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Arrow-Debreu Securities
Consider a simple one-period economy containing a single stock 
and a single savings account. 

The economy has two possible states in one time step from now.

Is the model arbitrage free?

Stock Evolution Bank Account Evolution

State - I

State - II



2

© 2004 Prof. S. Jaimungal                   3

Arrow-Debreu Securities
An arbitrage portfolio is a portfolio which costs zero at t=0, but may 
have a positive pay-off at t=1

The model is arbitrage free if and only if 

Suppose that Su > Sd ≥ (1+r) S0, then it is always better to invest in the 
asset than the money-market account

An example of an arbitrage portfolio is
Long 1 unit of Asset
Short 1/S0 units of the Bank Account
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Arrow-Debreu Securities
Consider two fictitious assets which pay exactly 1 in one of the two 
states of the world and zero in the other.

What is a rational price for these assets?

Arrow-Debreu Security I Arrow-Debreu Security II

State - I

State - II
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Arrow-Debreu Securities
Make a portfolio of AD securities which generate the pay-offs of the 
existing claims:

State - I

State - II

State - I

State - II
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Arrow-Debreu Securities
Solving the linear system gives the prices of the AD securities:

Given these prices, the price of a contingent claim paying Cu and Cd
in the two states of the world must be (otherwise an arbitrage 
exists):
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Arrow-Debreu Securities
The price of the claim can be rewritten as follows:

Notice that the state probabilities do not appear in price!

Is q a probability? 

YES - since no arbitrage requires 
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Arrow-Debreu Securities
Introduce the relative price of an asset/claim as,

Where Mt denotes the value of the money-market account (bank 
account) at time t and is equal to (1+r)t

Then,

This is implies that the relative prices of assets have zero expected 
change under the probability measure Q.

Random variables of this type are called Martingales
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Hedge-based Pricing
A dual, yet equivalent, method for determining prices is by utilizing a 
hedging strategy

Consider a portfolio set up at t = 0 consisting of:
x units of stock
y units of the bank account

At time t = 1 this portfolio will be worth
x Su + y (1+r) in state-I
x Sd + y (1+r) in state-II

It is possible to choose x and y such that the pay-off of the 
contingent is matched exactly regardless of which state prevails at 
time t=1
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Hedge-based Pricing
This leads to the linear system

Since the pay-off of the claim and the portfolio are identical, they 
must have the same price today,
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Multi-Period Binomial Model
This model extends naturally to multiple periods

Let                           represent a set of identical independent random 
Bernoulli variables with,

Then assume that the asset price dynamics satisfies,

That is, the asset has a (continuously compounded) return of ± α
each period.

Such dynamics can be represented by a recombining tree as shown 
on the next slide
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Multi-Period Binomial Model
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Multi-Period Binomial Model
Prices of European contingent claims can be obtained through 
backwards recursion

The claim will define the pay-off at maturity

Use the discounted expectation in the risk-neutral measure (the 
probability p is replaced by q) to compute the prices on the nodes 
one-time prior

Repeat the process until time t = 0 is reached.

Denoting the price of the claim at time t with asset level St = S0 ut-2j

by Ct
(j) the recursion formula can be compactly written as follows:
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Multi-Period Binomial Model



8

© 2004 Prof. S. Jaimungal                   15

Multi-Period Binomial Model
The hedging strategy at each node can also be obtained in a similar 
manner

Of course the relationship between the hedging parameters and the 
price still holds
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Multi-Period Binomial Model
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Multi-Period Binomial Model
It is possible to price the claim without resorting to computing the 
value at every single node..
Recall that the asset price dynamics is given by

Where (in the risk neutral measure)

For a European claim the pay-off function depends only on the 
terminal value of the asset, ST, but,

Where XT = x0 + x1 + … + xT-1 and is binomial random variable of 
degree T and success probability q.
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Multi-Period Binomial Model
Consequently, the price of a European contingent claim, with payoff 
function φ(ST), in the binomial model is,

This is the Cox-Ross-Rubinstein (CRR) representation for the price 
of a European option
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Volatility matching
The parameter α can be specified through the volatility of the asset 
dynamics.
In particular, the asset will be forced to have a variance of σ2 ∆t
(where ∆t is size of the time step in the tree) when ∆t << 1
This leads to system of two equations (one for risk-neutrality and 
one for variance matching)

The solution when ∆t << 1 can be expressed as,
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Continuous Time Limit
Recall that the asset dynamics was,

Letting Xt = x0 + x1 + …+ xt-1 . Then, since x0, x1, .. , xt-1 are all i.i.d. 
Bernoulli random variables,

Furthermore, the central limit theorem says that Xt is a normal r.v.

Finally, Xt – Xt+s (for s > 0 ) has a distribution that is independent of t
(it depends only on s.)
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Continuous Time Limit
We can therefore summarize the properties of the asset dynamics 
as follows:

Where, Xt has the following characteristics:
Starts at 0

X0 = 0
Has independent increments

Xt – Xs is independent of Xv – Xu whenever (t,s) ∩ (u,v) = ∅
Has stationary increments

Xt – Xt+s ~ N( (r- ½ σ2) s; σ2 s)

The above properties describe a stochastic process known as 
Brownian motion (or a Weiner process.)
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Continuous Time Limit
The price of a European contingent claim using the Brownian motion 
representation of the asset dynamics in the continuous time is,

Where f(x; r,σ, T-t) represents the normal distribution with 
appropriate mean and variance,
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The Black-Scholes Pricing Formula
When the pay-off function is that of a call option, max(ST - K, 0), the 
integral can be carried out explicitly,

Where,

and Φ(x) is the cumulative density function of a standard normal r.v.
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The Black-Scholes Pricing Formula
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The Black-Scholes Pricing Formula
The price of a put option can be obtained in a similar manner, or 
through put-call parity,

The result is,
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The Black-Scholes Pricing Formula

Put Option Price
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Stochastic Integrals
We would like to define integrals w.r.t. the stochastic variable W(t)
where W(t) is a standard Brownian process

Consider a simple stochastic process (piecewise constant) g(s) with 
jump points at a < t0 < t1 < … < tn < b

The integral of such a process w.r.t to W(t) can be represented as a 
finite sum:

For a general non-simple process h(s) take an approximating 
sequence of simple processes h1(s), h2(s), … s.t.,
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Stochastic Integrals
It is possible to prove that

Where Z is some r.v. Then define the stochastic integral as follows:

Stochastic integrals are often written in “differential form”
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Stochastic Integrals
General diffusion processes are often defined through stochastic
differential equations:

The integral representation is:

Ito’s lemma tells one how the SDE changes under a transformation:
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Black-Scholes Differential Equation
Suppose that an investor follows a self-financing strategy which 
consists of 

∆(St,t) units of the asset
θt(St,t) units in the money-market account;  
-1 units in the option in the interval (t,t+dt]. 

Let Vt(St) denote the value-process for such a strategy. Then,

Choose ∆(S0,0) and  θ(S0,0) such that V(S0,0)=0
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Black-Scholes Differential Equation
Using Ito’s Lemma one finds,

By choosing ∆(St,t) appropriately, the stochastic term can be 
removed,

Since the return is non-stochastic, to avoid arbitrage it must grow at 
the risk-free rate, which leads to the Black-Scholes PDE:


