Causal differential calculus & d'Alembert comparison

Robert J McCann

University of Toronto

with T Beran, M Braun, M Calisti, N Gigli, A Ohanyan, F Rott, C Sämann

www.math.toronto.edu/mccann/Talk2.pdf

arXiv:2408.15968, 2410.12632, more to come

4 June 2025

Overview: Nonsmooth Lorentzian analogs of

- 1. metric measure geometry: 'metric measure spacetimes'
- 2. the metric notion of completeness: 'forward' and 'backward'

- 1. metric measure geometry: 'metric measure spacetimes'
- 2. the metric notion of completeness: 'forward' and 'backward'
- 3. speed of a (nondecreasing) curve: 'causal speed'
- 4. slope of a (nondecreasing) function: 'maximal weak subslope'

- 1. metric measure geometry: 'metric measure spacetimes'
- 2. the metric notion of completeness: 'forward' and 'backward'
- 3. speed of a (nondecreasing) curve: 'causal speed'
- 4. slope of a (nondecreasing) function: 'maximal weak subslope'
- 5 (negative homogeneity) Legendre duality of tangent and cotangent fields
- 6. infinitesimally Hilbert (Riemann v Finsler): 'infinitesimally Minkowski'

- 1. metric measure geometry: 'metric measure spacetimes'
- 2. the metric notion of completeness: 'forward' and 'backward'
- 3. speed of a (nondecreasing) curve: 'causal speed'
- 4. slope of a (nondecreasing) function: 'maximal weak subslope'
- 5 (negative homogeneity) Legendre duality of tangent and cotangent fields
- 6. infinitesimally Hilbert (Riemann v Finsler): 'infinitesimally Minkowski'
- 7. (timelike) lower Ricci bounds via entropic convexity & optimal transport
- 8. Laplacian comparison with constant curvature: 'd'Alembert comparison'

- 1. metric measure geometry: 'metric measure spacetimes'
- 2. the metric notion of completeness: 'forward' and 'backward'
- 3. speed of a (nondecreasing) curve: 'causal speed'
- 4. slope of a (nondecreasing) function: 'maximal weak subslope'
- 5 (negative homogeneity) Legendre duality of tangent and cotangent fields
- 6. infinitesimally Hilbert (Riemann v Finsler): 'infinitesimally Minkowski'
- 7. (timelike) lower Ricci bounds via entropic convexity & optimal transport
- 8. Laplacian comparison with constant curvature: 'd'Alembert comparison'
- 9. nonsmooth (timelike) splitting: extremizing line yields product geometry (future work)

A nonsmooth framework for gravity

- replace Lorentz manifold (M, g_{ij}) of relativity with *metric spacetime* M (variant on Kunzinger-Sämann's '18 Lorentzian prelength spaces; also Minguzzi-Suhr's '24 bounded Lorentzian metric spaces, [M.24], Müeller)
- $\ell: M^2 \longrightarrow \{-\infty\} \cup [0,\infty)$ is called a *time-separation* function if

 $\ell(x,y) + \ell(y,z) \le \ell(x,z) \qquad \forall x,y,z \in M$

• ℓ defines the *transitive* relations *causality* \leq and *chronology* \ll by:

A nonsmooth framework for gravity

- replace Lorentz manifold (M, g_{ij}) of relativity with *metric spacetime* M (variant on Kunzinger-Sämann's '18 Lorentzian prelength spaces; also Minguzzi-Suhr's '24 bounded Lorentzian metric spaces, [M.24], Müeller)
- $\ell: M^2 \longrightarrow \{-\infty\} \cup [0,\infty)$ is called a *time-separation* function if

 $\ell(x,y) + \ell(y,z) \le \ell(x,z) \qquad \forall x,y,z \in M$

• ℓ defines the *transitive* relations *causality* \leq and *chronology* \ll by:

 $\leq := \{\ell \geq 0\} \qquad \ll := \{\ell > 0\}$ future $J^+(x) = \{y \in M \mid y \geq x\} \qquad I^+(x) := \{y \in M \mid y \gg x\}$ past $J^-(z) := \{y \in M \mid y \leq z\} \qquad I^-(z) := \{y \in M \mid y \ll z\}$

- assume $\ell(y, y) = 0 \ \forall y \in M$, so (the preorder) \leq is reflexive
- chronological topology: the coarsest topology with $I^{\pm}(y)$ open $\forall y \in M$

• a topology is called *Polish* if it has a complete, separable metrization

Definition (Metric spacetime; time-reversal)

A time-separation function $\ell: M^2 \longrightarrow \{-\infty\} \cup [0,\infty)$ as above makes (M,ℓ) a *metric spacetime* if the chronological topology it induces is Polish. The *time-reversal* (M,ℓ^*) of (M,ℓ) refers to $\ell^*(y,x) = \ell(x,y)$.

- metrizability implies \leq is partial-order: i.e. $(x \leq z \& z \leq x) \Rightarrow (x = z)$
- \leq is *forward-complete* $\Leftrightarrow x_i \leq x_{i+1} \leq z (\forall i \in \mathbf{N})$ implies $\lim_{i \to \infty} x_i$ exists

• a topology is called *Polish* if it has a complete, separable metrization

Definition (Metric spacetime; time-reversal)

A time-separation function $\ell: M^2 \longrightarrow \{-\infty\} \cup [0,\infty)$ as above makes (M,ℓ) a *metric spacetime* if the chronological topology it induces is Polish. The *time-reversal* (M,ℓ^*) of (M,ℓ) refers to $\ell^*(y,x) = \ell(x,y)$.

- metrizability implies \leq is partial-order: i.e. $(x \leq z \& z \leq x) \Rightarrow (x = z)$
- \leq is *forward-complete* $\Leftrightarrow x_i \leq x_{i+1} \leq z (\forall i \in \mathbf{N})$ implies $\lim_{i \to \infty} x_i$ exists

Definition (Forward spacetime — our standing assumption)

A metric spacetime (M, ℓ) (with its causal and chronological relations \leq and \ll and Polish chronological topology) is called *forward* if the partial order \leq is forward-complete and ℓ is upper semicontinuous.

- write (M, ℓ) is *backward* \Leftrightarrow its time-reversal (M, ℓ^*) is forward
- let $J^+(X) := \cup_{x \in X} J^+(x)$ and $J^-(Z) := \cup_{z \in Z} J^-(z)$

Definition (Emeralds)

An *emerald* refers to $J(X, Z) := J^+(X) \cap J^-(Z)$ with $X, Z \subset M$ compact.

Minguzzi: (M, ℓ) is called *globally hyperbolic* if every emerald is compact

Example (Manifolds)

Any smooth Lorentzian manifolds which admits a Cauchy surface is a forward spacetime (as is any globally hyperbolic Lorentzian length space).

Example (Manifolds with boundary)

Definition (Emeralds)

An *emerald* refers to $J(X, Z) := J^+(X) \cap J^-(Z)$ with $X, Z \subset M$ compact.

