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Preface

This book is intented as a modern introduction to Differential Geometry, at a level
accessible to advanced undergraduate students. Earlier versions of this text have been
used as lecture notes for a third year course in Differential Geometry at the University
of Toronto, taught by the second author, and later tried out by his colleagues.

As the subtitle of this book indicates, we take ‘Differential Geometry’ to mean the
theory of manifolds. Over the past few decades, manifolds have become increas-
ingly important in many branches of mathematics and physics. There is an enormous
amount of literature on the subject, and many outstanding textbooks. However, most
of these references are pitched at a graduate or postgraduate level, and are not suited
for an undergraduate course. It is this gap that this book aims to address.

Accordingly, the book will rely on a minimal set of prerequisites. The required back-
ground material is typically covered in the first two or three years of university: a
solid grounding in linear algebra and multivariable calculus, and ideally a course on
ordinary differential equations. We will not require knowledge of abstract algebra or
point set topology, but rather develop some of the necessary notions on the fly, and
only in the generality needed here.

A few words about the philosophy of this book. First of all, we believe that it is im-
portant to develop intuition for the concepts introduced, to get a feel for the subject.
To a large extent, this means visualization, but this does not always involve drawing
pictures of curves and surfaces in two or three dimensions. For example, it is not
difficult to get an understanding of the projective plane intrinsically, and also to ‘vi-
sualize’ the projective plane, but it is relatively hard to depict the projective plane as
a surface (with self-intersections) in 3-space. For surfaces such as the Klein bottle or
the 2-torus, such depictions are easier, but even in those cases they are not always
helpful, and can even be a little misleading.

While we are trying to adopt a ‘hands-on’ approach to the theory of manifolds when-
ever possible, we believe that a certain level of abstraction cannot and should not be
avoided. By analogy, when students are exposed to general vector spaces in Linear
Algebra, the concept may seem rather abstract at first. But it usually does not take
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long to absorb these ideas, and gain familiarity with them even if one cannot always
draw pictures. Likewise, not all of differential geometry is accounted for by drawing
pictures, and what may seem abstract initially will seem perfectly natural with some
practice and experience.

Another principle that we aim to follow is to provide good motivation for all con-
cepts, rather than just impose them. Some subtleties or technical points have emerged
through the long development of the theory, but they exist for reasons, and we feel it
is important to expose those reasons.

Finally, we consider it important to offer some practice with the theory. Sprinkled
throughout the text are questions, indicated by a feather symbol , that are meant
to engage the student, and encourage active learning. Often, these are ‘review ques-
tions’ or ‘quick questions’ which an instructor might pose to students to stimulate
class participation. In other cases they amount to routine calculations, which are
more instructive if the student attempts to do them on his or her own. In other cases,
the student is encouraged to try out a new idea or concept before moving on. Answers
to these questions are provided at the end of the book.

Each chapter concludes with ‘problems’, which are designed as homework assign-
ments. These include simpler problems whose goal is to reinforce the material, but
also a large number of rather challenging problems. Most of these problems have
been tried out on students at the University of Toronto, and have been revised to
make them as clear and interesting as possible. We are grateful to Boris Khesin for
letting us include some of his homework problems, and we suggest his wonderful
article [10] with Serge Tabachnikov, titled ‘Fun problems in geometry and beyond’,
for further readings along these lines.

The book contains significantly more material than can possibly be covered in a one-
semester course, and the instructor will have to be selective. One possible approach
is to treat the theory of vector fields in full detail, ending with chapter 6, and leave
out the material on differential forms. On the other hand, if it is desired to cover
differential forms as well, it is will be necessary to take shortcuts with some of the
earlier material, for example by spending less time on normal forms for constant rank
maps, flows of vector fields, or Frobenius’ theorem.

Acknowledgements. As already indicated, earlier versions of this book have been
used as a textbook at University of Toronto for several years. We thank the students
participating in these courses for numerous helpful comments and excellent ques-
tions, improving the readability of this text. We thank Marco Gualtieri and Boris
Khesin at University of Toronto, as well as Chenchang Zhu at Göttingen University,
for pointing out errors and many suggestions.
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1

Introduction

1.1 A very short history

In the words of S.S. Chern, “the fundamental objects of study in differential geometry
are manifolds.” [4, Page 332]. Roughly, an n-dimensional manifold is a mathematical
object that “locally” looks like Rn. The theory of manifolds has a long and compli-
cated history. For centuries, manifolds have been studied extrinsically, as subsets of
Euclidean spaces, given for example as level sets of equations. In this context, it is
not always easy to separate the properties of a manifold from the choice of an embed-
ding: a famous discovery in this context is Carl Friedrich Gauss’ Theorem Egregium
from 1828, proving that the Gauss curvature of embedded surfaces depends only on
the choice of a metric on the surface itself . The term ‘manifold’ goes back to the
1851 thesis [15] of Bernhard Riemann, “Grundlagen für eine allgemeine Theorie
der Functionen einer veränderlichen complexen Grösse” (“foundations of a general
theory of functions of a complex variable”) and his 1854 Habilitation address [16]
“Über die Hypothesen, welche der Geometrie zugrunde liegen” (“on the assump-
tions underlying geometry”).

