �� and then to use an approximation argument 
in the proof of
Theorem ���

��



Proposition � Let e and � be smooth functions on 
	��� related by

�
z� � z e�
z�� e
z� and thus ��
z� � z e��
z� 
�	��

and satisfying

�
z� � 	 and z ��
z�� 
��
�

N
� �
z� � 	� 
�	��

limz��e
�
z� � �� and limz��e
z� � 	� 
�	��

Let the open ( � IRN satisfy

( is convex and �( is smooth�

Let the function �� of be a smooth and positive function on 
����� � (
which solves

���

��
�r � 
��rp� � 	 in 
������ (� 
�	��

��rp � � � 	 on 
������ �(� 
��	�

where

p � e�
��� � 

�

�
jyj�

for some �xed 
 � 	� We observe that the evolution equation ���
����

conserves mass� Thanks to ����
� there exists a smooth stationary solution
��� of ���
����
 with the same mass� it is given by

e�
���
y�� � 

�

�
jyj� � 	 and

Z
�
��� �

Z
�
��
��� 
����

Then �� and ��� satisfy

d

d�

�
exp
�
 ��

Z
�
��
�� jrp
��j�

�
� 	� 
����

d

d�
�exp
�
 �� 
F 
��
���� F 
������ � 	� 
����

d

d�

h
exp
�
 �� d
���� ��
���

�
i
� 	� 
����

where

F 
��� � E
��� � 
M
��� �
Z
�
e
��� � 


Z
�
��
�

�
jyj��

��



	�� Proof of the Proposition

We start with the proof of 
����� At the center of our attention is

p
y� � e�
��
y�� � 

�

�
jyj��

that is� p 	� gradFj�� � �
d��
d�
� We have

d

d�

Z
�
�� jrpj� �

Z
�

n
�� �rp � r��p� �� �� jrpj

�
o

�����
� �

Z
�

�
�� �rp � r��p�r � 
��rp�

�

�
jrpj��

�

� �
Z
�
��rp �

�
r��p�r


�

�
jrpj��

�
�
Z
��
��rp � � jrpj�

�����
� �

Z
�
��rp �

�
r��p�r


�

�
jrpj��

�

� �
Z
�
��rp �

h
r��p�D

�p�rp
i
�

which mimics d
d�
jgradFj��j

� � � hgradFj���
D
d�
gradFj��i� We now split p into

p � p� � 
 p� where p�
y� � e�
��
y�� and p�
y� �
�

�
jyj��

that is� p� 	� gradEj�� and p� 	� gradMj��� We will show that

�
Z
�
��rp �

h
r��p� �D

�p��rp
i

�
Z
�

n

��
��� ��� �
���� 
r�p�� � �
��� tr 
D�p��

o

�
Z
��

�
���rp � II�rp� 
����

where v � II�v denotes the second fundamental form of �(� This mimics

�hgradFj���
D

d�
gradEj��i � hgradFj���HessEj�� gradFj��i�

as can be seen from 
���� On the other hand� it is obvious thatZ
�
��rp �

h
r��p� � D

�p��rp
i
� �

Z
�
�� jrpj�� 
����

��



which mimics

hgradFj���
D

d�
gradMj��i � �hgradFj���HessMj�� gradFj��i � �jgradFj��j

��

as can be seen from 
����

Let us establish the identity 
����� For this� we write the 
rst part of the
integrand of the l� h� s� in 
���� as follows�

���rp � r��p�

� ���rp � r�e��
��� �� ���
�����
� ���rp � r�e��
���r � 
��rp��

� �rp � r��� e��
���r � 
��rp�� �rp � r�� e��
���r � 
��rp�
���
�
� �rp � r���
���r � 
��rp�� �rp � r�� e��
���r � 
��rp��

