Proving the Quadratic Formula

I. Quadratic Forms

Recall that a quadratic polynomial is usually expressed in one of these popular forms:

1. Standard Form: $\quad \boldsymbol{a} \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ where a, b, c are constants with $a \neq 0$.
2. Factored Form: $\quad d(m \boldsymbol{x}+s)(n \boldsymbol{x}+\boldsymbol{t})$ where d, m, n, s, t are constants with $d, m, n \neq 0$.
3. Vertex Form: $\quad a(\boldsymbol{x}-\boldsymbol{h})^{\mathbf{2}}+\boldsymbol{k}$ where a, h, k are constants with $a \neq 0$.

Suppose we were asked to solve a quadratic equation, $p(x)=0$. Recall that the ultimate goal when solving any equation is to isolate the variable. Notice that with vertex form: $a(x-h)^{2}+k$, the variable x is already in one place, unlike standard and factored form. So, for the equation:

$$
a(x-h)^{2}+k=0
$$

, we will isolate x by simply doing the opposite! The steps are as follows:

$$
\begin{aligned}
a(x-h)^{2}+k=0 & \Rightarrow a(x-h)^{2}=-k \\
& \Rightarrow \quad(x-h)^{2}=-\frac{k}{a} \\
& \Rightarrow \sqrt{(x-h)^{2}}=\sqrt{-\frac{k}{a}} \\
& \Rightarrow|x-h|=\sqrt{-\frac{k}{a}} \quad \text { by property of } n \text {th roots } \\
& \Rightarrow x-h= \pm \sqrt{-\frac{k}{a}} \quad \text { by definition of absolute value } \\
& \Rightarrow x=h \pm \sqrt{-\frac{k}{a}}
\end{aligned}
$$

II. The Proof

Unfortunately, we rarely get quadratic equations, where the quadratic polynomial is already in vertex form. However, we know that we can always transform a quadratic from standard form to vertex form by completing the square.

So, to find the general solutions to the equation: $a x^{2}+b x+c=0$, we will complete the square on the quadratic (which is in standard form). Then we will isolate x, like we did above!

$$
\begin{array}{lll}
& a x^{2}+b x+c=0 & \\
\Longleftrightarrow & \left(a x^{2}+b x\right. &)+c=0 \\
\Longleftrightarrow & a\left(x^{2}+\frac{b}{a} x\right. & \text { removing the } c \\
\Longleftrightarrow & \text { factoring out } a
\end{array}
$$

$$
\begin{aligned}
& \Longleftrightarrow a^{2}(x^{2}+\frac{b}{a} x \underbrace{\frac{\boldsymbol{b}^{2}}{4 \boldsymbol{a}^{2}}}_{=0}-\frac{\boldsymbol{b}^{2}}{\mathbf{4 \boldsymbol { a } ^ { 2 }}})+c=0 \\
& \Longleftrightarrow \quad a\left(x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}\right)-a\left(\frac{b^{2}}{4 a^{2}}\right)+c=0 \\
& \text { distributing } a \text { to the perfect square and }-\frac{b^{2}}{4 a^{2}} \\
& \Longleftrightarrow \quad a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c=0 \\
& \Longleftrightarrow \quad a\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b^{2}}{4 a}-c\right)=0 \\
& \Longleftrightarrow \quad a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a}=0 \\
& \Longleftrightarrow \quad a\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a} \\
& \Longleftrightarrow \quad\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 \boldsymbol{a}^{2}} \\
& \Longleftrightarrow \sqrt{\left(x+\frac{b}{2 a}\right)^{2}}=\sqrt{\frac{b^{2}-4 a c}{4 \boldsymbol{a}^{2}}} \\
& \Longleftrightarrow\left|x+\frac{b}{2 a}\right|=\frac{\sqrt{b^{2}-4 a c}}{\sqrt{4 \boldsymbol{a}^{2}}} \\
& \Longleftrightarrow \quad x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 \sqrt{\boldsymbol{a}^{2}}} \\
& \Longleftrightarrow \quad x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2|\boldsymbol{a}|} \\
& \Longleftrightarrow \quad x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2(\pm \boldsymbol{a})} \\
& \Longleftrightarrow \quad x+\frac{b}{2 a}= \pm\left(\pm \frac{\sqrt{b^{2}-4 a c}}{2 a}\right) \quad \text { rewriting } \\
& \Longleftrightarrow \quad x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& \Longleftrightarrow \quad x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& \Longleftrightarrow \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \text { perfect square is }(x+m)^{2} ; \frac{a}{a}=1 \text { since } a \neq 0 \\
& \text { factoring out }-1 \\
& \text { getting an LCD } \\
& \text { adding } \frac{b^{2}-4 a c}{4 a} \text { to both sides } \\
& \text { multiply both sides by } \frac{1}{a} \text { (i.e. divide both sides by } a \text {) } \\
& \text { take the square root of both sides } \\
& \text { by properties of } n \text {th roots } \\
& \text { by def'n of absolute value and property of } n \text {th roots } \\
& \text { by property of } n \text {th roots } \\
& \text { by def'n of absolute value } \\
& \text { since }(\pm 1)(\pm 1)= \pm 1 \\
& \text { subtracting } \frac{b}{2 a} \text { from both sides } \\
& \text { getting an LCD }
\end{aligned}
$$

