Proving the Quadratic Formula

I. Quadratic Forms

a(x -

Recall that a quadratic polynomial is usually expressed in one of these popular forms:

- 1. Standard Form: $a x^2 + b x + c$ where a, b, c are constants with $a \neq 0$.
- 2. <u>Factored Form</u>: d(mx+s)(nx+t) where d, m, n, s, t are constants with $d, m, n \neq 0$.
- 3. <u>Vertex Form</u>: $a(x-h)^2 + k$ where a, h, k are constants with $a \neq 0$.

Suppose we were asked to solve a quadratic equation, p(x) = 0. Recall that the **ultimate goal** when solving any equation is to *isolate the variable*. Notice that with vertex form: $a(x-h)^2 + k$, the variable x is already in *one* place, unlike standard and factored form. So, for the equation:

$$\boldsymbol{a} \left(\boldsymbol{x} - \boldsymbol{h} \right)^2 + \boldsymbol{k} = 0$$

, we will isolate x by simply *doing the opposite*! The steps are as follows:

$$(h)^{2} + k = 0 \quad \Rightarrow \quad a(x - h)^{2} = -k$$

$$\Rightarrow \quad (x - h)^{2} = -\frac{k}{a}$$

$$\Rightarrow \quad \sqrt{(x - h)^{2}} = \sqrt{-\frac{k}{a}}$$

$$\Rightarrow \quad |x - h| = \sqrt{-\frac{k}{a}} \qquad \text{by property of } n \text{th roots}$$

$$\Rightarrow \quad x - h = \pm \sqrt{-\frac{k}{a}} \qquad \text{by definition of } absolute \ value}$$

$$\Rightarrow \quad x = h \pm \sqrt{-\frac{k}{a}}$$

II. The Proof

Unfortunately, we rarely get quadratic equations, where the quadratic polynomial is already in vertex form. However, we know that we can always transform a quadratic from standard form to vertex form by **completing the square**.

So, to find the general solutions to the equation: $ax^2 + bx + c = 0$, we will complete the square on the quadratic (which is in standard form). Then we will isolate x, like we did above!

$$ax^{2} + bx + c = 0$$

$$\iff (ax^{2} + bx) + c = 0$$
 removing the c

$$\iff a(x^{2} + \frac{b}{a}x) + c = 0$$
 factoring out a

Continued on the next page

Making Math Possible

© Sa'diyya Hendrickson

$\iff a \left(\begin{array}{c} x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} - \frac{b^2}{4a^2} \\ = 0 \end{array} \right) + c = 0$	for $m = \frac{b}{2a}$, we add and subtract $m^2 = \frac{b^2}{4a^2}$
$\iff a\left(x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}\right) - a\left(\frac{b^2}{4a^2}\right) + c = 0$	distributing a to the <i>perfect square</i> and $-\frac{b^2}{4a^2}$
$\iff a \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c = 0$	perfect square is $(x+m)^2$; $\frac{a}{a} = 1$ since $a \neq 0$
$\iff a \left(x + \frac{b}{2a}\right)^2 - \left(\frac{b^2}{4a} - c\right) = 0$	factoring out -1
$\iff a \left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} = 0$	getting an LCD
$\iff a \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a}$	adding $\frac{b^2 - 4ac}{4a}$ to both sides
$\iff \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$	multiply both sides by $\frac{1}{a}$ (i.e. divide both sides by a)
$\iff \sqrt{\left(x+\frac{b}{2a}\right)^2} = \sqrt{\frac{b^2 - 4ac}{4a^2}}$	take the square root of both sides
$\iff \left x + \frac{b}{2a} \right = \frac{\sqrt{b^2 - 4ac}}{\sqrt{4a^2}}$	by properties of n th roots
$\iff x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2\sqrt{a^2}}$	by def'n of <i>absolute value</i> and property of n th roots
$\iff x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2 \mathbf{a} }$	by property of n th roots
$\iff x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2(\pm a)}$	by def'n of <i>absolute value</i>
$\iff x + \frac{b}{2a} = \pm \left(\pm \frac{\sqrt{b^2 - 4ac}}{2a}\right)$	rewriting
$\iff x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$	since $(\pm 1)(\pm 1) = \pm 1$
$\iff x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$	subtracting $\frac{b}{2a}$ from both sides
$\iff x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	getting an LCD

Making Math Possible

© Sa'diyya Hendrickson