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Arrow-Debreu Securities

m Consider a simple one-period economy containing a single stock
and a single savings account.

m The economy has two possible states in one time step from now.
m Is the model arbitrage free?

Su State - | 147

Sd State - Il 1+4r

Stock Evolution Bank Account Evolution




Arrow-Debreu Securities
m An arbitrage portfolio is a portfolio which costs zero at t=0, but may
have a positive pay-off at t=1
m The model is arbitrage free if and only if
Sqg<(1471)5p< Su

Suppose that §, > S, 2 (1+r) S, then it is always better to invest in the
asset than the money-market account

An example of an arbitrage portfolio is
= Long 1 unit of Asset
= Short 1/ units of the Bank Account
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Arrow-Debreu Securities

m Consider two fictitious assets which pay exactly 1 in one of the two
states of the world and zero in the other.

m What is a rational price for these assets?

1 State - | 0
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Arrow-Debreu Securities

m  Make a portfolio of AD securities which generate the pay-offs of the
existing claims:

14 State-I
1=0+r)(ar+ayp)
14+ r State-Il
Su State - |
So = Suar+ Sgary
Sq State - II
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Arrow-Debreu Securities
m Solving the linear system gives the prices of the AD securities:

1 (147)So— 5y

ar —

1 Sy—(14+7)5o
1+T’ Su_Sd

ajpr =

m  Given these prices, the price of a contingent claim paying C, and C
in the two states of the world must be (otherwise an arbitrage
exists):

Cy

Co = Cuar 4+ Cyayr
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Arrow-Debreu Securities
m The price of the claim can be rewritten as follows:

Co = Cuar+Cyayy

1
== m{qcu‘F(l_Q)Cd}

where,
g = (1 +r)So — Sq

m Notice that the state probabilities do not appear in price!

m |s q a probability?

m YES - since no arbitrage requires Sy < (1+7r)Sy < Su
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Arrow-Debreu Securities
~ C
m Introduce the relative price of an asset/claim as, C; = ﬁt
t

m  Where M, denotes the value of the money-market account (bank
account) at time t and is equal to (1+r)t

m Then,
Co=EQ9[C1] = ¢Cu+ (1 — ¢)Cy

m This is implies that the relative prices of assets have zero expected
change under the probability measure (.

m Random variables of this type are called Martingales
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Hedge-based Pricing

m A dual, yet equivalent, method for determining prices is by utilizing a
hedging strategy

m Consider a portfolio set up at t = 0 consisting of:
x units of stock
y units of the bank account

m Attime t = 1 this portfolio will be worth
x S, +y (1+r) in state-|
X Sy +y (1+r) in state-ll

m |tis possible to choose x and y such that the pay-off of the
contingent is matched exactly regardless of which state prevails at
time t=1
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Hedge-based Pricing

m This leads to the linear system

. = Su=Ca
=
Ca = vSg+y(l+n) y = o GafuCuda

m Since the pay-off of the claim and the portfolio are identical, they
must have the same price today,

1
CoszO—i-y:m{qCu‘F(l_CI)Cd}
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Multi-Period Binomial Model

m This model extends naturally to multiple periods

m Let ©0,T1,%2;--- represent a set of identical independent random
Bernoulli variables with,

P(r;=+1)=p and P =-1)=1-p vt=0,1,...

m Then assume that the asset price dynamics satisfies,

St = Si-1 exp{az;_1}

m That s, the asset has a (continuously compounded) return of &+ a
each period.

m  Such dynamics can be represented by a recombining tree as shown
on the next slide
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Multi-Period Binomial Model
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Multi-Period Binomial Model

m Prices of European contingent claims can be obtained through
backwards recursion

m The claim will define the pay-off at maturity

m Use the discounted expectation in the risk-neutral measure (the
probability p is replaced by q) to compute the prices on the nodes
one-time prior

m Repeat the process until time t = 0 is reached.

m Denoting the price of the claim at time t with asset level S, = S, u*2
by C0) the recursion formula can be compactly written as follows:

() _ €)) (j+1)
Gyl = 1+ <q0t+1+(1 -9 C )
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Multi-Period Binomial Model
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Multi-Period Binomial Model

m The hedging strategy at each node can also be obtained in a similar
manner
() (+1)
M _ 1 _S3-G4
T 5 w2 _t-2i-1

(G+1) 2541 (), t—2j—1
G _ 1 G eI -G W
L g Wi=2iF1 _ 4t-2j-1

m Of course the relationship between the hedging parameters and the
price still holds

Ct(j) — x§j) Sout=2 4 yt(j)
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Multi-Period Binomial Model
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Multi-Period Binomial Model

m |tis possible to price the claim without resorting to computing the
value at every single node..

m Recall that the asset price dynamics is given by
St = Si-1 exp{ax;_1}
m  Where (in the risk neutral measure)

Plai=41)=q and P =-1)=1-—¢q vti=20,1,...

m For a European claim the pay-off function depends only on the
terminal value of the asset, S;, but,

Sp = Sp exp{a(ro+z1+ ...+ 27 1)}

= So exp{a X7}

m Where X; =X, + X, + ... + X7, and is binomial random variable of
degree T and success probability q.
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Multi-Period Binomial Model

m Consequently, the price of a European contingent claim, with payoff
function ¢(Sy), in the binomial model is,

_ 1 Q
Co = WE [¢(ST)|-7'—O]

1

= gy Pl )

- (1—|—r)T Z () a" (@ =" 6(S0e™)

m This is the Cox-Ross-Rubinstein (CRR) representation for the price
of a European option
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Volatility matching

m The parameter a can be specified through the volatility of the asset
dynamics.

m In particular, the asset will be forced to have a variance of ¢2 At
(where At is size of the time step in the tree) when At << 1

m This leads to system of two equations (one for risk-neutrality and
one for variance matching)

E° [St+At‘~7:t] = (1+rAt)S

S
Var® [In (t;Atﬂft} = o2At
t

m The solution when At << 1 can be expressed as,

1 r—%az
q:E 1+ VAL and o= oV AL
o
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Continuous Time Limit

m Recall that the asset dynamics was,
St = St-1 exp{azi_1}

= St = Spexp{a(zg+z1+...+x 1)}

m Letting X, = x, + X, + ...+ X, . Then, since x,, X,, .. , X, are all i.i.d.
Bernoulli random variables,

1
EQ[Xt|.7-'O] = noa EQ[xO] = <r — §U2> n At
VarQ[Xt|]-'0] = na? VarQ[xO] =02 n At

m Furthermore, the central limit theorem says that X, is a normal r.v.

= Finally, X, — X, (for s > 0 ) has a distribution that is independent of t
(it depends only on s.)
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Continuous Time Limit

m We can therefore summarize the properties of the asset dynamics

as follows:
Sy = exp{X}

m Where, X, has the following characteristics:
Starts at 0
= Xo=0
Has independent increments
= X; - X, is independent of X, — X, whenever (t,s) N (u,v) = <&
Has stationary increments
n Xy — X5 ~ N((r- %2 0?) 5; 02 5)

m The above properties describe a stochastic process known as
Brownian motion (or a Weiner process.)
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Continuous Time Limit

m The price of a European contingent claim using the Brownian motion
representation of the asset dynamics in the continuous time is,

Gy = e "TDEL [¢(S7)|7]
=« TTIEQ [g(5: 70|

= @0 [™ 45160 fwir,0, T — 1) do
—00

m Where f(x; r,o, T-t) represents the normal distribution with
appropriate mean and variance,

(12N Ton)
o )
f(%;T}O}T _t) =

\2m02(T —t)
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The Black-Scholes Pricing Formula

m  When the pay-off function is that of a call option, max(S; - K, 0), the
integral can be carried out explicitly,

Ce(S;, K, T) = e~r{T=1) /OO max(S;e* — K,0) f(xz;r,o0,T — t) dz
—00
= (Tt /IOOK (St — K) f(z;r,0,T — t) dx
"5

= S d(dy) —e 7T DK o(d-)

m Where,

N2+ (r+102) (T -1)
ovT —1

m and ®(x) is the cumulative density function of a standard normal r.v.

d+ =
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The Black-Scholes Pricing Formula

Call Option Price

$60
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$40 1 Increasing Term
[]
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The Black-Scholes Pricing Formula

m The price of a put option can be obtained in a similar manner, or
through put-call parity,

Ci(Sy; K,T) — P(Su K,T) = Sp—e "I UK
m The resultis,

PSSy K, T) = e TT DK o (—d_) — Sy d(—dy)
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The Black-Scholes Pricing Formula

Put Option Price
$50
$40
Increasing Term

® $30 +
2
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Stochastic Integrals

m We would like to define integrals w.r.t. the stochastic variable W(t)
where W(t) is a standard Brownian process

m Consider a simple stochastic process (piecewise constant) g(s) with
jump pointsata<t,<t,<...<t,<b

m The integral of such a process w.r.t to W(t) can be represented as a

finite sum:
n—1
[ o) aW(s) = S g0t [Witieqr) — Wt
¢ k=0

m For a general non-simple process h(s) take an approximating
sequence of simple processes h,(s), hy(s), ... s.t.,

/abE [(hn(s) — h())?] ds — 0
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Stochastic Integrals

m |tis possible to prove that

b
/ ha(s) dW(s) — Z  in L2
a
m Where Z is some r.v. Then define the stochastic integral as follows:

b b
/ah(s) dW(s):nlLrgo/a ha(s)dW (s)

m Stochastic integrals are often written in “differential form”

X(b) — X(a) = /abh(s) dW (s) — dX(s) = h(s)dW(s)




Stochastic Integrals

m General diffusion processes are often defined through stochastic
differential equations:

dX(s) = pu(s,X(s8))ds+ o(s, X(s))dW(s)
X(0) = «x

m The integral representation is:
t t
X =a+ [ uls X())ds + [ o(s, X()aw(s)
m Ito’s lemma tells one how the SDE changes under a transformation:
] o 1 5 92
d t) = e t)— + = t)—= ,t)| dt
o) = (54 Mot 320 0 fGaw )

+ {a(xt,t)a%f(xt,t)} AW,

Black-Scholes Differential Equation

m  Suppose that an investor follows a self-financing strategy which
consists of

A(Syt) units of the asset
6,(S,,t) units in the money-market account;
-1 units in the option in the interval (t,t+dt].
m Let V,(S,) denote the value-process for such a strategy. Then,

V(S t) = A(S;,t)Se + 6(S;, t) My — P(Sg,t)

m Choose A(S,,0) and 6(S,,0) such that V(S,,0)=0

AV (Se,t) = d(A(S,t)Sy+ 0(S,t) M) — dP (S, t)
= A(S;,t)dS: + 0(St, t)dMy — dP (S, t)
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Black-Scholes Differential Equation

m Using Ito’s Lemma one finds,

5] 5] 1 2 o2
(t’) |: ! t <8t taSt 2 L ) :|

m By choosing A(S,,t) appropriately, the stochastic term can be
removed,

7]
A(St*t) = ais,tp(st*t)

m Since the return is non-stochastic, to avoid arbitrage it must grow at
the risk-free rate, which leads to the Black-Scholes PDE:

) o 02 5 9
- S — 4+ - G~
<8t+r 55, T2 % a2

a5, )P(St,t) = rP(S 1)