Minguzzi: (M, ℓ) is called *globally hyperbolic* if every emerald is compact

Example (Manifolds)

Any smooth Lorentzian manifolds which admits a Cauchy surface is a forward spacetime (as is any globally hyperbolic Lorentzian length space).

Example (Manifolds with boundary)

The closed interval $\left[-1,1\right]$ with the time-separation

$$\ell(x,y) := egin{cases} y-x & ext{if } y \geq x, \ -\infty & ext{else}, \end{cases}$$

is a forward spacetime (but not a Lorentzian length space nor a manifold, whereas its open subset (-1, 1) is globally hyperbolic as a Lorentzian manifold, hence also a Lorentzian length space and a forward spacetime).

Calculus of worldlines (i.e. nondecreasing curves)

Definition (Causal curve and speed; c.f. [A90] for (M, d))

 $\sigma: [0,1] \longrightarrow M$ is *causal* $\Leftrightarrow \sigma_s := \sigma(s) \leq \sigma(t)$ for all $0 \leq s < t \leq 1$; (it is *timelike* \Leftrightarrow we can replace \leq above with \ll). Its *causal speed* refers to the (pointwise a.e.) limit on (0,1)

$$|\dot{\sigma}(s)| := \lim_{h \downarrow 0} rac{\ell(\sigma_{s+h}, \sigma_s)}{h}$$

Calculus of worldlines (i.e. nondecreasing curves)

Definition (Causal curve and speed; c.f. [A90] for (M, d))

 $\sigma : [0,1] \longrightarrow M$ is *causal* $\Leftrightarrow \sigma_s := \sigma(s) \leq \sigma(t)$ for all $0 \leq s < t \leq 1$; (it is *timelike* \Leftrightarrow we can replace \leq above with \ll). Its *causal speed* refers to the (pointwise a.e.) limit on (0,1)

$$|\dot{\sigma}(s)| := \lim_{h \downarrow 0} rac{\ell(\sigma_{s+h}, \sigma_s)}{h}$$

in a metric (resp. forward) spacetime, discontinuities of a causal curve σ are countable (and σ may be taken left-continuous without loss, resp.)
the set LCC([0, 1]; M) of Left-Continuous Causal curves metrized by

$$D(\sigma, \tau) := d(\sigma_0, \tau_0) + \int_0^1 d(\sigma_s, \tau_s) ds$$

is Polish, if d makes the chronological topology Polish on (M, ℓ)

• Limit-curve theorem: $C \subset M$ compact makes LCC([0,1]; C) D-compact

q-Lagrangian action and (rough) ℓ -geodesics

Definition (q-Lagrangian action, geodesics [Minguzzi19,M.20,MS23])

Given $0 \neq q < 1$, the *action* of a causal curve refers to

$$A_q[\sigma] := rac{1}{q} \int_0^1 |\dot{\sigma}(s)|^q ds$$

Definition (q-Lagrangian action, geodesics [Minguzzi19,M.20,MS23])

Given $0 \neq q < 1$, the *action* of a causal curve refers to

$$egin{aligned} &\mathcal{A}_q[\sigma]:=rac{1}{q}\int_0^1|\dot{\sigma}(s)|^qds\leqrac{1}{q}\ell(\sigma(0),\sigma(1))^q \end{aligned}$$

Causal curves *maximizing* this action (for given endpoints) are called *rough geodesics*; if $\sigma \in LCC([0, 1]; M)$ then simply *geodesic*.

recall twin paradox

Definition (q-Lagrangian action, geodesics [Minguzzi19,M.20,MS23])

Given $0 \neq q < 1$, the *action* of a causal curve refers to

$$egin{aligned} &\mathcal{A}_q[\sigma]:=rac{1}{q}\int_0^1|\dot{\sigma}(s)|^qds\leqrac{1}{q}\ell(\sigma(0),\sigma(1))^q \end{aligned}$$

Causal curves *maximizing* this action (for given endpoints) are called *rough geodesics*; if $\sigma \in LCC([0, 1]; M)$ then simply *geodesic*.

- recall twin paradox
- maximizers are independent of q;
- the set of geodesics is denoted CGeo(M);
- curves in $TGeo(M) := \{ \sigma \in CGeo(M) \mid A_q[\sigma] \neq 0 \}$ are called *timelike* or ℓ -geodesics.

Lemma (Indpendence of q; affine parameterization)

A curve $\sigma : [0,1] \longrightarrow M$ is a rough $(\ell$ -)geodesic iff $\forall 0 \le s < t \le 1$,

 $\ell(\sigma(s),\sigma(t)) = (t-s)\ell(\sigma(0),\sigma(1)) \quad (>0).$

Definition (Nonbranching conditions)

(a) A metric spacetime (M, ℓ) has no endpoint branching if any two ℓ -geodesics $\sigma, \tilde{\sigma} \in TGeo(M)$ that agree on (0, 1) also agree on [0, 1]. (b) The metric spacetime is called *timelike nonbranching* if Lemma (Indpendence of q; affine parameterization)

A curve $\sigma : [0,1] \longrightarrow M$ is a rough $(\ell$ -)geodesic iff $\forall 0 \le s < t \le 1$,

 $\ell(\sigma(s),\sigma(t)) = (t-s)\ell(\sigma(0),\sigma(1)) \quad (>0).$

Definition (Nonbranching conditions)

(a) A metric spacetime (M, ℓ) has no endpoint branching if any two ℓ -geodesics $\sigma, \tilde{\sigma} \in TGeo(M)$ that agree on (0, 1) also agree on [0, 1]. (b) The metric spacetime is called *timelike nonbranching* if any two ℓ -geodesics $\sigma, \tilde{\sigma} \in TGeo(M)$ that agree on $(\frac{1}{3}, \frac{2}{3})$ also agree on [0, 1].

• If a forward spacetime (a) has no endpoint branching, any rough ℓ -geodesic is left-continuous (but not necessarily right-continuous).

Fuzzy events: lifting the geometry from events to measures

Optimal transport on forward spacetimes:

$$\ell_{q}(\mu,\nu) := \sup_{\gamma \in \Gamma_{\leq}(\mu,\nu)} \left(\int_{M^{2}} \ell(x,y)^{q} d\gamma(x,y) \right)^{1/q}$$

defines a time-separation (and a causal relation [EM17]) between Borel probability measures $\mu, \nu \in \mathcal{P}_{em}(M)$ on emeralds in M. Here

$$\begin{split} \Gamma_{\leq}(\mu,\nu) &:= \left\{ \gamma \geq 0 \text{ on } M^2 \mid \gamma[\{\ell \geq 0\}] = 1, \quad \mu[Y] = \gamma[Y \times M] \\ \forall Y \subset M, \qquad \gamma[M \times Y] = \nu[Y] \right\} \end{split}$$

- maximizers γ exist if $\Gamma_{\leq}(\mu, \nu) \neq \emptyset$ and are called *q*-optimal couplings
- the ℓ_q -speed along any causal curve $(\mu_s)_{s\in[0,1]}$ of measures is

$$|\dot{\mu}_{s}|_{q} := \lim_{h \downarrow 0} \frac{\ell_{q}(\mu_{s}, \mu_{s+h})}{h}$$

Tangent fields; lifting curves $(\mu_t)_t$ to measures π on curves

Definition (Rough ℓ_q -geodesics can be defined like rough ℓ -geodesics)

Given 0
eq q < 1, the action of a causal curve $(\mu_t)_{t \in [0,1]} \subset \mathcal{P}(M)$ is

$$\mathcal{A}_{q}[\mu] := \frac{1}{q} \int_{0}^{1} |\dot{\mu}_{t}|_{q}^{q} dt \leq \frac{1}{q} \ell_{q}(\mu_{0}, \mu_{1})^{q} < \infty \text{ if } \mu_{0}, \mu_{1} \in \mathcal{P}_{em}(M).$$

Define $e_t : LCC([0,1]; M) \longrightarrow M$ by $e_t(\sigma) := \sigma(t)$.

