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Overview: Nonsmooth Lorentzian analogs of

1. metric measure geometry: ‘metric measure spacetimes’

2. the metric notion of completeness: ’forward’ and ‘backward’

3. speed of a (nondecreasing) curve: ‘causal speed’

4. slope of a (nondecreasing) function: ‘maximal weak subslope’

5 (negative homogeneity) Legendre duality of tangent and cotangent fields

6. infinitesimally Hilbert (Riemann v Finsler): ‘infinitesimally Minkowski’

7. (timelike) lower Ricci bounds via entropic convexity & optimal transport

8. Laplacian comparison with constant curvature: ‘d’Alembert comparison’

9. nonsmooth (timelike) splitting: extremizing line yields product geometry

(future work)

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 4 June 2025 2 / 25



Overview: Nonsmooth Lorentzian analogs of

1. metric measure geometry: ‘metric measure spacetimes’

2. the metric notion of completeness: ’forward’ and ‘backward’

3. speed of a (nondecreasing) curve: ‘causal speed’

4. slope of a (nondecreasing) function: ‘maximal weak subslope’

5 (negative homogeneity) Legendre duality of tangent and cotangent fields

6. infinitesimally Hilbert (Riemann v Finsler): ‘infinitesimally Minkowski’

7. (timelike) lower Ricci bounds via entropic convexity & optimal transport

8. Laplacian comparison with constant curvature: ‘d’Alembert comparison’

9. nonsmooth (timelike) splitting: extremizing line yields product geometry

(future work)

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 4 June 2025 2 / 25



Overview: Nonsmooth Lorentzian analogs of

1. metric measure geometry: ‘metric measure spacetimes’

2. the metric notion of completeness: ’forward’ and ‘backward’

3. speed of a (nondecreasing) curve: ‘causal speed’

4. slope of a (nondecreasing) function: ‘maximal weak subslope’

5 (negative homogeneity) Legendre duality of tangent and cotangent fields

6. infinitesimally Hilbert (Riemann v Finsler): ‘infinitesimally Minkowski’

7. (timelike) lower Ricci bounds via entropic convexity & optimal transport

8. Laplacian comparison with constant curvature: ‘d’Alembert comparison’

9. nonsmooth (timelike) splitting: extremizing line yields product geometry

(future work)

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 4 June 2025 2 / 25



Overview: Nonsmooth Lorentzian analogs of

1. metric measure geometry: ‘metric measure spacetimes’

2. the metric notion of completeness: ’forward’ and ‘backward’

3. speed of a (nondecreasing) curve: ‘causal speed’

4. slope of a (nondecreasing) function: ‘maximal weak subslope’

5 (negative homogeneity) Legendre duality of tangent and cotangent fields

6. infinitesimally Hilbert (Riemann v Finsler): ‘infinitesimally Minkowski’

7. (timelike) lower Ricci bounds via entropic convexity & optimal transport

8. Laplacian comparison with constant curvature: ‘d’Alembert comparison’

9. nonsmooth (timelike) splitting: extremizing line yields product geometry

(future work)

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 4 June 2025 2 / 25



Overview: Nonsmooth Lorentzian analogs of

1. metric measure geometry: ‘metric measure spacetimes’

2. the metric notion of completeness: ’forward’ and ‘backward’

3. speed of a (nondecreasing) curve: ‘causal speed’

4. slope of a (nondecreasing) function: ‘maximal weak subslope’

5 (negative homogeneity) Legendre duality of tangent and cotangent fields

6. infinitesimally Hilbert (Riemann v Finsler): ‘infinitesimally Minkowski’

7. (timelike) lower Ricci bounds via entropic convexity & optimal transport

8. Laplacian comparison with constant curvature: ‘d’Alembert comparison’

9. nonsmooth (timelike) splitting: extremizing line yields product geometry

(future work)