However, in neither reference did Riemann attempt to give a precise definition of the
concept. This was done subsequently through the work of many authors, including
Riemann himself. See e.g. [17] for the long list of names involved. Henri Poincaré,
in his 1895 work analysis situs [14], introduced the idea of a manifold atlas.
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A rigorous axiomatic definition of manifolds was given by Oswald Veblen and J.H.C.
Whitehead [20] only in 1931. We will see below that the concept of a manifold is
really not all that complicated; and in hindsight it may come as a surprise that it
took so long to evolve. Initially, the concept may have been regarded as simply a
change of perspective – describing manifolds intrinsically from the outset, rather
than extrinsically, as regular level sets of functions on Euclidean space.
Developments in physics played a major role in supporting this new perspective. In
Albert Einstein’s theory of General Relativity from 1916, space-time is regarded as a
4-dimensional manifold with no distinguished coordinates (not even a distinguished
separation into space and time directions); a local observer may want to introduce
local xyzt coordinates to perform measurements, but all physically meaningful quan-
tities must admit formulations that are ‘manifestly coordinate-independent’. At the
same time, it would seem unnatural to try to embed the 4-dimensional curved space-
time continuum into some higher-dimensional flat space, in the absence of any phys-
ical significance for the additional dimensions. For the various vector-valued func-
tions appearing in the theory, such as electromagnetic fields, one is led to ask about
their ‘natural’ formulation consistent with their transformation properties under local
coordinate changes. The theory of differential forms, introduced in its modern form
by Elie Cartan in 1899, and the associated coordinate-free notions of differentiation
and integration become inevitable at this stage. Many years later, gauge theory once
again emphasized coordinate-free formulations, and provided physics-based motiva-
tions for more elaborate constructions such as fiber bundles and connections.
Since the late 1940s and early 1950s, differential geometry and the theory of man-
ifolds have become part of the basic education of any mathematician or theoretical
physicist, with applications in other areas of science such as engineering and eco-
nomics. There are many sub-branches, such as complex geometry, Riemannian ge-
ometry, and symplectic geometry, which further subdivide into sub-sub-branches. It
continues to thrive as an active area of research, with exciting new results and deep
open questions.

1.2 The concept of manifolds: Informal discussion

To repeat, an n-dimensional manifold is something that “locally” looks like Rn. The
prototype of a manifold is the surface of planet Earth:
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It is (roughly) a 2-dimensional sphere, but we use local charts to depict it as subsets of
2-dimensional Euclidean spaces. Note that such a chart will always give a somewhat
distorted picture of the planet; the distances on the sphere are never quite correct,
and either the areas or the angles (or both) are wrong. For example, in the standard
maps of the world, Greenland always appears much bigger than it really is. (Do you
know how its area compares to that of India?)

To describe the entire planet, one uses an atlas with a collection of such charts, such
that every point on the planet is depicted in at least one such chart.
This idea will be used to give an ‘intrinsic’ definition of manifolds, as essentially a
collection of charts glued together in a consistent way. One then proceeds to develop
analysis on such manifolds, for example a theory of integration and differentiation,
by working in charts. The task is then to understand the change of coordinates as one
leaves the domain of one chart and enters the domain of another.

1.3 Manifolds in Euclidean space

In multivariable calculus, you may have encountered manifolds as solution sets
of equations. For example, the solution set S ⊆ R3 of an equation of the form
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f (x,y,z) = a defines a smooth surface in R3, provided the gradient of f is non-
vanishing at all points of S. We call such a value of f a regular value, and hence
S = f−1(a) a regular level set∗. Similarly, the joint solution set C ⊆R3 of two equa-
tions

f (x,y,z) = a, g(x,y,z) = b

defines a smooth curve in R3, provided (a,b) is a regular value† of ( f ,g) in the sense
that the gradients of f and g are linearly independent at all points of C. A familiar
example of a manifold is the 2-dimensional sphere S2, conveniently described as a
level surface inside R3:

S2 = {(x,y,z) ∈ R3| x2 + y2 + z2 = 1}.