Thanks to the formula

r � �rp � rp� ��rp� � r
rp � rp�� � 
��rp� �rp � rp�r � 
��rp�

� ��rp �D�p��rp� ��rp� �D
�p�rp

� rp � rp�r � 
��rp��

which we rearrange to

��rp �D�p��rp � �
n
rp � rp�r � 
��rp� � ��rp� �D

�p�rp
o

� r � �rp � rp� ��rp� �

we have for the second part of the integral of the l� h� s� in 
�����

Z
�
��rp �D�p��rp

� �
Z
�

n
r � 
��rp�rp � rp� � ��rp� �D

�p�rp
o

�
Z
��
rp � rp� ��rp � �

�����
� �

Z
�

n
r � 
��rp�rp � rp� � ��rp� �D

�p�rp
o

��



and rewrite the integrand as

r � 
��rp�rp � rp� � ��rp� �D
�p�rp

���
�
� r � 
��rp� e��
���rp � r�� �r��
���� �D�p�rp�

Hence we obtain for the whole integral of the l� h� s� in 
�����

Z
�
��rp �

h
r��p� �D

�p��rp
i

� �
Z
�

n
rp � r���
���r � 
��rp�� �r��
���� �D�p�rp

o
�

A further integration by parts yields
Z
�
��rp �

h
r��p� �D

�p��rp
i

�
Z
�

n
r�p ��
���r � 
��rp� � �
���r � 
D�p�rp�

o

�
Z
��

n
rp � � ��
���r � 
��rp� � �
��� � � 
D�p�rp�

o

����

Let us consider the boundary integral in 
����� The Neumann boundary con�
dition 
��	� means that rp is a tangential vector 
eld on �(� Di�erentiating
the Neumann boundary condition along this tangential vector 
eld yields

� �D�p�rp�rp � II�rp � 	 on �(� 
����

We use the identity 
���� to substitute � �D�p�rp in 
���� and obtain

Z
�
��rp �

h
r��p� �D

�p��rp
i

�
Z
�

n
r�p ��
���r � 
��rp� � �
���r � 
D�p�rp�

o

�
Z
��

�
���rp � II�rp� 
����

We reconsider the 
rst part of the bulk integrand on the r� h� s� in 
�����

��
���r � 
��rp�r�p � ��
��� �� 
r�p�� � ��
���r�� � rpr�p

� ��
��� �� 
r�p�� �r��
���� � rpr�p

��



and perform a last integration by partsZ
�
r��
���� � rpr�p

� �
Z
�
�
���r � 
r�prp� �

Z
��

�
��� � � rpr�p

�����
� �

Z
�
�
���r � 
r�prp��

Hence we obtainZ
�
��rp �

h
r��p� �D

�p��rp
i

�
Z
�

n
��
��� �� 
r�p�� � �
���

h
�r � 
r�prp� �r � 
D�p�rp�

io

�
Z
��

�
���rp � II�rp�

We conclude the proof of identity 
���� by evoking the formula

�r � 
r�prp� �r � 
D�p�rp� � tr
D�p�� � 
r�p���

In order to conclude

d

d�

Z
�
�� jrpj� � ��


Z
�
�� jrpj��

and thereby the proof of 
����� it remains to show that the right hand side of

���� is non negative� that is� hs�HessEj��si � 	� Here we use our assumptions
on � and (� The integral over ( is non negative� since its integrand is non
negative�


��
��� ��� �
���� 
r�p�� � �
��� tr 
D�p��

�����

� 
��
��� ��� �
���� 
r�p�� � �
���
�

N

r�p��

�����

� 	�

where we have used trC� � �
N

trC�� for a symmetric N �N�matrix C as in


��� of subsection ���� The integral over �( is non negative since its integrand
is non negative� Our assumption 
�	�� on � implies that the 
rst factor �
���

��



is non negative� the convexity of ( implies that the second fundamental form
II of �( is positive semi de
nite� hence also the second factor rp � II�rp is
non negative�

Let us now tackle 
����� Following the lines of subsection ���� we start by
deriving an auxiliary result� Let ���� ��� be smooth and positive functions on (�
We think of ��i 
i � �� �� as being extended on IR

N by zero so that according
to 
�	���

F 
��i� � E
��i� � 
M
��i� �
Z
e
��i� � 


Z
��i
�

�
jyj��

Let � denote an optimal transference plan in the de
nition of d
���� ����
�� We

consider pi 	� gradFj��i � that is�

pi
y� � e�
��i
y�� � 

�

�
jyj��

The auxiliary result states that

F 
����� F 
���� �
Z
rp�
y�� � 
y� � y���
dy�dy�� � 


�

�
d
���� ����

�� 
��	�

The integral is well de
ned� since p� is smooth on ( and � is supported on
( � (� In order to derive and interpret inequality 
��	�� we need the curve
�	� �� 
 