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 4 June 2025 2 / 25



A nonsmooth framework for gravity

• replace Lorentz manifold (M, gij) of relativity with metric spacetime M
(variant on Kunzinger-Sämann’s ’18 Lorentzian prelength spaces; also
Minguzzi–Suhr’s ’24 bounded Lorentzian metric spaces, [M.24], Müeller)

• ` : M2 −→ {−∞} ∪ [0,∞) is called a time-separation function if

`(x , y) + `(y , z) ≤ `(x , z) ∀x , y , z ∈ M

• ` defines the transitive relations causality ≤ and chronology � by:

≤ := {` ≥ 0} � := {` > 0}
future J+(x) = {y ∈ M | y ≥ x} I+(x) := {y ∈ M | y � x}
past J−(z) := {y ∈ M | y ≤ z} I−(z) := {y ∈ M | y � z}

• assume `(y , y) = 0 ∀y ∈ M, so (the preorder) ≤ is reflexive

• chronological topology: the coarsest topology with I±(y) open ∀y ∈ M
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• a topology is called Polish if it has a complete, separable metrization

Definition (Metric spacetime; time-reversal)

A time-separation function ` : M2 −→ {−∞} ∪ [0,∞) as above makes
(M, `) a metric spacetime if the chronological topology it induces is Polish.
The time-reversal (M, `∗) of (M, `) refers to `∗(y , x) = `(x , y).

• metrizability implies ≤ is partial-order: i.e. (x ≤ z & z ≤ x)⇒ (x = z)

• ≤ is forward-complete ⇔ xi ≤ xi+1 ≤ z(∀i ∈ N) implies lim
i→∞

xi exists

Definition (Forward spacetime — our standing assumption)

A metric spacetime (M, `) (with its causal and chronological relations ≤
and � and Polish chronological topology) is called forward if the partial
order ≤ is forward-complete and ` is upper semicontinuous.

• write (M, `) is backward ⇔ its time-reversal (M, `∗) is forward

• let J+(X ) := ∪x∈X J+(x) and J−(Z ) := ∪z∈ZJ−(z)
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Definition (Emeralds)

An emerald refers to J(X ,Z ) := J+(X ) ∩ J−(Z ) with X ,Z ⊂ M compact.

Minguzzi: (M, `) is called globally hyperbolic if every emerald is compact

Example (Manifolds)

Any smooth Lorentzian manifolds which admits a Cauchy surface is a
forward spacetime (as is any globally hyperbolic Lorentzian length space).

Example (Manifolds with boundary)

The closed interval [−1, 1] with the time-separation

`(x , y) :=

{
y − x if y ≥ x ,

−∞ else,

is a forward spacetime (but not a Lorentzian length space nor a manifold,
whereas its open subset (−1, 1) is globally hyperbolic as a Lorentzian
manifold, hence also a Lorentzian length space and a forward spacetime).
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Calculus of worldlines (i.e. nondecreasing curves)

Definition (Causal curve and speed; c.f. [A90] for (M , d))

σ : [0, 1] −→ M is causal ⇔ σs := σ(s) ≤ σ(t) for all 0 ≤ s < t ≤ 1; (it is
timelike ⇔ we can replace ≤ above with �). Its causal speed refers to the
(pointwise a.e.) limit on (0, 1)

|σ̇(s)| := lim
h↓0

`(σs+h, σs)

h

• in a metric (resp. forward) spacetime, discontinuities of a causal curve σ
are countable (and σ may be taken left-continuous without loss, resp.)
• the set LCC ([0, 1];M) of Left-Continuous Causal curves metrized by

D(σ, τ) := d(σ0, τ0) +

∫ 1

0
d(σs , τs)ds

is Polish, if d makes the chronological topology Polish on (M, `)
• Limit-curve theorem: C ⊂ M compact makes LCC ([0, 1];C ) D-compact
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q-Lagrangian action and (rough) `-geodesics

Definition (q-Lagrangian action, geodesics [Minguzzi19,M.20,MS23])