There are many ways of introducing local coordinates on the 2-sphere: For example,
one can use spherical polar coordinates, cylindrical coordinates, stereographic pro-
jections, or orthogonal projections onto the coordinate planes. We will discuss some
of these coordinates below. More generally‡, one has the n-dimensional sphere Sn

inside Rn+1,

Sn = {(x0, . . . ,xn) ∈ Rn+1| (x0)2 + · · ·+(xn)2 = 1}.

The 0-sphere S0 consists of two points, the 1-sphere S1 is the unit circle. Another
example is the 2-torus, T 2. It is often depicted as a surface of revolution: Given real
numbers r,R with 0 < r < R, take a circle of radius r in the x− z plane, with center
at (R,0), and rotate about the z-axis.

∗ Let us also take this opportunity to remind the reader of certain ambiguities of notation.
Given a function f : X → Y and any subset B ⊆ Y , we have teh pre-image defined by
f−1(B)= {x ∈ X | f (x) ∈ B}. It is common to write f−1(a) for f−1({a}), so that the former
is a subset of the domain of f . If it happens that f is bijective, one also has the inverse
function f−1 : Y → X defined by f−1(y) is the unique x ∈ X with f (x) = y (that is, if f
is given by the rule x 7→ y, then f−1 is given by the rule y 7→ x), so that the former is an
element of the domain of f . One has to rely on context to distinguish between the usage of
f−1 as the preimage and as the inverse function.

† Here (·, ·) denotes an ordered pair. Context will dictate where (·, ·) should be interpreted as
an ordered pair, or as an open interval.

‡ Following common practice, we adopt the superscript notation for indices, so that a point
in say R4 is written as x = (x1,x2,x3,x4).
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The resulting surface is given by an equation,

T 2 = {(x,y,z)|
(√

x2 + y2−R
)2

+ z2 = r2}. (1.1)

Not all surfaces can be realized as ‘embedded’ in R3; for non-orientable surfaces
one needs to allow for self-intersections. This type of realization is referred to as an
immersion: We don’t allow edges or corners, but we do allow that different parts of
the surface pass through each other. An example is the Klein bottle

The Klein bottle is an example of a non-orientable surface: It has only one side. A
simpler example of a non-orientable surface is the open Möbius strip

here open means that we are excluding the boundary. (Note that only at interior
points the Möbius strip looks like R2, while at boundary points it looks like a half
space {(x,y) ∈ R2| x ≥ 0}). In fact, one way of seeing that the Klein bottle is non-
orientable is to show that it contains a Möbius strip – see Problem ??. Note that a
surface given as a regular level set f−1(0) of a function f is necessarily orientable:
For any such surface one has one side where f is positive, and another side where f
is negative.
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1.4 Intrinsic descriptions of manifolds

In this book, we will mostly avoid concrete embeddings of manifolds into any RN .
Here, the term ‘embedding’ is used in an intuitive sense, for example as the real-
ization as the level set of some equations. (Later we will give a precise definition.)
There are a number of reasons for why we prefer developing an ‘intrinsic’ theory of
manifolds.

a) Embeddings of simple manifolds in Euclidean space can look quite complicated.
The following one-dimensional manifold

is intrinsically, ‘as a manifold’, just a closed curve, that is, a circle. The problem
of distinguishing embeddings of a circle into R3 is one of the goals of knot
theory, a deep and difficult area of mathematics.

b) Such complications disappear if one goes to higher dimensions. For example,
the above knot (and indeed any knot in R3) can be disentangled inside R4 (with
R3 viewed as a subspace). Thus, in R4 they become unknots.

c) The intrinsic description is sometimes much simpler to deal with than the extrin-
sic one. For instance, Equation (1.1) describing the torus T 2 ⊆ R3 is not espe-
cially simple or beautiful. But once we introduce the following parametrization
of the torus

x = (R+ r cosϕ)cosθ , y = (R+ r cosϕ)sinθ , z = r sinϕ,

where θ ,ϕ are determined up to multiples of 2π , we recognize that T 2 is simply
a product:

T 2 = S1×S1. (1.2)

That is, T 2 consists of ordered pairs of points on the circle, with the two factors
corresponding to θ and ϕ . In contrast to (1.1), there is no distinction between
‘small’ circle (of radius r) and ‘large’ circle (of radius R). The new description
suggests an embedding of T 2 into R4 which is ‘nicer’ than the embedding into
R3. But then again, why not just work with the description (1.2), and avoid em-
beddings altogether!?

d) Often, there is no natural choice of an embedding of a given manifold inside RN ,
at least not in terms of concrete equations. For instance, while the triple torus
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is easily pictured in 3-space R3, it is hard to describe it concretely as the level
set of an equation.

e) While many examples of manifolds arise naturally as level sets of equations
in some Euclidean space, there are also many examples for which the initial
construction is different. For example, the set M whose elements are all affine
lines in R2 (that is, straight lines that need not go through the origin) is naturally
a 2-dimensional manifold. But some thought is required to realize it as a surface
in R3. The next section deals with other such examples.