 �� ��	 of least energy between ��� and ���� In this sense� 
��	� mimics

��� in subsection ���� that is�

F 
����� F 
���� � hgradFj��� �
d��

d
 j		�
i� 


�

�
d
���� ����

��

In terms of �	� �� 
 
 �� ��	� inequality 
��	� obviously is a consequence of

d�

d
 j		�
F 
��	� �

Z
rp�
y�� � 
y� � y���
dy�dy�� 
����

and
d�

d
�
F 
��	� � 
 d
���� ����

�� 
����

�	



The latter obviously splits into

d�

d
�
E
��	� � 	 and 
����

d�

d
�
M
��	� � d
���� ����

�� 
����

For these statements to make sense� we need the existence of a 
weak� curve
�	� �� 
 
 �� ��	 of least energy between ��� and ���� It is provided by results
of McCann ���� which rely on earlier work by Brenier ���� Let us state these
results� According to Brenier ���� there exists a convex function �� on IRN

such that

� � 
id�r��� ��� and in particular ��� � r�� ���� 
����

According to McCann ��� Proposition ��� 
ii���

��	 � r�	 ��� where �	
y� � 
�� 
�
�

�
jyj� � 
 ��
y�

de
nes a non negative and integrable function ��	 on IR
N � A glance back to


��� in subsection ��� will convince the reader of our interpretation of 
 �� ��	
as a geodesic % which by construction is the curve of least energy between
��� and ���� We observe that in terms of ��Z

��	 � �
Z
�

 y� � 
�� 
� y���
dy�dy�� for all � � C�

� 
IR
N �� 
����

Furthermore� McCann shows in ��� Theorem ���� that the transformation
formula 
�	� in subsection ��� can be made rigorous� For all 
 � 
	� �� we
have

Z
e
��	
y�� dy �

Z
e

�
���
y��

detD��	
y��

�
detD��	
y�� dy�� � 
����

We recall that a convex function � has a gradient r� and a Hessian D�� in
the sense that for almost every y��

�
y�

� �
y�� � 
y � y�� � r�
y�� � 
y � y�� �D
��
y���
y � y�� � o

y � y��

���

��



A proof of this result of Alexandrov can be found in ���� Theorem A�����
The symmetric and positive semi de
nite matrix D��	
y�� in 
���� is to be
understood in this sense� We observe that D��	
y�� � 
D��
y��� 
��
� id
is positive de
nite for 
 � �� Hence the division by detD��
y�� in 
����
causes no problem�

Let us start with 
����� We note that our assumptions on e and � imply the
convexity of �	��� 
 z �� e
z�� Indeed�

z� e��
z�
���
�
� z ��
z�

�����

� z 
��
�

N
� �
z�

�����

� 	 for all z � 	�

Therefore� we have

e
z�� e
z�� � e�
z�� 
z � z�� for all z � 	 and z� � 	�

We thus obtain

E
��	�� E
���� �
Z
e�
���� 
��	 � �����

Trivially�

M
��	��M
���� �
Z �
�
jyj� 
��	
y�� ���
y�� dy�

so that by de
nition of p�

�




F 
��	�� F 
����� 
����

�
Z
p�
�




��	 � ����

���
�
�

Z �



p�

 y� � 
�� 
� y��� p�
y����
dy�dy��� 
����

We observe that ��� the ��integral is supported on (�(� ��� for all 
y�� y�� �
(�( we have� as a consequence of the convexity of (� 
 y��
��
� y� � (�
��� p� is smooth in (� This implies that

lim
	��

�




p�

 y� � 
�� 
� y��� p�
y��� � rp�
y�� � 
y� � y��

uniformly in 
y�� y�� in the support of ��

��



Therefore� the passage to the limit 
 � 	 in the inequality 
���� yields 
�����

Convexity of E along geodesics as expressed in 
���� can be derived from
the representation 
���� by copying the arguments given in subsection ����
The argument for the strict convexity of M along geodesics as quanti
ed in