Given 0 6= q < 1, the action of a causal curve refers to

Aq[σ] :=
1

q

∫ 1

0
|σ̇(s)|qds

≤ 1

q
`(σ(0), σ(1))q

Causal curves maximizing this action (for given endpoints) are called
rough geodesics; if σ ∈ LCC ([0, 1];M) then simply geodesic.
• recall twin paradox
• maximizers are independent of q;
• the set of geodesics is denoted CGeo(M);
• curves in TGeo(M) := {σ ∈ CGeo(M) | Aq[σ] 6= 0} are called timelike
or `-geodesics.
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Nonbranching conditions; characterizing geodesics

Lemma (Indpendence of q; affine parameterization)

A curve σ : [0, 1] −→ M is a rough (`-)geodesic iff ∀0 ≤ s < t ≤ 1,

`(σ(s), σ(t)) = (t − s)`(σ(0), σ(1)) (> 0).

Definition (Nonbranching conditions)

(a) A metric spacetime (M, `) has no endpoint branching if any two
`-geodesics σ, σ̃ ∈ TGeo(M) that agree on (0, 1) also agree on [0, 1].
(b) The metric spacetime is called timelike nonbranching if

any two
`-geodesics σ, σ̃ ∈ TGeo(M) that agree on ( 1

3 ,
2
3 ) also agree on [0, 1].

• If a forward spacetime (a) has no endpoint branching, any rough
`-geodesic is left-continuous (but not necessarily right-continous).
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Fuzzy events: lifting the geometry from events to measures

Optimal transport on forward spacetimes:

`q(µ, ν) := sup
γ∈Γ≤(µ,ν)

(∫
M2

`(x , y)qdγ(x , y)

)1/q

defines a time-separation (and a causal relation [EM17]) between Borel
probability measures µ, ν ∈ Pem(M) on emeralds in M. Here

Γ≤(µ, ν) :=

{
γ ≥ 0 on M2 | γ[{` ≥ 0}] = 1, µ[Y ] =γ[Y ×M]

∀Y ⊂ M, γ[M × Y ] = ν[Y ]

}
• maximizers γ exist if Γ≤(µ, ν) 6= ∅ and are called q-optimal couplings

• the `q-speed along any causal curve (µs)s∈[0,1] of measures is

|µ̇s |q := lim
h↓0

`q(µs , µs+h)

h
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Tangent fields; lifting curves (µt)t to measures π on curves

Definition (Rough `q-geodesics can be defined like rough `-geodesics)

Given 0 6= q < 1, the action of a causal curve (µt)t∈[0,1] ⊂ P(M) is

Aq[µ] :=
1

q

∫ 1

0
|µ̇t |qqdt ≤

1

q
`q(µ0, µ1)q <∞ if µ0, µ1 ∈ Pem(M).

Define et : LCC ([0, 1];M) −→ M by et(σ) := σ(t).

We say (µt)0≤t≤1 as
above is induced by a plan π ∈ P(LCC ([0, 1];M)) if µt = (et)#π for all
t ∈ [0, 1]. Then t ∈ [0, 1] 7→ µt is narrowly left-continuous.

Theorem (Lifting curves of measures in forward spacetimes c.f.[Lis07])

Conversely, if (µt)t∈[0,1] ⊂ P(M) is causal, narrowly left-continuous on
[0, 1], and tight on (ε, 1− ε) (∀ε > 0) then it’s induced by a plan
π ∈ P(LCC ([0, 1];M)) with expected action∫

Aq[σ]dπ(σ) = Aq[µ] (= `q(µ0, µ1)q/q if π is “q-optimal”)
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Consequences in forward spacetimes

• these measures π on curves (i.e. ‘plans’) represent tangent fields

Corollary (Optimal plans concentrate on geodesics)

If π ∈ P(LCC ([0, 1];M)) is q-optimal, then π[CGeo] = 1.

• we’ll need criteria which improve this to π[TGeo] = 1

Corollary (Narrow forward-completeness in a forward spacetime)

If µi ≤ µi+1 ≤ ν in (P(M), `q), then limi→∞ µi converges narrowly.