1.5 Soccer balls and linkages

Mechanical systems typically have certain degrees of freedom, and hence may take
on various configurations. The set of all possible configurations of such a system is
called its configurations space, and is often (but not always) described by a manifold.
As a simple example, consider the possible configurations of a soccer ball, positioned
over the some fixed point of the lawn (the penalty mark, say).

From any fixed position of the ball, any other configuration is obtained by a rotation.
It takes three parameters to describe a rotation, with two parameters specifying the
axis of rotation and a third parameter specifying the angle of rotation. Hence we
expect that the configuration space of the soccer ball is a 3-dimensional manifold,
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and this turns out to be true. Note that once an initial configuration is chosen, the
configuration space of the soccer ball is identified with the group of rotations.
As a more elaborate example, consider a spatial linkage given by a collection of
N ≥ 3 rods, of prescribed lengths l1, . . . , lN > 0, joined at their end points in such a
way that they close up to a loop. (This is only possible if the length of the longest rod
is less than or equal to the sum of the lengths of the remaining rods. We will assume
that this is the case.) The rods may move freely around the joints. We shall consider
two linkage configurations to be he same if they are obtained from each other by
Euclidean motions (i.e., translations and rotations of the entire linkage). Denote the
configuration space by

M(l1, . . . , lN).

If N = 3, the linkage is a triangle, and there are no possibilities of changing the link-
age: The configuration space M(l1, l2, l3) (if non-empty) is just a point. The following
picture shows a typical linkage for N = 4. Note that this linkage has two degrees of
freedom (other than rotations and translations), given by the ‘bending’ of the linkage
along the dotted line through A,C, and a similar bending transformation along the
straight line through B,D.

Hence, we expect that the configuration space M(l1, l2, l3, l4) of a linkage with N = 4
rods, if non-empty, should typically be a 2-dimensional manifold (a surface).
To get an estimate for the number of degrees of freedom (i.e., the dimension of the
configuration spaces, assuming the latter is a manifold) for general N ≥ 3, note that
the configuration of an N-linkage is realized by an ordered collection u1, . . . ,uN of
vectors of lengths§ ||u1||= l1, . . . , ||uN ||= lN , with the condition that the vectors add
to zero:

u1 + · · ·+uN = 0. (1.3)

Two such collections u1, . . . ,uN and u′1, . . . ,u
′
N describe the same linkage configura-

tion if they are related by a rotation. Let us now count the number of independent
parameters. Each vectors ui is described by two parameters (its position on a sphere
of radius li), giving 2N parameters. But these are not independent, due to the con-
dition (1.3); the three components of this equation are cutting down the number of
independent parameters by 3. Furthermore, using rotations we may arrange that u1
points in the x-direction, cutting down the number of parameters by another 2, and
using a subsequent rotation about the x-axis, we may arrange that u2 lies in the xy-
plane, cutting down the number of parameters by another 1. Hence we expect that
configurations are described by 2N−3−2−1 = 2N−6 parameters, consistent with

§ Here we are using || · || for the usual Euclidean norm.
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our observations for N = 3 and N = 4. Thus, letting M be the space of all configura-
tions, and assuming this is a manifold, we expect its dimension to be

dimM(l1, . . . , lN) = 2N−6. (1.4)

1 (answer on page ??). For any straight line through non-adjacent vertices of a
linkage, one can define a ‘bending transformation’ similar to what we had for N = 4.
How many straight lines with this property are there for N = 5? Does it match with
the expected dimension of M(l1, . . . , l5)?

Of course, our discussion oversimplifies matters – for example, if lN = l1+ · · ·+ lN−1,
there is only one configuration, hence our rough count is wrong in this case. More
generally, whenever it is possible to make all rods ‘parallel’, which happens when-
ever there are sign choices such that ±l1± l2±·· ·± lN = 0, the space M will have
singularities or be a manifold of a lower dimension. But for typical rod lengths,
this cannot happen, and it turns out that the configuration space M(l1, . . . , lN) (if
non-empty) is indeed a manifold of dimension 2N− 6. These manifolds have been
much-studied, using techniques from symplectic geometry and algebraic geometry.