Tangent fields; lifting curves $(\mu_t)_t$ to measures π on curves

Definition (Rough ℓ_q -geodesics can be defined like rough ℓ -geodesics)

Given 0 eq q < 1, the action of a causal curve $(\mu_t)_{t\in [0,1]}\subset \mathcal{P}(M)$ is

$$\mathcal{A}_{q}[\mu] := \frac{1}{q} \int_{0}^{1} |\dot{\mu}_{t}|_{q}^{q} dt \leq \frac{1}{q} \ell_{q}(\mu_{0}, \mu_{1})^{q} < \infty \text{ if } \mu_{0}, \mu_{1} \in \mathcal{P}_{em}(M).$$

Define $e_t : LCC([0, 1]; M) \longrightarrow M$ by $e_t(\sigma) := \sigma(t)$. We say $(\mu_t)_{0 \le t \le 1}$ as above is *induced* by a plan $\pi \in \mathcal{P}(LCC([0, 1]; M))$ if $\mu_t = (e_t)_{\#}\pi$ for all $t \in [0, 1]$. Then $t \in [0, 1] \mapsto \mu_t$ is narrowly left-continuous.

Theorem (Lifting curves of measures in forward spacetimes c.f.[Lis07])

Conversely, if $(\mu_t)_{t \in [0,1]} \subset \mathcal{P}(M)$ is causal, narrowly left-continuous on [0,1], and tight on $(\epsilon, 1-\epsilon)$ ($\forall \epsilon > 0$) then it's induced by a plan $\pi \in \mathcal{P}(LCC([0,1];M))$ with expected action

$$\int A_q[\sigma] d\pi(\sigma) = \mathcal{A}_q[\mu]$$

Tangent fields; lifting curves $(\mu_t)_t$ to measures π on curves

Definition (Rough ℓ_q -geodesics can be defined like rough ℓ -geodesics)

Given 0 eq q < 1, the action of a causal curve $(\mu_t)_{t\in [0,1]}\subset \mathcal{P}(M)$ is

$$\mathcal{A}_{\boldsymbol{q}}[\mu] := \frac{1}{q} \int_0^1 |\dot{\mu}_t|_{\boldsymbol{q}}^{\boldsymbol{q}} dt \leq \frac{1}{q} \ell_{\boldsymbol{q}}(\mu_0, \mu_1)^{\boldsymbol{q}} < \infty \text{ if } \mu_0, \mu_1 \in \mathcal{P}_{\boldsymbol{em}}(\boldsymbol{M}).$$

Define $e_t : LCC([0, 1]; M) \longrightarrow M$ by $e_t(\sigma) := \sigma(t)$. We say $(\mu_t)_{0 \le t \le 1}$ as above is *induced* by a plan $\pi \in \mathcal{P}(LCC([0, 1]; M))$ if $\mu_t = (e_t)_{\#}\pi$ for all $t \in [0, 1]$. Then $t \in [0, 1] \mapsto \mu_t$ is narrowly left-continuous.

Theorem (Lifting curves of measures in forward spacetimes c.f.[Lis07])

Conversely, if $(\mu_t)_{t \in [0,1]} \subset \mathcal{P}(M)$ is causal, narrowly left-continuous on [0,1], and tight on $(\epsilon, 1-\epsilon)$ ($\forall \epsilon > 0$) then it's induced by a plan $\pi \in \mathcal{P}(LCC([0,1];M))$ with expected action

$$\int A_q[\sigma] d\pi(\sigma) = \mathcal{A}_q[\mu] \quad (= \ell_q(\mu_0, \mu_1)^q / q \text{ if } \pi \text{ is "q-optimal"})$$

 \bullet these measures π on curves (i.e. 'plans') represent tangent fields

Corollary (Optimal plans concentrate on geodesics)

If $\pi \in \mathcal{P}(LCC([0,1]; M))$ is q-optimal, then $\pi[CGeo] = 1$.

• we'll need criteria which improve this to $\pi[TGeo] = 1$

Corollary (Narrow forward-completeness in a forward spacetime)

 \bullet these measures π on curves (i.e. 'plans') represent tangent fields

Corollary (Optimal plans concentrate on geodesics)

If $\pi \in \mathcal{P}(LCC([0, 1]; M))$ is q-optimal, then $\pi[CGeo] = 1$.

• we'll need criteria which improve this to $\pi[TGeo] = 1$

Corollary (Narrow forward-completeness in a forward spacetime)

If $\mu_i \leq \mu_{i+1} \leq \nu$ in $(\mathcal{P}(M), \ell_q)$, then $\lim_{i \to \infty} \mu_i$ converges narrowly.

• plays a crucial role in our eventual construction of 'good' test plans

Definition (Strict timelike q-dualizability; c.f. [M.20] [CM24])

The pair $\mu, \nu \in \mathcal{P}_{em}(M)$ is *strictly timelike q-dualizable* iff every *q*-optimal coupling $\gamma \in \Gamma_{\leq}(\mu, \nu)$ vanishes outside $\{\ell > 0\}$.

Lemma (Narrow continuity of rough ℓ_q -geodesics)

If (M, ℓ) is a forward spacetime with no endpoint branching

Definition (Strict timelike q-dualizability; c.f. [M.20] [CM24])

The pair $\mu, \nu \in \mathcal{P}_{em}(M)$ is *strictly timelike q-dualizable* iff every *q*-optimal coupling $\gamma \in \Gamma_{\leq}(\mu, \nu)$ vanishes outside $\{\ell > 0\}$.

Lemma (Narrow continuity of rough ℓ_q -geodesics)

If (M, ℓ) is a forward spacetime with no endpoint branching and $(\mu_t)_{t \in [0,1]}$ is a rough ℓ_q -geodesic with strictly timelike q-dualizable endpoints $\mu_0, \mu_1 \in \mathcal{P}_{em}(M)$, then $t \in [0,1] \mapsto \mu_t$ is narrowly continuous wherever it is locally tight.

• local tightness can come from e.g., global hyperbolicity or density bounds or narrow forward-completeness...

(Exact, future-directed) cotangent fields; their magnitudes

Definition (Causal functions (nondecreasing); form a convex cone)

 $f: M \longrightarrow [-\infty, \infty]$ is causal $\Leftrightarrow \ell(x, y) \ge 0$ implies $f(x) \le f(y)$.

Definition (Metric-measure spacetimes; test plan; maximal subslope)

Fix a Radon measure *m* on (M, ℓ) assigning finite mass to each emerald. A plan $\pi \in \mathcal{P}(LCC([0, 1]; M))$ is called (initially) *test* \Leftrightarrow

(Exact, future-directed) cotangent fields; their magnitudes

Definition (Causal functions (nondecreasing); form a convex cone)

 $f: M \longrightarrow [-\infty, \infty]$ is causal $\Leftrightarrow \ell(x, y) \ge 0$ implies $f(x) \le f(y)$.

Definition (Metric-measure spacetimes; test plan; maximal subslope)

Fix a Radon measure m on (M, ℓ) assigning finite mass to each emerald. A plan $\pi \in \mathcal{P}(LCC([0, 1]; M))$ is called (initially) *test* \Leftrightarrow there is $C \in \mathbb{R}$ such that $(e_t)_{\#}\pi \leq Cm$ for each (small) $t \in [0, 1]$. A function $g: M \longrightarrow [0, \infty]$ is called a *weak subslope* of $f \Leftrightarrow$

(Exact, future-directed) cotangent fields; their magnitudes

Definition (Causal functions (nondecreasing); form a convex cone)

 $f: M \longrightarrow [-\infty, \infty]$ is causal $\Leftrightarrow \ell(x, y) \ge 0$ implies $f(x) \le f(y)$.

Definition (Metric-measure spacetimes; test plan; maximal subslope)

Fix a Radon measure m on (M, ℓ) assigning finite mass to each emerald. A plan $\pi \in \mathcal{P}(LCC([0, 1]; M))$ is called (initially) *test* \Leftrightarrow there is $C \in \mathbb{R}$ such that $(e_t)_{\#}\pi \leq Cm$ for each (small) $t \in [0, 1]$. A function $g: M \longrightarrow [0, \infty]$ is called a *weak subslope* of $f \Leftrightarrow$

$$f(\sigma_1) - f(\sigma_0) \geq \int_0^1 g(\sigma_t) |\dot{\sigma}_t| dt$$

for every test plan π and π -a.e. curve σ . They form a stable lattice. Each *m*-measurable causal *f* admits a *maximal weak subslope*, denoted g = |df|.

• this very general definition, c.f. [AGS14], good for integration-by-parts

Infinitesimal Minkowskianity

Lemma (Examples of weak subslopes; (TMCP \Rightarrow equality))

Continuity of causal f and $\ell_+ = \max\{\ell, 0\}$ imply m-a.e. y satisfies

$$\liminf_{x\ll y} \frac{f(y)-f(x)}{\ell(x,y)} \leq |df(y)|, \qquad \liminf_{z\gg y} \frac{f(z)-f(y)}{\ell(y,z)} \leq |df(y)|.$$

Definition (c.f. infinitesimally Hilbertian [G15] rather than [AGS14d])

A metric-measure spacetime (M, ℓ, m) is *infinitesimally Minkowskian* \Leftrightarrow

Infinitesimal Minkowskianity

Lemma (Examples of weak subslopes; (TMCP \Rightarrow equality))

Continuity of causal f and $\ell_+ = max\{\ell,0\}$ imply m-a.e. y satisfies

$$\liminf_{x\ll y}\frac{f(y)-f(x)}{\ell(x,y)}\leq |df(y)|,\qquad \liminf_{z\gg y}\frac{f(z)-f(y)}{\ell(y,z)}\leq |df(y)|.$$

Definition (c.f. infinitesimally Hilbertian [G15] rather than [AGS14d])

A metric-measure spacetime (M, ℓ, m) is *infinitesimally Minkowskian* \Leftrightarrow all real causal *m*-measurable functions f, g satisfy the parallelogram law

 $|d(f+g)|^2 + |dg|^2 = 2|d(f+2g)|^2 + 2|df|^2$ m-a.e.

Infinitesimal Minkowskianity

Lemma (Examples of weak subslopes; (TMCP \Rightarrow equality))

Continuity of causal f and $\ell_+ = max\{\ell,0\}$ imply m-a.e. y satisfies

$$\liminf_{x\ll y} \frac{f(y)-f(x)}{\ell(x,y)} \leq |df(y)|, \qquad \liminf_{z\gg y} \frac{f(z)-f(y)}{\ell(y,z)} \leq |df(y)|.$$

Definition (c.f. infinitesimally Hilbertian [G15] rather than [AGS14d])

A metric-measure spacetime (M, ℓ, m) is *infinitesimally Minkowskian* \Leftrightarrow all real causal *m*-measurable functions f, g satisfy the parallelogram law

$$|d(f+g)|^2 + |dg|^2 = 2|d(f+2g)|^2 + 2|df|^2$$
 m-a.e.

• equivalently, the following polarization is positively bilinear *m*-a.e.:

$$2((df, dg)) := |d(f+g)|^2 - |df|^2 - |dg|^2$$

• distinguishes Lorentz from Lorentz-Finsler metrics on e.g. \mathbf{R}^n [BO24]

Convex analysis; horizontal derivatives; raising indices

Just as causal curves and functions on a smooth Lorentz manifold satisfy

$$\langle df, \dot{\sigma} \rangle \ge \frac{1}{p} \| df \|_*^p + \frac{1}{q} \| \dot{\sigma} \|^q \qquad ext{when } p^{-1} + q^{-1} = 1$$

with equality iff $\langle \dot{\sigma}, \cdot \rangle = \|df\|_*^{p-2} df(\cdot)$, i.e. iff $\dot{\sigma} = \|\nabla f\|^{p-2} \nabla f$ [M.20],

Theorem (Nonsmooth Fenchel-Young inequality for 0 < q < 1)

If $(e_s)_{\#}\pi \to (e_0)_{\#}\pi$ narrowly, $|df|^p \in L^1(m)$, and π initially test then

$$\lim_{s\downarrow 0} \int \frac{f(\sigma_s) - f(\sigma_0)}{s} d\pi(\sigma) \ge$$

Convex analysis; horizontal derivatives; raising indices

Just as causal curves and functions on a smooth Lorentz manifold satisfy

$$\langle df, \dot{\sigma} \rangle \geq \frac{1}{p} \| df \|_*^p + \frac{1}{q} \| \dot{\sigma} \|^q \quad \text{when } p^{-1} + q^{-1} = 1$$

with equality iff $\langle \dot{\sigma}, \cdot \rangle = \|df\|_*^{p-2} df(\cdot)$, i.e. iff $\dot{\sigma} = \|\nabla f\|^{p-2} \nabla f$ [M.20],