• plays a crucial role in our eventual construction of ‘good’ test plans
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q-dualizability and narrow continuity of rough `q-geodesics

Definition (Strict timelike q-dualizability; c.f. [M.20] [CM24])

The pair µ, ν ∈ Pem(M) is strictly timelike q-dualizable iff every q-optimal
coupling γ ∈ Γ≤(µ, ν) vanishes outside {` > 0}.

Lemma (Narrow continuity of rough `q-geodesics)

If (M, `) is a forward spacetime with no endpoint branching

and (µt)t∈[0,1]

is a rough `q-geodesic with strictly timelike q-dualizable endpoints
µ0, µ1 ∈ Pem(M), then t ∈ [0, 1] 7→ µt is narrowly continuous wherever it
is locally tight.

• local tightness can come from e.g., global hyperbolicity or density
bounds or narrow forward-completeness...
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(Exact, future-directed) cotangent fields; their magnitudes

Definition (Causal functions (nondecreasing); form a convex cone)

f : M −→ [−∞,∞] is causal ⇔ `(x , y) ≥ 0 implies f (x) ≤ f (y).

Definition (Metric-measure spacetimes; test plan; maximal subslope)

Fix a Radon measure m on (M, `) assigning finite mass to each emerald.
A plan π ∈ P(LCC ([0, 1];M)) is called (initially) test ⇔

there is C ∈ R
such that (et)#π ≤ Cm for each (small) t ∈ [0, 1]. A function
g : M −→ [0,∞] is called a weak subslope of f ⇔

f (σ1)− f (σ0) ≥
∫ 1

0
g(σt)|σ̇t |dt

for every test plan π and π-a.e. curve σ. They form a stable lattice. Each
m-measurable causal f admits a maximal weak subslope, denoted g = |df |.

• this very general definition, c.f. [AGS14], good for integration-by-parts
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Definition (Causal functions (nondecreasing); form a convex cone)

f : M −→ [−∞,∞] is causal ⇔ `(x , y) ≥ 0 implies f (x) ≤ f (y).

Definition (Metric-measure spacetimes; test plan; maximal subslope)
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Infinitesimal Minkowskianity

Lemma (Examples of weak subslopes; (TMCP ⇒ equality))

Continuity of causal f and `+ = max{`, 0} imply m-a.e. y satisfies

lim inf
x�y

f (y)− f (x)

`(x , y)
≤ |df (y)|, lim inf

z�y

f (z)− f (y)

`(y , z)
≤ |df (y)|.

Definition (c.f. infinitesimally Hilbertian [G15] rather than [AGS14d])

A metric-measure spacetime (M, `,m) is infinitesimally Minkowskian ⇔

all
real causal m-measurable functions f , g satisfy the parallelogram law

|d(f + g)|2 + |dg |2 = 2|d(f + 2g)|2 + 2|df |2 m-a.e.

• equivalently, the following polarization is positively bilinear m-a.e.:

2((df , dg)) := |d(f + g)|2 − |df |2 − |dg |2

• distinguishes Lorentz from Lorentz-Finsler metrics on e.g. Rn [BO24]

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 4 June 2025 14 / 25



Infinitesimal Minkowskianity

Lemma (Examples of weak subslopes; (TMCP ⇒ equality))

Continuity of causal f and `+ = max{`, 0} imply m-a.e. y satisfies

lim inf
x�y

f (y)− f (x)

`(x , y)
≤ |df (y)|, lim inf

z�y

f (z)− f (y)

`(y , z)
≤ |df (y)|.

Definition (c.f. infinitesimally Hilbertian [G15] rather than [AGS14d])

A metric-measure spacetime (M, `,m) is infinitesimally Minkowskian ⇔ all
real causal m-measurable functions f , g satisfy the parallelogram law

|d(f + g)|2 + |dg |2 = 2|d(f + 2g)|2 + 2|df |2 m-a.e.