1.6 Surfaces

Let us briefly give a very informal discussion of surfaces. A surface is the same
thing as a 2-dimensional manifold. We have already encountered some examples:
The sphere, the torus, the double torus, triple torus, and so on:

All of these are ‘orientable’ surfaces, which essentially means that they have two
sides which you might paint in two different colors. It turns out that these are all
the orientable surfaces, if we consider the surfaces ‘intrinsically’ and only consider
surfaces that are compact in the sense that they don’t go off to infinity and do not
have a boundary (thus excluding a cylinder, for example). For instance, each of the
following drawings depicts a double torus:
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We also have one example of a non-orientable surface: The Klein bottle. More ex-
amples are obtained by attaching handles (just like we can think of the torus, double
torus and so on as a sphere with handles attached).

Are these all the non-orientable surfaces? In fact, the answer is no. We have missed
what is in some sense the simplest non-orientable surface. Ironically, it is the surface
which is hardest to visualize in 3-space. This surface is called the projective plane
or projective space, and is denoted RP2. One can define RP2 as the set of all lines
through the origin (i.e., 1-dimensional linear subspaces) in R3. It should be clear that
this is a 2-dimensional manifold, since it takes 2 parameters to specify such a line.
We can label such lines by their points of intersection with S2, hence we can also
think of RP2 as the set of antipodal (i.e., opposite) points on S2. In other words, it
is obtained from S2 by identifying antipodal points. To get a better idea of how RP2

looks like, let us subdivide the sphere S2 into two parts:

a) points having distance ≤ ε from the equator,
b) points having distance ≥ ε from the equator.

If we perform the antipodal identification for (i), we obtain a Möbius strip. If we
perform antipodal identification for (ii), we obtain a 2-dimensional disk (think of it
as the points of (ii) lying in the upper hemisphere). Hence, RP2 can also be regarded
as gluing the boundary of a Möbius strip to the boundary of a disk:
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Now, the question arises: Is it possible to realize RP2 smoothly as a surface inside
R3, possibly with self-intersections (similar to the Klein bottle)? Simple attempts of
joining the boundary circle of the Möbius strip with the boundary of the disk will
always create sharp edges or corners – try it. Around 1900, David Hilbert posed
this problem to his student Werner Boy, who discovered that the answer is yes. The
following picture of Boy’s surface was created by Paul Nylander.

(There are some nice online videos illustrating the construction of the surface.) While
these pictures are very beautiful, it certainly makes the projective space appear more
complicated than it actually is. If one is only interested in RP2 itself, rather than its
realization as a surface in R3, it is much simpler to work with the definition (as a
sphere with antipodal identification).

2 (answer on page ??). What surface results from “puncturing” the
projective plane (i.e., removing a single point)?

Going back to the classification of surfaces, we have the following
Fact: All closed, connected surfaces are obtained from either the 2-sphere S2, the
Klein bottle, or the projective plane RP2, by attaching handles.

(We will not give a formal proof of this fact in this book.)
Another way of representing surfaces is with a so-called “gluing diagrams.” In the
diagram below boundaries are identified so that the arrows (and labels) match. For
example, the diagrams below represent, from left to right, a cylinder, a 2-torus, and
genus 2 surface.
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3 (answer on page ??). What surfaces are obtained from the follow-
ing gluing diagrams?
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Manifolds

It is one of the goals of this book to develop the theory of manifolds in intrinsic
terms, although we may occasionally use immersions or embeddings into Euclidean
space in order to illustrate concepts. In physics terminology, we will formulate the
theory of manifolds in terms that are ‘manifestly coordinate-free’.

2.1 Atlases and charts

As we mentioned above, the basic feature of manifolds is the existence of ‘local
coordinates’. The transition from one set of coordinates to another should be smooth.
We recall the following notions from multivariable calculus.

Definition 2.1. Let U ⊆ Rm and V ⊆ Rn be open subsets. A map F : U → V is
called smooth if it is infinitely differentiable. The set of smooth functions from U to
V is denoted C∞(U,V ). The map F is called a diffeomorphism from U to V if it is
invertible and the inverse map F−1 : V →U is again smooth.

Example 2.2. The exponential map exp : R→R, x 7→ exp(x) = ex is smooth. It may
be regarded as a map onto R>0 = {y|y > 0}, and as such it is a diffeomorphism

exp : R→ R>0

with inverse exp−1 = log (the natural logarithm). Similarly, the function x 7→ tan(x)
is a diffeomorphism from the open interval (−π

2 ,
π

2 ) onto R, with inverse the function
arctan.