Theorem (Nonsmooth Fenchel-Young inequality for 0 < q < 1)

If $(e_s)_{\#}\pi o (e_0)_{\#}\pi$ narrowly, $|df|^p \in L^1(m)$, and π initially test then

$$\underbrace{\lim_{s\downarrow 0}}{\int} \frac{f(\sigma_s) - f(\sigma_0)}{s} d\pi(\sigma) \ge \frac{1}{p} \int |df|^p d(e_0)_{\#} \pi + \underbrace{\lim_{t\downarrow 0}}{\int} \int_0^t \frac{|\dot{\sigma}_r|^q}{qt} dr d\pi(\sigma).$$

Convex analysis; horizontal derivatives; raising indices

Just as causal curves and functions on a smooth Lorentz manifold satisfy

$$\langle df, \dot{\sigma} \rangle \geq \frac{1}{p} \| df \|_*^p + \frac{1}{q} \| \dot{\sigma} \|^q \quad \text{when } p^{-1} + q^{-1} = 1$$

with equality iff $\langle \dot{\sigma}, \cdot \rangle = \|df\|_*^{p-2} df(\cdot)$, i.e. iff $\dot{\sigma} = \|\nabla f\|^{p-2} \nabla f$ [M.20],

Theorem (Nonsmooth Fenchel-Young inequality for 0 < q < 1)

If $(e_s)_{\#}\pi \to (e_0)_{\#}\pi$ narrowly, $|df|^p \in L^1(m)$, and π initially test then

$$\lim_{s\downarrow 0}\int \frac{f(\sigma_s)-f(\sigma_0)}{s}d\pi(\sigma) \geq \frac{1}{p}\int |df|^p d(e_0)_{\#}\pi + \lim_{t\downarrow 0}\int \int_0^t \frac{|\dot{\sigma}_r|^q}{qt}drd\pi(\sigma).$$

• limit on left called *horizontal* (inner, Lagrangian) derivative of f along π

• aims at bilinear pairing of π with f; (NB concave *p*-Dirichlet energy of f)

Definition (Identified tangent and cotangent fields; optimal transport) If $\lim_{s\downarrow 0}$ exists and equality holds, we say π represents the *p*-gradient of *f*. A nonlinear duality between some tangent and cotangent fields (π and *f*) Robert LIMCCurr (Toronto) Nonsmooth gravity/d'Alembert comparison 4 June 2025 15/25

Perturbation & variational derivative of *p*-Dirichlet energy

• given *m*-measurable $E \subset M$, write $g \in Pert_p(f, E)$ if for all $\epsilon > 0$ small enough, $f + \epsilon g$ is causal and $|d(f + \epsilon g)|^p \in L^1(E, dm)$.

Theorem (Horizontal dominates vertical derivative; c.f. [G15])

If $f : M \longrightarrow \overline{\mathbf{R}}$ is causal, $g \in Pert_p(f, E)$, and π represents the p-gradient of f and is concentrated on curves remaining initially in E, then

Perturbation & variational derivative of *p*-Dirichlet energy

• given *m*-measurable $E \subset M$, write $g \in Pert_p(f, E)$ if for all $\epsilon > 0$ small enough, $f + \epsilon g$ is causal and $|d(f + \epsilon g)|^p \in L^1(E, dm)$.

Theorem (Horizontal dominates vertical derivative; c.f. [G15])

If $f : M \longrightarrow \overline{\mathbf{R}}$ is causal, $g \in Pert_p(f, E)$, and π represents the p-gradient of f and is concentrated on curves remaining initially in E, then

$$\lim_{s \downarrow 0} \int \frac{g(\sigma_s) - g(\sigma_0)}{s} d\pi(\sigma) \ge \lim_{\epsilon \downarrow 0} \int \frac{|d(f + \epsilon g)|^p - |df|^p}{\epsilon p} d(e_0)_{\#} \pi$$
variation of *p*-Dirichlet energy =: $\int d^+g(\nabla f)|df|^{p-2}d(e_0)_{\#} \pi$

Perturbation & variational derivative of *p*-Dirichlet energy

• given *m*-measurable $E \subset M$, write $g \in Pert_p(f, E)$ if for all $\epsilon > 0$ small enough, $f + \epsilon g$ is causal and $|d(f + \epsilon g)|^p \in L^1(E, dm)$.

Theorem (Horizontal dominates vertical derivative; c.f. [G15])

 $= v\epsilon$

If $f : M \longrightarrow \overline{\mathbf{R}}$ is causal, $g \in Pert_p(f, E)$, and π represents the p-gradient of f and is concentrated on curves remaining initially in E, then

$$\lim_{s \downarrow 0} \int \frac{g(\sigma_s) - g(\sigma_0)}{s} d\pi(\sigma) \ge \lim_{\epsilon \downarrow 0} \int \frac{|d(f + \epsilon g)|^p - |df|^p}{\epsilon p} d(e_0)_{\#} \pi$$

ariation of *p*-Dirichlet energy =:
$$\int d^+g(\nabla f) |df|^{p-2} d(e_0)_{\#} \pi$$

last is direction g vertical (/ outer / Eulerian) derivative of p-energy at f
nonlinear in f but becomes linear in g if two-sided limit in ε exists

Corollary (If (M, ℓ, m) is infinitesimally Minkowskian)and if $-g, g \in Pert_p(f, E)$ then $\lim_{\epsilon \to 0}$ and $\lim_{s \downarrow 0}$ exist & equality holds above!Reder: J McGrm (Toronto)Nonsmooth gravity/d'Alembert comparison4 June 202516/25

Curvature bounds via entropy

Given $N \in (1, \infty)$, define N-Renyi (or Boltzmann) entropy of $\mu \in \mathcal{P}(M)$ by

$$S_N(\mu) := -N \int_M [(rac{d\mu}{dm})^{-1/N} - 1] d\mu \quad (ext{and} \ S_\infty(\mu)) := \lim_{N o \infty} S_N(\mu))$$

• in the smooth globally hyperbolic setting, convexity properties of $t \in [0,1] \mapsto S_N(\mu_t)$ along ℓ_q -geodesics (or of $S_{\infty}(\mu_t)$) are well-known to characterize timelike lower Ricci curvature bounds [B23] [MS23] [M.20]; c.f. [RS04][CMS01][OV00][M.94] (or [EKS15])

Curvature bounds via entropy

Given $N \in (1, \infty)$, define N-Renyi (or Boltzmann) entropy of $\mu \in \mathcal{P}(M)$ by

$$S_N(\mu) := -N \int_M [(rac{d\mu}{dm})^{-1/N} - 1] d\mu \quad (ext{and} \ S_\infty(\mu) := \lim_{N o \infty} S_N(\mu))$$

• in the smooth globally hyperbolic setting, convexity properties of $t \in [0,1] \mapsto S_N(\mu_t)$ along ℓ_q -geodesics (or of $S_{\infty}(\mu_t)$) are well-known to characterize timelike lower Ricci curvature bounds [B23] [MS23] [M.20]; c.f. [RS04][CMS01][OV00][M.94] (or [EKS15])

 $TMCP^{\pm}$ (or $TMCP_{e}^{+}$): a poor man's lower Ricci curvature bounds

• we impose only sublinearity of $S_N(\mu_t)$ only along ℓ_q -geodesics starting or ending at a Dirac point mass — the *timelike measure contraction* properties $TMCP^{\pm}$ of [B23]; c.f. [CM24] [LV09] [O07] [S06]

• if (μ_0, δ_z) are strictly timelike *q*-dualizable precisely one ℓ_q -geodesic links μ_0 to δ_z ; moreover $S_N(\delta_z) = 0$ (whereas $S_{\infty}(\delta_z) := +\infty$.)

Definition (Future timelike measure contraction property; c.f. [B23])

For $K \in \mathbb{R}$ write $(M, \ell, m) \in TMCP^+(K, N)$ if $\forall \mu_0 \in \mathcal{P}_{em}(M) \cap L^1(m)$ and each $z \in \operatorname{spt} m$ with $\mu_0[I^-(z)] = 1$, for some (hence all) $0 \neq q < 1$, there exists a (rough) ℓ_q -geodesic from μ_0 to $\mu_1 := \delta_z$ such that all $t \in [0, 1]$ and $N' \geq N$ satisfy

$$S_{N'}(\mu_t) \leq -\int \tau_{K,N}^{(1-t)}(\ell(x,z)) \frac{d\mu_0}{dm}(x)^{1-1/N'} dm(x).$$

Past version: $(M, \ell, m) \in TMCP^{-}(K, N) \Leftrightarrow (M, \ell^*, m) \in TMCP^{+}(K, N)$.

• $\tau_{0,N}^{(1-t)}(\ell) := 1 - t$ for K = 0;

Definition (Future timelike measure contraction property; c.f. [B23])

For $K \in \mathbb{R}$ write $(M, \ell, m) \in TMCP^+(K, N)$ if $\forall \mu_0 \in \mathcal{P}_{em}(M) \cap L^1(m)$ and each $z \in \operatorname{spt} m$ with $\mu_0[I^-(z)] = 1$, for some (hence all) $0 \neq q < 1$, there exists a (rough) ℓ_q -geodesic from μ_0 to $\mu_1 := \delta_z$ such that all $t \in [0, 1]$ and $N' \geq N$ satisfy

$$S_{N'}(\mu_t) \leq -\int \tau_{K,N}^{(1-t)}(\ell(x,z)) \frac{d\mu_0}{dm}(x)^{1-1/N'} dm(x).$$

Past version: $(M, \ell, m) \in TMCP^{-}(K, N) \Leftrightarrow (M, \ell^*, m) \in TMCP^{+}(K, N)$.

• $\tau_{0,N}^{(1-t)}(\ell) := 1 - t$ for K = 0; asserts sublinearity of $t \in [0, 1] \mapsto S_{N'}(\mu_t)$, and follows from the strong energy condition, a case of primary interest

• a smooth globally hyperbolic Lorentzian manifold M^n satisfies $TMCP^{\pm}(K, N)$ if $n \leq N$ and $Ric(v, v) \geq Kg(v, v)$ for all timelike $v \in TM$

Test plans: finding ℓ_q -geodesics having density bounds

Theorem (Initial test plans with Dirac targets; c.f. [B23][CM17][R13])

Fix $(K \in \mathbb{R} \text{ or}) K = 0 \neq q < 1 < N < \infty$, a forward spacetime $(M, \ell, m) \in (TMCP^+ \cap TMCP_e^+)(K, N)$ with no endpoint branching and $z \in M$. If $\mu_0[I^-(z)] = 1$ for $\mu_0 \in L^{\infty}(m) \cap \mathcal{P}_{em}(M)$ then there exists a *q*-optimal plan π inducing (an ℓ_q -geodesic) $\mu_t := (e_t)_{\#}\pi$ from μ_0 to $\mu_1 := \delta_z$ such that $t \in [0, 1] \mapsto S_{N'}(\mu_t)$ is (suitably) sublinear for each $N' \geq N$ and

 $\|\frac{d\mu_t}{dm}\|_{L^{\infty}(m)} \leq$

Test plans: finding ℓ_q -geodesics having density bounds

Theorem (Initial test plans with Dirac targets; c.f. [B23][CM17][R13])

Fix $(K \in \mathbb{R} \text{ or}) K = 0 \neq q < 1 < N < \infty$, a forward spacetime $(M, \ell, m) \in (TMCP^+ \cap TMCP_e^+)(K, N)$ with no endpoint branching and $z \in M$. If $\mu_0[I^-(z)] = 1$ for $\mu_0 \in L^\infty(m) \cap \mathcal{P}_{em}(M)$ then there exists a *q*-optimal plan π inducing (an ℓ_q -geodesic) $\mu_t := (e_t)_{\#}\pi$ from μ_0 to $\mu_1 := \delta_z$ such that $t \in [0, 1] \mapsto S_{N'}(\mu_t)$ is (suitably) sublinear for each $N' \geq N$ and

$$\left\|\frac{d\mu_t}{dm}\right\|_{L^{\infty}(m)} \leq \frac{c_{\mathcal{K},\mathcal{N},\ell}}{(1-t)^{\mathcal{N}}} \left\|\frac{d\mu_0}{dm}\right\|_{L^{\infty}(m)}.$$

- $c_{0,N,\ell} = 1$ if K = 0 (else $c_{K,N,\ell} := \exp(t \|\ell\|_{L^{\infty}(\mu_0 \times \mu_1)} \sqrt{K_{-}(N-1)})$)
- Boltzmann version $TMCP_e^+$ can be replaced by global hyperbolicity
- extends to non-Dirac targets provided

Test plans: finding ℓ_q -geodesics having density bounds

Theorem (Initial test plans with Dirac targets; c.f. [B23][CM17][R13])

Fix $(K \in \mathbb{R} \text{ or}) K = 0 \neq q < 1 < N < \infty$, a forward spacetime $(M, \ell, m) \in (TMCP^+ \cap TMCP_e^+)(K, N)$ with no endpoint branching and $z \in M$. If $\mu_0[I^-(z)] = 1$ for $\mu_0 \in L^\infty(m) \cap \mathcal{P}_{em}(M)$ then there exists a *q*-optimal plan π inducing (an ℓ_q -geodesic) $\mu_t := (e_t)_{\#}\pi$ from μ_0 to $\mu_1 := \delta_z$ such that $t \in [0, 1] \mapsto S_{N'}(\mu_t)$ is (suitably) sublinear for each $N' \geq N$ and

$$\left\|\frac{d\mu_t}{dm}\right\|_{L^{\infty}(m)} \leq \frac{c_{\mathcal{K},\mathcal{N},\ell}}{(1-t)^{\mathcal{N}}} \left\|\frac{d\mu_0}{dm}\right\|_{L^{\infty}(m)}.$$