• equivalently, the following polarization is positively bilinear m-a.e.:

2((df , dg)) := |d(f + g)|2 − |df |2 − |dg |2

• distinguishes Lorentz from Lorentz-Finsler metrics on e.g. Rn [BO24]

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 4 June 2025 14 / 25



Infinitesimal Minkowskianity

Lemma (Examples of weak subslopes; (TMCP ⇒ equality))

Continuity of causal f and `+ = max{`, 0} imply m-a.e. y satisfies

lim inf
x�y

f (y)− f (x)

`(x , y)
≤ |df (y)|, lim inf

z�y

f (z)− f (y)

`(y , z)
≤ |df (y)|.

Definition (c.f. infinitesimally Hilbertian [G15] rather than [AGS14d])

A metric-measure spacetime (M, `,m) is infinitesimally Minkowskian ⇔ all
real causal m-measurable functions f , g satisfy the parallelogram law

|d(f + g)|2 + |dg |2 = 2|d(f + 2g)|2 + 2|df |2 m-a.e.

• equivalently, the following polarization is positively bilinear m-a.e.:

2((df , dg)) := |d(f + g)|2 − |df |2 − |dg |2

• distinguishes Lorentz from Lorentz-Finsler metrics on e.g. Rn [BO24]
Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 4 June 2025 14 / 25



Convex analysis; horizontal derivatives; raising indices

Just as causal curves and functions on a smooth Lorentz manifold satisfy

〈df , σ̇〉 ≥1

p
‖df ‖p∗ +

1

q
‖σ̇‖q when p−1 + q−1 = 1

with equality iff 〈σ̇, ·〉 = ‖df ‖p−2
∗ df (·), i.e. iff σ̇ = ‖∇f ‖p−2∇f [M.20],

Theorem (Nonsmooth Fenchel-Young inequality for 0 < q < 1)

If (es)#π → (e0)#π narrowly, |df |p ∈ L1(m), and π initially test then

lim
s↓0

∫
f (σs)− f (σ0)

s
dπ(σ)≥

1

p

∫
|df |pd(e0)#π + lim

t↓0

∫ ∫ t

0

|σ̇r |q

qt
drdπ(σ).

• limit on left called horizontal (inner, Lagrangian) derivative of f along π
• aims at bilinear pairing of π with f ; (NB concave p-Dirichlet energy of f )

Definition (Identified tangent and cotangent fields; optimal transport)

If lims↓0 exists and equality holds, we say π represents the p-gradient of f .
A nonlinear duality between some tangent and cotangent fields (π and f )
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Perturbation & variational derivative of p-Dirichlet energy

• given m-measurable E ⊂ M, write g ∈ Pertp(f ,E ) if for all ε > 0 small
enough, f + εg is causal and |d(f + εg)|p ∈ L1(E , dm).

Theorem (Horizontal dominates vertical derivative; c.f. [G15])

If f : M −→ R̄ is causal, g ∈ Pertp(f ,E ), and π represents the p-gradient
of f and is concentrated on curves remaining initially in E , then

lim
s↓0

∫
g(σs)− g(σ0)

s
dπ(σ) ≥ lim

ε↓0

∫
|d(f + εg)|p − |df |p

εp
d(e0)#π

= variation of p-Dirichlet energy =:

∫
d+g(∇f )|df |p−2d(e0)#π

• last is direction g vertical (/ outer / Eulerian) derivative of p-energy at f
• nonlinear in f but becomes linear in g if two-sided limit in ε exists

Corollary (If (M , `,m) is infinitesimally Minkowskian)

and if −g , g ∈ Pertp(f ,E ) then lim
ε→0

and lim
s↓0

exist & equality holds above!
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Curvature bounds via entropy

Given N ∈ (1,∞), define N-Renyi (or Boltzmann) entropy of µ ∈ P(M) by

SN(µ) := −N
∫
M

[(
dµ

dm
)−1/N − 1]dµ (and S∞(µ) := lim

N→∞
SN(µ))