Definition 2.3. For a smooth map F ∈C∞(U,V ) between open subsets U ⊆ Rm and
V ⊆Rn, and any x∈U, one defines the Jacobian matrix DF(x) to be the n×m-matrix
of partial derivatives

(DF(x))i
j =

∂F i

∂x j

If n = m, it is a square matrix, and its determinant is called the Jacobian determinant
of F at x.
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The inverse function theorem states that F is a diffeomorphism if and only if (i) F
is invertible, and (ii) for all x ∈U , the Jacobian matrix DF(x) is invertible. (That is,
one does not actually have to check smoothness of the inverse map!)
The following definition formalizes the concept of introducing local coordinates.

Definition 2.4 (Charts). Let M be a set.

a) An m-dimensional (coordinate) chart (U,ϕ) on M is a subset U ⊆ M together
with a map ϕ : U→Rm, such that ϕ(U)⊆Rm is open and ϕ is a bijection from
U to ϕ(U). The set U is the chart domain, and ϕ is the coordinate map.

b) Two charts (U,ϕ) and (V,ψ) are called compatible if the subsets ϕ(U ∩V ) and
ψ(U ∩V ) are open, and the transition map

ψ ◦ϕ
−1 : ϕ(U ∩V )→ ψ(U ∩V )

is a diffeomorphism.

As a special case, charts with U ∩V = /0 are always compatible.

4 (answer on page ??). The bijection requirement on ϕ plays an
important role; hence this may be a good opportunity to think through some
set theory. (Also see Appendix A.) Prove the following (from now on, we
shall use the properties below without further comment):
Let X , Y be sets, f : X → Y a map, and suppose A,B⊆ X , and C,D⊆ Y .

a) Show that

f (A∪B) = f (A)∪ f (B),

f (A∩B) = f (A)∩ f (B) if f injective,

f (A\B) = f (A)\ f (B) if f injective,

f (Ac) = f (A)c if f bijective.

Here the superscript c denotes the complement. By giving counter-
examples, show that the second and third equality may fail if f is not
injective, and that the last equality may fail if f is only injective or
only surjective.

b) Let us denote by f−1(C) = {x : f (x) ∈ C} the preimage of C. Show
that:

f−1(C∪D) = f−1(C)∪ f−1(D),

f−1(C∩D) = f−1(C)∩ f−1(D),

f−1(Cc) =
(

f−1(C)
)c
,

f−1(C \D) = f−1(C)\ f−1(D).
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5 (answer on page ??). Is compatibility of charts an equivalence
relation? (See Appendix A for a reminder on equivalence relations.)

Let (U,ϕ) be a coordinate chart. Given a point p∈U , and writing ϕ(p)= (u1, . . . ,um),
we say that the ui are the coordinates of p in the given chart. (Note the convention of
indexing by superscripts; be careful not to confuse indices with powers.) Letting p
vary, these become real-valued functions p 7→ ui(p); they are simply the component
functions of ϕ .
Transition maps ψ ◦ϕ−1 are also called change of coordinates. Here is a picture of a
‘coordinate change’:

Definition 2.5 (Atlas). Let M be a set. An m-dimensional atlas on M is a collection
of coordinate charts A = {(Uα ,ϕα)} such that

a) The Uα cover all of M, i.e.,
⋃

α Uα = M.
b) For all indices α,β , the charts (Uα ,ϕα) and (Uβ ,ϕβ ) are compatible.

In this definition, α,β , . . . are indices used to distinguish the different charts; the
indexing set may be finite or infinite, perhaps even uncountable.

Example 2.6 (An atlas on the 2-sphere). Let S2 ⊆ R3 be the unit sphere, consisting
of all (x,y,z) ∈ R3 satisfying the equation x2 + y2 + z2 = 1. We shall define an atlas
with two charts (U+,ϕ+) and (U−,ϕ−). Let n = (0,0,1) be the north pole, let s =
(0,0,−1) be the south pole, and put

U+ = S2 \{s}, U− = S2 \{n}.

Regard R2 as the coordinate subspace of R3 on which z = 0. Let

ϕ+ : U+→ R2, p 7→ ϕ+(p)

be stereographic projection from the south pole. That is, ϕ+(p) is the unique point
of intersection of R2 with the affine line passing through p and s.
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Similarly,
ϕ− : U−→ R2, p 7→ ϕ−(p)

is stereographic projection from the north pole, where ϕ−(p) is the unique point of
intersection of R2 with the affine line passing through p and n.
A calculation gives the explicit formulas, for (x,y,z) ∈ S2 ⊆ R3 in U+, respectively
U−:

ϕ+(x,y,z) =
(

x
1+ z

,
y

1+ z

)
, ϕ−(x,y,z) =

(
x

1− z
,

y
1− z

)
. (2.1)

6 (answer on page ??). Verify (2.1).