���� is simpler� According to 
�����

M
��	� �
Z �
�
jyj���	
y� dy �

Z �
�
j
 y� � 
�� 
� y�j

� �
dy�� dy���

and therefore

d�

d
�
M
��	� �

Z
jy� � y�j

� �
dy�� dy�� � d
���� ����
��

Now that we have established our auxiliary result 
��	�� we observe that by
symmetry� we also have

F 
����� F 
���� � �
Z
rp�
y�� � 
y� � y���
dy�dy�� � 


�

�
d
���� ����

�� 
��	�

Adding 
��	� and 
��	� yieldsZ

rp�
y���rp�
y��� � 
y� � y���
dy�dy�� � 
 d
���� ����

�� 
����

Furthermore� we obtain from 
��	�� dropping the 
 �
�
d
���� ����

��term�

F 
����� F 
����

�
Z
rp�
y�� � 
y� � y���
dy�dy��

� �
�Z

jrp�
y��j
� �
dy�dy��

� �
�
�Z

jy� � y�j
� �
dy�dy��

� �
�

� �
�Z

�
��� jrp�j

�
� �

�

d
���� �����

and thus by symmetry

jF 
����� F 
����j

� max

	�Z
�
��� jrp�j

�
� �

�

�
�Z

�
��� jrp�j

�
� �

�



d
���� ����� 
����

��



We now are in the position to prove that for two smooth and positive solutions
��� and ��� of 
�	����	� we have

d�

d�
d
���� ����

� � ��
 d
���� ����
�� 
����

Since ���
�� � ��� de
nes a 
stationary� smooth and positive solution of

�	����	�� this proves 
����� In order to prove 
����� we consider the smooth
velocity 
elds

ui � �rpi where pi
y� � e�
��i
y�� � 

�

�
jyj�� 
����

Since ��i satis
es 
�	����	�� we have

���i
��
�r � 
��i ui� � 	 in �	���� (�

ui � � � 	 on �	���� �(�

Let us 
x a time �� and show that the last two lines imply that

d�

d� j�	��
d
���
��� ���
���

�

� �
Z

u�
��� y��� u�
��� y��� � 
y� � y���
��� dy�dy��� 
����

where �
��� is an optimal transference plan in the de
nition of the Wasser�
stein metric d
���
���� ���
����

�� Obviously� 
���� together with the de
nition

���� of the velocities and the inequality 
���� imply 
����� In order to prove

����� we observe that

��i

��

�� � ui
�� � �i
�� and �i
��� � id�

de
nes a family f�i
��g� of di�eomorphism of ( which are such that for any
� � �	���

��i
�� � �i
�� ��i
����

Therefore�
�
�� � 
��
��� ��
��� �
���

��



de
nes an admissible transference plan in the de
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keeping in mind that m � N
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R
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We now consider the case m � �� We observe that ����� and ��� are also
characterized by
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We will employ a variational argument to conclude	
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	 else
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that is� a� is chosen such that ��� is admissible in 
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We would now like to pass to the limit in the r� h� s� of 
����� We start by
observing that according to 
�����
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Together we obtain
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In particular� the r� h� s� of 
���� is bounded� hence is the l� h� s�� This
implies due to e � 	 and 
����

Z
��
e
������ and

Z
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�����

�

�
jyj� are bounded for � � ��

Since e has superlinear growth� there exists a �� with
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	 else
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in particular by 
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Now by inequality 
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Line 
���� ensures that �� is admissible in 
���� and thus also a minimizer�
Since e is strictly convex� the minimizers coincide
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This establishes 
���� and 
����� Thanks to the strict convexity of e� 
����
and 
���� ensure that the weak convergence 
��	� turns into the desired
strong convergence 
�����

We now investigate the convergence of the r� h� s� of the inequalities 
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Let us now consider the case of m � �� According to 
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��
e�
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We now address the case of m � �� By de
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Finally� since
R
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R
�� ����� by construction of ������ 
����� 
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����� 
���� 
for m � �� or 
����� 
���� 
for m � �� imply by Lemma �

d
������ ������
� ���
�� d
���� ����

��

We 
nally address the convergence of the l� h� s� of the inequalities 
�����

����� 
���� and 
����� This will be an exercise in lower semi�continuity
arguments� Let us start by showing that for a� e� � � 
������

Z �

��
��
jr�
��
��� �
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�� yj� � lim inf

���

Z
��

�

���
��
jr��
���
��� �
 ���
�� yj

��


����
Because of the second statement in 
���� and 
����� we have pointwise almost
everywhere convergence of ��
���
��� to �
��
��� for a subsequence� Since
� dominates �� uniformly in � � �� and the latter quantity is controlled
according to 
����� this pointwise almost everywhere convergence improves
to 	

�
���
��� on (�

	 else
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for a� e� � � 
������ We set for convenience
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 ���
�� y and f
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��
��� � 
 ��
�� y�

We restrict ourselves to one of the almost every � with f
�� � L�
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IR

N� 
keep
in mind that our notion of weak solution presumes r�
��� � L�
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������

��



IRN��� We observe that the 
rst statement in 
���� and 
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���
��

Z
��
�� � for all � � C�

� 
IR
N��Z

��
f�
�� � �

���
��

Z
f
�� � � for all � � C�

� 
IR
N��

It is obvious that this implies 
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Z
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which we claim is true for all non negative � � L�
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IR

N� and vector valued
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N� with the understanding that
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�
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Let us now prove 
����� The ��part is an immediate consequence of the
Cauchy�Schwarz inequality�

Z
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The ��part can be seen as follows� We would like to set � � �
�
f and hence

need an approximation argument� For R ��� we consider
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R
if jyj � R

	 else
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By monotone convergence� we have
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and let �R�
 � C�
� 
IR

N� be a molli
cation of �R� For 
xed R � �� the
�R�
 stay uniformly bounded� have uniformly bounded support and converge
pointwise a� e� to �R for � � 	� We therefore have by dominated convergence
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Putting both approximations together� we see
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the second statement in 
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Together with 
���� for m � � resp� 
���� for m � �� this implies by Lemma
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This achieves the passage to the limit � � � in the l� h� s� of the inequalities

���������������� and thereby the proof of 
����� 
����� 
��	� and 
�����

	�
 Proof of the Theorem� part II

The second part of the proof of the theorem is to show that for a� e� � �
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To this purpose� we approximate the initial data � by ���s with the additional
regularity expressed by
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Z
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This can be done in two steps� The 
rst step is to mollify �� into a ���
� The
second step consists in passing to

���
�� � a
�� maxf���
� � ��g�

where �� denotes a 
xed smooth and positive function with
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R
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��� � �� and a
�� is chosen such

that
R
���
�� � �� This time� we leave the details to the reader�

Now for � � 	� let ����� denote the solution of the porous medium equation


in the sense of De
nition �� for t � � with ����� 
�� � ����� Let ��
���
� and ��

���
���

be related to ����� and ���� via the usual transformation� By the 
rst part of
this proof we have for a� e� � � 
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We pass 
rst to the limit � � 	 and then to the limit � � �� We consider
the right hand side of 
����� 
����� 
���� and 
���� 
rst� Our strategy is to
express these terms in terms of ���� and then pass to the limits� We obtain
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so that also here we obtain
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Altogether� we see that the r� h� s� of 
����� 
����� 
���� and 
���� converge
to the r� h� s� of 
����� 
����� 
��	� and 
�����

We now consider the l� h� s� of the inequalities 
����� 
����� 
���� and 
����
in the limit � � � and � � 	� From 
���� and 
����� one can deduce by
standard techniques for the porous�medium type equations 
see for instance
����� that

lim
���

���

����� � � in L�

	���� IRN��

with no restriction on the relation between � and �� By the lower semicon�
tinuity arguments from the 
rst part of the proof we see the l� h� s� of 
�����

����� 
��	� and 
���� are estimated by the limes superior of the l� h� s� of

����� 
����� 
���� and 
����� This achieves the second part of the proof�
that is� the proof of 
����� 
����� 
��	� and 
�����
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