• in the smooth globally hyperbolic setting, convexity properties of
t ∈ [0, 1] 7→ SN(µt) along `q-geodesics (or of S∞(µt)) are well-known to
characterize timelike lower Ricci curvature bounds [B23] [MS23] [M.20];
c.f. [RS04][CMS01][OV00][M.94] (or [EKS15])

TMCP± (or TMCP+
e ): a poor man’s lower Ricci curvature bounds

• we impose only sublinearity of SN(µt) only along `q-geodesics starting or
ending at a Dirac point mass — the timelike measure contraction
properties TMCP± of [B23]; c.f. [CM24] [LV09] [O07] [S06]

• if (µ0, δz) are strictly timelike q-dualizable precisely one `q-geodesic links
µ0 to δz ; moreoever SN(δz) = 0 (whereas S∞(δz) := +∞.)
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A poorer cousin to timelike lower Ricci curvature bounds

Definition (Future timelike measure contraction property; c.f. [B23])

For K ∈ R write (M, `,m) ∈ TMCP+(K ,N) if ∀µ0 ∈ Pem(M) ∩ L1(m)
and each z ∈ sptm with µ0[I−(z)] = 1, for some (hence all) 0 6= q < 1,
there exists a (rough) `q-geodesic from µ0 to µ1 := δz such that all
t ∈ [0, 1] and N ′ ≥ N satisfy

SN′(µt)≤−
∫
τ

(1−t)
K ,N (`(x , z))

dµ0

dm
(x)1−1/N′dm(x).

Past version: (M, `,m) ∈ TMCP−(K ,N) ⇔(M, `∗,m) ∈ TMCP+(K ,N).

• τ (1−t)
0,N (`) := 1− t for K = 0;

asserts sublinearity of t ∈ [0, 1] 7→ SN′(µt),
and follows from the strong energy condition, a case of primary interest

• a smooth globally hyperbolic Lorentzian manifold Mn satisfies
TMCP±(K ,N) if n ≤ N and Ric(v , v) ≥ Kg(v , v) for all timelike v ∈ TM
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Test plans: finding `q-geodesics having density bounds

Theorem (Initial test plans with Dirac targets; c.f. [B23][CM17][R13])

Fix (K ∈ R or) K = 0 6= q < 1 < N <∞, a forward spacetime
(M, `,m) ∈ (TMCP+ ∩ TMCP+

e )(K ,N) with no endpoint branching and
z ∈ M. If µ0[I−(z)] = 1 for µ0 ∈ L∞(m) ∩ Pem(M) then there exists a
q-optimal plan π inducing (an `q-geodesic) µt := (et)#π from µ0 to
µ1 := δz such that t ∈ [0, 1] 7→ SN′(µt) is (suitably) sublinear for each
N ′ ≥ N and

‖dµt
dm
‖L∞(m) ≤

cK ,N,`
(1− t)N

‖dµ0

dm
‖L∞(m).

• c0,N,` = 1 if K = 0 (else cK ,N,` := exp(t‖`‖L∞(µ0×µ1)

√
K−(N − 1)))

• Boltzmann version TMCP+
e can be replaced by global hyperbolicity

• extends to non-Dirac targets provided (µ0, µ1) strictly timelike
q-dualizable and (M, `,m) is (q-essentially) timelike nonbranching,

COROLLARY (Busemann and Lorentz distance functions have unit slope)
g(·) = −`(·, z) satisfies |dg | = 1 m-a.e. on I−(z)
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When is the p-gradient of f represented by a test plan π?

f (q)(z):= sup
x∈I−(z)

f (x) +
`(x , z)q

q
gq(x) := inf

z∈I+(x)

g(z)− `(x , z)q

q

• write f : M −→ R̄ is `q

q -concave if f = gq for some g : M −→ R̄; if q < 0
• then f is causal, upper semicontinuous, and ∂`q/qf relatively closed in �

∂`q/qf := {x � z | f (q)(z) = f (x) + `(x ,z)q

q ∈ R} ⊂ M2, if `+ ∈ C (M)

Theorem (A metric Brenier-M. thm; cf.[CM24][MS23][M.20][AGS14])

Fix 0 6= q < 1 and p−1 + q−1 = 1. Let (M, `,m) be forward, `+

continuous and f = (f (q))q. If (e0, e1)#π[∂`q/qf ] = 1 for some q-optimal
initial test plan π such that (et)#π[E ] = 1 for each small t ≥ 0 and
|df |p ∈ L1(E ,m), then π represents the p-gradient of f , [and the maximal
weak subslope of f tells how far to transport, i.e., π-a.e. curve σ satisfies

|df |(σ0) = `(σ0, σ1)q−1.]
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dom ∂`q/qf := {x ∈ M | ∂`q/qf ∩ ({x} ×M) 6= ∅}

Theorem (d’Alembert comparison theorem: �pf ≤ N if K = 0)

Fix 0 6= q < 1 = p−1 + q−1 < N <∞, a forward spacetime
(M, `,m) ∈ TMCP+

(e)(K ,N) with no endpoint branching, `+ ∈ C (M),

K ∈ R and f = (f (q))q. Let (M, `,m) be (q-essential) timelike
nonbranching unless ∃z ∈ M with

f (x) =

{
−`(x , z)q/q ∀x ∈ I−(z),

+∞ else.

If 0 ≤ φ ∈ Pertp(f ) ∩ L∞, compact support and m[sptφ \ dom ∂`q/qf ] = 0
then ∫

M
d+φ(∇f )|df |p−2dm ≤

∫
M
τ̃K ,N(|df |p−1)φdm

τ̃K ,N(r) := N
∂τ tK ,N(r)

∂t|t=1
=

{
N if K = 0

1 + r
√

(N − 1)|K | cot(r
√

K
N−1 ) else.
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Corollary

Same nonsmooth sense and setting with e.g. K = 0, a chain rule yields

�p(−`(·, z)) ≤ N − 1

`(·, z)
on I−(z)

• Analogous results also hold true in backward spacetimes and K 6= 0.
After time-reversing them, the forward (M, `,m) ∈ TMCP−(K ,N) satisfies

�p(`(x , ·)) ≥ −N − 1

`(x , ·)
on I+(x)

• It is conceivable that Pertp(f ,M) is sometimes too sparse to be of use

• However,

on smooth globally hyperbolic manifolds, Pertp(f ,M) is rich
enough to imply the preceding conclusions in the usual, distributional sense

• Eschenburg (1988) proved such estimates hold where `(·, z) is smooth

• we extend them past the cutlocus for the first time; c.f. Calabi (1958)

• [BGMOS25+] extends his timelike splitting theorem to gij ∈ C 1(M)
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Defining the p-d’Alembertian

• thus even on smooth globally hyperbolic manifolds we obtain new results

• functional analysis: �qf is a measure, nonunique unless infinitesimally
Minkowskian, TMCP±(e)(K ,N), and Pertp(f ,E ) is dense; c.f. [G15]

• localization: [B24+] establishes many fundamental properties of �pf by
developing an approach based on needle decompositions; c.f. [CM20]
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[KS18] Kunzinger–Sämann (Ann Global Anal Geom)
[M.94,M.20,M.24] M. (PhD, Cambridge J Math, CMP)
[MS23] Mondino–Suhr (J Euro Math Soc)
[O07,O14] Ohta (CM Helvetica, Anal Geom Metric Spaces)
[OV00,LV09] Otto–Villani (J. Funct. Anal.), Lott–Villani (Annals)
[R12,R13] Rajala (JFA, DCDS)
[RS04,S06] von Renesse–Sturm (CPAM), Sturm (Acta) THANK YOU!

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 4 June 2025 25 / 25