Both ϕ± : U±→ R2 are bijections onto R2. Indeed, given (u,v) ∈ R2 we may solve
the equation (u,v) = ϕ±(x,y,z), using the condition that x2 +y2 + z2 = 1 and z±1 6=
0. The calculation gives

ϕ
−1
± (u,v) =

( 2u
1+(u2 + v2)

,
2v

1+(u2 + v2)
, ±1− (u2 + v2)

1+(u2 + v2)

)
(2.2)

7 (answer on page ??). Verify (2.2).

Note that ϕ+(U+∩U−) =R2\{(0,0)}. The transition map on the overlap of the two
charts is

(ϕ− ◦ϕ
−1
+ )(u,v) =

( u
u2 + v2 ,

v
u2 + v2

)
which is smooth on R2\{(0,0)} as required. ut

Here is another simple, but less familiar example where one has an atlas with two
charts.



2.1 Atlases and charts 17

Example 2.7 (Affine lines in R2). By an affine line in a vector space E, we mean
a subset ` ⊆ E that is obtained by adding a fixed vector v0 to all elements of a 1-
dimensional subspace. In plain terms, an affine line is simply a straight line that does
not necessarily pass through the origin. (We reserve the term line, without prefix, for
1-dimensional subspaces, that is, for straight lines that do pass through the origin.)
Let

M = {`| ` is an affine line in R2}.

Let U ⊆M be the subset of lines that are not vertical, and V ⊆M the lines that are
not horizontal. Any ` ∈U is given by an equation of the form

y = mx+b,

where m is the slope and b is the y-intercept. The map ϕ : U →R2 taking ` to (m,b)
is a bijection. On the other hand, lines in V are given by equations of the form

x = ny+ c,

and we also have the map ψ : V →R2 taking such ` to (n,c). The intersection U ∩V
are lines ` that are neither vertical nor horizontal. Hence, ϕ(U ∩V ) is the set of all
(m,b) such that m 6= 0, and similarly ψ(U ∩V ) is the set of all (n,c) such that n 6= 0.

8 (answer on page ??). Compute the transition maps ψ ◦ϕ−1, ϕ ◦ψ−1

and show they are smooth. Conclude that (U,ϕ) and (V,ψ) define a 2-
dimensional atlas on M.

It turns out that M is a 2-dimensional manifold – a surface. Of course, we should be
able to identify this mysterious surface:

9 (answer on page ??). What is this surface?

We return to our objective of giving a general definition of the concept of manifolds.
As a first approximation, we may take an m-dimensional manifold to be a set with
an m-dimensional atlas. This is almost the right definition, but we will make a few
adjustments. A first criticism is that we may not want any particular atlas as part
of the definition. For example, the 2-sphere with the atlas given by stereographic
projections onto the xy-plane, and the 2-sphere with the atlas given by stereographic
projections onto the yz-plane, should be one and the same manifold: S2. To resolve
this problem, we will use the following notion.

Definition 2.8. Suppose A = {(Uα ,ϕα)} is an m-dimensional atlas on M, and let
(U,ϕ) be another chart. Then (U,ϕ) is said to be compatible with A if it is compat-
ible with all charts (Uα ,ϕα) of A .
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Example 2.9. On the 2-sphere S2, we have constructed the atlas

A = {(U+,ϕ+), (U−,ϕ−)}

given by stereographic projection. Consider the chart (V,ψ), with domain V the set of
all (x,y,z) ∈ S2 such that y < 0, with ψ(x,y,z) = (x,z). To check that it is compatible
with (U+,ϕ+), note that U+∩V =V , and

ϕ+(U+∩V ) = {(u,v)| v < 0}, ψ(U+∩V ) = {(x,z)| x2 + z2 < 1}.

10 (answer on page ??). Find explicit formulas for ψ ◦ ϕ
−1
+ and

ϕ+ ◦ψ−1. Conclude that (V,ψ) is compatible with (U+,ϕ+).

Note that (U,ϕ) is compatible with the atlas A = {(Uα ,ϕα)} if and only if the union
A ∪{(U,ϕ)} is again an atlas on M. This suggests defining a bigger atlas, by using
all charts that are compatible with the given atlas. In order for this to work, we need
the new charts to be compatible not only with the charts of A , but also with each
other. This is not entirely obvious, since compatibility of charts is not an equivalence
relation (see 5).

Lemma 2.10. Let A = {(Uα ,ϕα)} be a given atlas on the set M. If two charts
(U,ϕ), (V,ψ) are compatible with A , then they are also compatible with each other.

