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Abstract

Dilemmas involving optimization, economy, and logistics pervade the nat-
ural and the man-made worlds. Mathematics provides a beautiful language
for framing such problems, and sharp tools for resolving them. This talk ex-
amines one problem from the research frontier, which ties together geometry,
economics, and analysis, yet remains accessible at a grade 12 level. It will
be followed by a problem session and discussion, focused on the possibility of
a problems-based mathematics curriculum and the role of optimality therein.
This discussion is motivated by the question of whether mathematics is dif-
ferent from poetry: “Must technique displace art as the focus of our teaching
efforts?”

The example problem we probe was formulated by Monge in 1781. Moti-
vated by economics, the problem is described as follows: Given a density f(x)
of iron mines throughout the countryside, and a density g(y) of factories which
require iron ore, decide which mines should supply ore to each factory in order
to minimize the total transportation costs. Taking the mines and factories to
be distributed continuously throughout Euclidean space — or a curved land-
scape with obstacles — and the cost per ton of ore transported from the mine
at x to the factory at y to be specified as a function of the distance, yields a
problem with deep connections to geometry and non-linear partial differential
equations.

For costs c(x, y) = h(d(x, y)) given by strictly convex or strictly concave
increasing functions h ≥ 0 of the distance, the solution takes the form of
a measure-preserving map between the densities f and g. It is unique, and
uniquely characterized by its geometry. Even on the line this mapping may be
intricate. This talk explores some unexpected features of the solution for con-
cave costs, including the emergence of a local / global hierarchy which seems
as fascinating from the economic as the mathematical point of view.
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EXPLORATORY PROBLEMS
These are intended to be exploratory problems, which means that everyone

should be able to start them and make some progress, but few will be able to
finish them.

1. A Marriage Problem: Locate N brides at points x1 ≤ x2 ≤ . . . ≤ xN along the real
line, and N grooms at points y1 ≤ y2 . . . ≤ yN . The question is which groom should
be paired with which bride in order to minimize the average distance squared that
the grooms must commute to get to their brides.

a) Show that the optimal pairing is achieved if the groom at xi is paired with the bride
at yi for each i = 1, . . . , N . Do the case N = 2 first!

b) Show that the same pairing remains optimal if we try to minimize the average value
of some other power c(x, y) = |x − y|p of the distance provided p ≥ 1; (or more
generally if ∂2c/∂x∂y ≤ 0).

c) Give an example to show that the pairing may not be optimal if p < 1.

2. Extremal Magic Matrices: A set C ⊂ Rn is convex if it contains the line segment
{(1− t)x+ tx′ | t ∈ [0, 1]} whenever x and x′ are distinct points in C. A point e ∈ C
is said to be extreme if it is NOT the midpoint of any segment with endpoints in C.
Consider the space P (n) of n × n doubly stochastic matrices — i.e., matrices with
non-negative coefficients, for which the entries in each column and each row sum
to 1.

(a) Prove P (n) forms a convex subset of all n × n matrices; it can be visualized as a
convex polytope in Rn2

.
(b) Find the extreme points of P (n). How many of them are there?
The analogous continuum question involves non-negative densities f(x, y) ≥ 0 on the

square which integrate to one along each horizontal or vertical segment:

F =
{

f(x, y) ≥ 0
∣∣∣∣ ∫ 1

0
f(xo, y)dy = 1 =

∫ 1

0
f(x, yo)dx for each xo, yo ∈ [0, 1]

}
c) Show F is convex but has no extreme points.
d) However, if we close F in a suitable metric (allowing f to be a “non-negative measure”

or “generalized function”), then F has extreme points E; indeed, F is the smallest
closed convex set containing E. Finding a characterization of the extreme points
analogous to (b) has remained an open problem through the 20th century.

3. Parish Boundaries. Distribute parishioners uniformly throughout a region Ω ⊂
R2, served by only a few churches located at y1, . . . , yN ∈ R2. Each church can
accommodates a fraction 1/N of the parishioners. Assume the parishioners are
assigned to parishes so as to minimize the average distance commuted to mass.

a) If N = 2, show the region Ω is divided into two parishes, and the dividing curve forms
the arc of a hyperbola. Where are the churches relative to its foci?

b) If instead we minimize the average distance squared, show the dividing curve lies along
straight line. How does its direction compare with a line through the two churches?
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c) Redo part (b) with N churches. Show that each parish forms a convex polygon (or at
least the intersection of such a polygon with Ω).

d) Explore analogs of (a–c) for non-uniform distributions of parishioners on Ω, and/or
churches of varied sizes.

4. Convex-Concave Min-Max: Suppose f(x, y) is a continuous function on I × J ,
where I, J ⊂ R are two compact intervals. Then

inf
x∈I

sup
y∈J

f(x, y) ≥ sup
y∈J

inf
x∈I

f(x, y).

Although equality will not hold in general, prove that it does hold provided both
that f(x, yo) is a convex function of x for each yo ∈ J and f(xo, y) is a concave
function of y for each xo ∈ I.
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