- $c_{0,N,\ell} = 1$ if K = 0 (else $c_{K,N,\ell} := \exp(t \|\ell\|_{L^{\infty}(\mu_0 \times \mu_1)} \sqrt{K_{-}(N-1)})$)
- Boltzmann version $TMCP_e^+$ can be replaced by global hyperbolicity
- extends to non-Dirac targets provided (μ_0, μ_1) strictly timelike q-dualizable and (M, ℓ, m) is (q-essentially) timelike nonbranching,

COROLLARY (Busemann and Lorentz distance functions have unit slope) $g(\cdot) = -\ell(\cdot, z)$ satisfies |dg| = 1 *m*-a.e. on $I^-(z)$

When is the *p*-gradient of *f* represented by a test plan π ?

$$f^{(q)}(z) := \sup_{x \in I^{-}(z)} f(x) + \frac{\ell(x, z)^{q}}{q} \qquad g_{q}(x) := \inf_{z \in I^{+}(x)}$$

When is the *p*-gradient of *f* represented by a test plan π ?

$$f^{(q)}(z) := \sup_{x \in I^{-}(z)} f(x) + \frac{\ell(x, z)^{q}}{q} \qquad g_{q}(x) := \inf_{z \in I^{+}(x)} g(z) - \frac{\ell(x, z)^{q}}{q}$$

• write $f: M \longrightarrow \overline{\mathbf{R}}$ is $\frac{\ell^q}{q}$ -concave if $f = g_q$ for some $g: M \longrightarrow \overline{\mathbf{R}}$; if q < 0

• then f is causal, upper semicontinuous, and $\partial_{\ell^q/q} f$ relatively closed in \ll

$$\partial_{\ell^q/q} f := \{ x \ll z \mid f^{(q)}(z) = f(x) + \frac{\ell(x,z)^q}{q} \in \mathbf{R} \} \subset M^2, \text{ if } \ell_+ \in C(M)$$

Theorem (A metric Brenier-M. thm; cf.[CM24][MS23][M.20][AGS14])

Fix $0 \neq q < 1$ and $p^{-1} + q^{-1} = 1$. Let (M, ℓ, m) be forward, ℓ_+ continuous and $f = (f^{(q)})_q$.

When is the *p*-gradient of *f* represented by a test plan π ?

$$f^{(q)}(z) := \sup_{x \in I^{-}(z)} f(x) + \frac{\ell(x, z)^{q}}{q} \qquad g_{q}(x) := \inf_{z \in I^{+}(x)} g(z) - \frac{\ell(x, z)^{q}}{q}$$

• write $f: M \longrightarrow \overline{\mathbf{R}}$ is $\frac{\ell^q}{q}$ -concave if $f = g_q$ for some $g: M \longrightarrow \overline{\mathbf{R}}$; if q < 0

• then f is causal, upper semicontinuous, and $\partial_{\ell^q/q} f$ relatively closed in \ll

$$\partial_{\ell^q/q} f := \{ x \ll z \mid f^{(q)}(z) = f(x) + \frac{\ell(x,z)^q}{q} \in \mathbf{R} \} \subset M^2, \text{ if } \ell_+ \in C(M)$$

Theorem (A metric Brenier-M. thm; cf.[CM24][MS23][M.20][AGS14])

Fix $0 \neq q < 1$ and $p^{-1} + q^{-1} = 1$. Let (M, ℓ, m) be forward, ℓ_+ continuous and $f = (f^{(q)})_q$. If $(e_0, e_1)_{\#}\pi[\partial_{\ell^q/q}f] = 1$ for some q-optimal initial test plan π such that $(e_t)_{\#}\pi[E] = 1$ for each small $t \geq 0$ and $|df|^p \in L^1(E, m)$, then π represents the p-gradient of f, [and the maximal weak subslope of f tells how far to transport, i.e., π -a.e. curve σ satisfies

$$|df|(\sigma_0) = \ell(\sigma_0, \sigma_1)^{q-1}.]$$

$$\operatorname{dom} \partial_{\ell^q/q} f := \{ x \in M \mid \partial_{\ell^q/q} f \cap (\{x\} \times M) \neq \emptyset \}$$

Theorem (d'Alembert comparison theorem: $\Box_p f \leq N$ if K = 0)

Fix $0 \neq q < 1 = p^{-1} + q^{-1} < N < \infty$, a forward spacetime $(M, \ell, m) \in TMCP^+_{(e)}(K, N)$ with no endpoint branching, $\ell_+ \in C(M)$, $K \in \mathbb{R}$ and $f = (f^{(q)})_q$. Let (M, ℓ, m) be (q-essential) timelike nonbranching unless $\exists z \in M$ with

$$f(x) = \begin{cases} -\ell(x,z)^q/q & \forall x \in I^-(z), \\ +\infty & \text{else.} \end{cases}$$

$$\operatorname{dom} \partial_{\ell^q/q} f := \{ x \in M \mid \partial_{\ell^q/q} f \cap (\{x\} \times M) \neq \emptyset \}$$

Theorem (d'Alembert comparison theorem: $\Box_p f \leq N$ if K = 0)

Fix $0 \neq q < 1 = p^{-1} + q^{-1} < N < \infty$, a forward spacetime $(M, \ell, m) \in TMCP^+_{(e)}(K, N)$ with no endpoint branching, $\ell_+ \in C(M)$, $K \in \mathbb{R}$ and $f = (f^{(q)})_q$. Let (M, ℓ, m) be (q-essential) timelike nonbranching unless $\exists z \in M$ with

$$f(x) = \begin{cases} -\ell(x,z)^q/q & \forall x \in I^-(z), \\ +\infty & \text{else.} \end{cases}$$

If $0 \le \phi \in Pert_p(f) \cap L^{\infty}$, compact support and $m[\operatorname{spt} \phi \setminus \operatorname{dom} \partial_{\ell^q/q} f] = 0$ then

$$\int_{M} d^{+}\phi(\nabla f) |df|^{p-2} dm \leq \int_{M} \tilde{\tau}_{\mathcal{K},\mathcal{N}}(|df|^{p-1})\phi dm$$

$$\tilde{\tau}_{K,N}(\mathbf{r}) := N \frac{\partial \tau_{K,N}^t(\mathbf{r})}{\partial t|_{t=1}} = \begin{cases} N & \text{if } \mathbf{K} = \mathbf{0} \\ 1 + r\sqrt{(N-1)|K|}\cot(r\sqrt{\frac{K}{N-1}}) & \text{else.} \end{cases}$$

Same nonsmooth sense and setting with e.g. K = 0, a chain rule yields

$$\Box_{
ho}(-\ell(\cdot, z)) \leq rac{N-1}{\ell(\cdot, z)} \quad ext{ on } I^-(z)$$

$$\Box_{\rho}(\ell(\mathbf{x},\cdot)) \geq -\frac{N-1}{\ell(\mathbf{x},\cdot)} \quad \text{on } I^{+}(\mathbf{x})$$

