

Finite Groups We've Seen:

C_n The cyclic group of n elements:

$$C_n = \{1, r, r^2, \dots, r^{n-1}\} \quad r^n = 1.$$

D_n The dihedral group of $2n$ elements:

$$D_n = \{1, r, r^2, \dots, r^{n-1}, m, mr, mr^2, \dots, mr^{n-1}\} \quad r^n = 1, m^2 = 1.$$

\mathbf{Z}_n The additive group of integers modulo n :

$$\mathbf{Z}_n = \{0, 1, 2, \dots, n-1\}$$

with $a \oplus b$ is the remainder of $a + b$ when divided by n . The order of this group is $|\mathbf{Z}_n| = n$.

U_m The multiplicative group of integers modulo m :

$$U_m = \{k \in \mathbf{Z} : 0 < k < m, \gcd(k, m) = 1\}$$

with $a \otimes b$ is the remainder of ab when divided by m . (We called this group G_m , but I've seen U_m used more in texts.) The order of this group is $|U_m| = \phi(m)$. (See the next page for details of $\phi(m)$.)

S_n The symmetric group of permutation of n elements $\{1, 2, \dots, n\}$. The group S_n has $n!$ elements.

A_n The alternating group: the subgroup of S_n of even permutations. From a homework problem, we know that $|A_n| = n!/2$.

- A few others: we've also seen the groups T (the tetrahedral group of symmetries of the tetrahedron), O (the octahedral group of symmetries of the cube or octahedron), and I (the icosahedral group of symmetries of the icosahedron or dodecahedron). These have orders $|T| = 12$, $|O| = 24$, and $|I| = 60$.
- Some new ones: let $\mathbf{R} = \{\pm 1\}$ using multiplication, and let $\mathbf{C} = \{\pm 1, \pm i\}$, where $i^2 = -1$, $(-i)^2 = -1$, and $(-1)^2 = +1$. Finally, let $\mathbf{Q} = \{\pm 1, \pm i, \pm j, \pm k\}$ with $i^2 = j^2 = k^2 = -1$ and $ij = k$, $jk = i$, and $ki = j$.

Some Useful (Mostly Familiar) Facts

Recall that the *order* of a group G is the number of elements of the group. On the other hand, the *order* of an element g of G is the smallest positive integer k with $g^k = 1$. We write $|G|$ and $|g|$ for the orders of G and g . The following fact is a corollary of Lagrange's theorem.

Fact: *For a finite group G , the order of an element g of G divides the order of G . That is, $|g|$ divides $|G|$.*

A finite group G is cyclic if and only if there is an element g in G with $|g| = |G|$. This element is called a *primitive root*.

Some Values of the Euler ϕ -Function

From a homework problem, we know that if $m = p_1^{k_1} p_2^{k_2} \cdots p_\ell^{k_\ell} k^\ell$ (where p_1, \dots, p_ℓ are distinct primes and k_1, \dots, k_ℓ are positive integers)

$$\phi(m) = m \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_\ell}\right).$$

Here is a table of $\phi(m)$ for various values of m , with a companion table showing the values of m for a certain choice of $\phi(m)$.

m	$\phi(m)$	$\phi(m)$	m
2	1	1	2
3	2	2	3, 4, 6
4	2	4	5, 8, 10, 12
5	4	6	7, 9, 14, 18
6	2	8	15, 16, 20, 24, 30
7	6	10	11, 22
8	4	12	13, 21, 26, 28
9	6	16	17
10	4	18	19, 27
11	10	20	25
12	4	22	23
13	12	28	29
14	6	30	31
15	8		
16	8		
17	16		
18	6		
19	18		
20	8		
21	12		
22	10		
23	22		
24	8		
25	20		
26	12		
27	18		
28	12		
29	28		
30	8		
31	30		
32	16		