- It is conceivable that $Pert_p(f, M)$ is sometimes too sparse to be of use
- However,

Same nonsmooth sense and setting with e.g. K = 0, a chain rule yields

$$\Box_{
ho}(-\ell(\cdot,z)) \leq rac{N-1}{\ell(\cdot,z)} \quad ext{ on } I^-(z)$$

$$\Box_{\rho}(\ell(\mathbf{x},\cdot)) \geq -\frac{N-1}{\ell(\mathbf{x},\cdot)} \quad \text{ on } I^{+}(\mathbf{x})$$

- It is conceivable that $Pert_p(f, M)$ is sometimes too sparse to be of use
- However, on smooth globally hyperbolic manifolds, $Pert_p(f, M)$ is rich enough to imply the preceding conclusions in the usual, distributional sense

Same nonsmooth sense and setting with e.g. K = 0, a chain rule yields

$$\Box_{\rho}(-\ell(\cdot, z)) \leq \frac{N-1}{\ell(\cdot, z)} \quad \text{on } I^{-}(z)$$

$$\Box_{\rho}(\ell(\mathbf{x},\cdot)) \geq -\frac{N-1}{\ell(\mathbf{x},\cdot)} \quad \text{ on } I^{+}(\mathbf{x})$$

- It is conceivable that $Pert_p(f, M)$ is sometimes too sparse to be of use
- However, on smooth globally hyperbolic manifolds, $Pert_p(f, M)$ is rich enough to imply the preceding conclusions in the usual, distributional sense
- Eschenburg (1988) proved such estimates hold where $\ell(\cdot, z)$ is smooth

Same nonsmooth sense and setting with e.g. K = 0, a chain rule yields

$$\Box_{\rho}(-\ell(\cdot, z)) \leq \frac{N-1}{\ell(\cdot, z)} \quad \text{on } I^{-}(z)$$

$$\Box_{\rho}(\ell(\mathbf{x},\cdot)) \geq -\frac{N-1}{\ell(\mathbf{x},\cdot)} \quad \text{on } I^{+}(\mathbf{x})$$

- It is conceivable that $Pert_p(f, M)$ is sometimes too sparse to be of use
- However, on smooth globally hyperbolic manifolds, $Pert_p(f, M)$ is rich enough to imply the preceding conclusions in the usual, distributional sense
- Eschenburg (1988) proved such estimates hold where $\ell(\cdot, z)$ is smooth
- we extend them past the cutlocus for the first time; c.f. Calabi (1958)

Same nonsmooth sense and setting with e.g. K = 0, a chain rule yields

$$\Box_{\rho}(-\ell(\cdot, z)) \leq \frac{N-1}{\ell(\cdot, z)} \quad \text{on } I^{-}(z)$$

$$\Box_{\rho}(\ell(\mathbf{x},\cdot)) \geq -\frac{N-1}{\ell(\mathbf{x},\cdot)} \quad \text{on } I^{+}(\mathbf{x})$$

- It is conceivable that $Pert_p(f, M)$ is sometimes too sparse to be of use
- However, on smooth globally hyperbolic manifolds, $Pert_p(f, M)$ is rich enough to imply the preceding conclusions in the usual, distributional sense
- Eschenburg (1988) proved such estimates hold where $\ell(\cdot,z)$ is smooth
- we extend them past the cutlocus for the first time; c.f. Calabi (1958)
- [BGMOS25+] extends his timelike splitting theorem to $g_{ij} \in C^1(M)$

- thus even on smooth globally hyperbolic manifolds we obtain new results
- functional analysis: $\Box_q f$ is a measure, nonunique unless infinitesimally Minkowskian, $TMCP_{(e)}^{\pm}(K, N)$, and $Pert_p(f, E)$ is dense; c.f. [G15]

• localization: [B24+] establishes many fundamental properties of $\Box_p f$ by developing an approach based on needle decompositions; c.f. [CM20]

Selected references (apologies for omissions/oversights):

Beran-Braun-Calisto-Gigli-M.-Ohanyan-Rott-Sämann arXiv:2408.15968 Octet

Selected references (apologies for omissions/oversights):

Beran-Braun-Calisto-Gigli-M.-Ohanyan-Rott-Sämann arXiv:2408.15968 Octet [A90] Ambrosio (Ann SNS Pisa CI Sci) [AGS14,AGS14d] Ambrosio-Gigli-Savaré (Inventiones, Duke) [B23,B23,B24+] Braun (Nonlinear Analysis, JMPA, arXiv:2408.16525) [BO24,BM24+] Braun-Ohta (TAMS), Braun-M. (arXiv:2312.17158) [CM17,CM20,CM24] Cavalletti–Mondino (CCM, AnaPDE, Camb J Math) [EKS15] Erbar-Kuwada-Sturm (Inventiones) [EM17] Eckstein–Miller (AIHP) [G04,G15,G24+] Gigli (PhD, MAMS, forthcoming) [Lis07] Lisini (CVPDE) [KS18] Kunzinger-Sämann (Ann Global Anal Geom) [M.94,M.20,M.24] M. (PhD, Cambridge J Math, CMP) [MS23] Mondino–Suhr (J Euro Math Soc) [007,014] Ohta (CM Helvetica, Anal Geom Metric Spaces) [OV00,LV09] Otto-Villani (J. Funct. Anal.), Lott-Villani (Annals) [R12,R13] Rajala (JFA, DCDS) [RS04,S06] von Renesse–Sturm (CPAM), Sturm (Acta)

Selected references (apologies for omissions/oversights):

Beran-Braun-Calisto-Gigli-M.-Ohanyan-Rott-Sämann arXiv:2408.15968 Octet [A90] Ambrosio (Ann SNS Pisa CI Sci) [AGS14,AGS14d] Ambrosio-Gigli-Savaré (Inventiones, Duke) [B23,B23,B24+] Braun (Nonlinear Analysis, JMPA, arXiv:2408.16525) [BO24,BM24+] Braun-Ohta (TAMS), Braun-M. (arXiv:2312.17158) [CM17,CM20,CM24] Cavalletti-Mondino (CCM, AnaPDE, Camb J Math) [EKS15] Erbar-Kuwada-Sturm (Inventiones) [EM17] Eckstein–Miller (AIHP) [G04,G15,G24+] Gigli (PhD, MAMS, forthcoming) [Lis07] Lisini (CVPDE) [KS18] Kunzinger-Sämann (Ann Global Anal Geom) [M.94,M.20,M.24] M. (PhD, Cambridge J Math, CMP) [MS23] Mondino–Suhr (J Euro Math Soc) [007,014] Ohta (CM Helvetica, Anal Geom Metric Spaces) [OV00,LV09] Otto-Villani (J. Funct. Anal.), Lott-Villani (Annals) [R12,R13] Rajala (JFA, DCDS) [RS04,S06] von Renesse–Sturm (CPAM), Sturm (Acta) τηανκ χου! Nonsmooth gravity/d'Alembert comparison (Toronto) 4 June 2025 25 / 25