Proof. For every chart (Uα ,ϕα), the sets ϕα(U ∩Uα) and ϕα(V ∩Uα) are open,
hence their intersection is open. This intersection is (see 11 below)

ϕα(U ∩Uα)∩ϕα(V ∩Uα) = ϕα(U ∩V ∩Uα). (2.3)

Since ϕ ◦ϕ−1
α : ϕα(U ∩Uα)→ ϕ(U ∩Uα) is a diffeomorphism, it follows that

ϕ(U ∩V ∩Uα) = (ϕ ◦ϕ
−1
α )
(
ϕα(U ∩V ∩Uα)

)
is open. Taking the union over all α , we see that

ϕ(U ∩V ) =
⋃
α

ϕ(U ∩V ∩Uα)

is open. A similar argument applies to ψ(U ∩V ). The transition map
ψ ◦ ϕ−1 : ϕ(U ∩V ) → ψ(U ∩V ) is smooth since for all α , its restriction to
ϕ(U ∩V ∩Uα) is a composition of two smooth maps ϕα ◦ϕ−1 : ϕ(U ∩V ∩Uα)−→
ϕα(U ∩V ∩Uα) and ψ ◦ϕ−1

α : ϕα(U ∩V ∩Uα) −→ ψ(U ∩V ∩Uα). Likewise, the
composition ϕ ◦ψ−1 : ψ(U ∩V )→ ϕ(U ∩V ) is smooth. ut

11 (answer on page ??). Explain why (2.3) is true.
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12 (answer on page ??). Suppose (U,ϕ) is a chart, with image Ũ =
ϕ(U) ⊆ Rm. Let V ⊆U be a subset such that Ṽ = ϕ(V ) ⊆ Ũ is open, and
let ψ = ϕ|V be the restriction of ϕ . Prove that (V,ψ) is again a chart, and is
compatible with (U,ϕ). Furthermore, if (U,ϕ) is a chart from an atlas A ,
then (V,ψ) is compatible with that atlas.

Theorem 2.11. Given an atlas A = {(Uα ,ϕα)} on M, let Ã be the collection of all
charts (U,ϕ) that are compatible with A . Then Ã is itself an atlas on M, containing
A . In fact, Ã is the largest atlas containing A .

Proof. Note first that Ã contains A , since the set of charts compatible with A

contains the charts from the atlas A itself. In particular, the charts in Ã cover M.
By the lemma above, any two charts in Ã are compatible. Hence Ã is an atlas. If
(U,ϕ) is a chart compatible with all charts in Ã , then in particular it is compatible
with all charts in A ; hence (U,ϕ) ∈ Ã by the definition of Ã . This shows that Ã
cannot be extended to a larger atlas. ut

Definition 2.12. An atlas A is called maximal if it is not properly contained in any
larger atlas. Given an arbitrary atlas A , one calls Ã (as in Theorem 2.11) the
maximal atlas determined by A .

Remark 2.13. Although we will not need it, let us briefly discuss the notion of equiv-
alence of atlases. (For background on equivalence relations, see the Appendix A.)
Two atlases A = {(Uα ,ϕα)} and A ′ = {(U ′α ,ϕ ′α)} are called equivalent if every
chart of A is compatible with every chart in A ′. For example, the atlas on the 2-
sphere given by the two stereographic projections to the xy-plane is equivalent to the
atlas A ′ given by the two stereographic projections to the yz-plane. Using Lemma
2.10, one sees that equivalence of atlases is indeed an equivalence relation. (In fact,
two atlases are equivalent if and only if their union is an atlas.) Furthermore, two at-
lases are equivalent if and only if they are contained in the same maximal atlas. That
is, any maximal atlas determines an equivalence class of atlases, and vice versa.

2.2 Definition of manifold

As our next approximation towards the right definition, we can take an m-dimensional
manifold to be a set M together with an m-dimensional maximal atlas. This is already
quite close to what we want, but for technical reasons we would like to impose two
further conditions.
First of all, we insist that M can be covered by countably many coordinate charts. In
most of our examples, M is in fact covered by finitely many coordinate charts. This
countability condition is used for various arguments involving a proof by induction.
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Example 2.14. A simple non-example that is not countable: Let M = R, with A =
{(Uα ,ϕα)} the 0-dimensional atlas, where each Uα consists of a single point, and
ϕα : Uα → {0} is the unique map to R0 = {0}. Compatibility of charts is obvi-
ous. But M cannot be covered by countably many of these charts. Thus, we will not
consider R to be a zero-dimensional manifold.

Secondly, we would like to avoid the following type of example.

Example 2.15. Let X be a disjoint union of two copies of the real line R. We denote
the two copies by R×{1} and R×{−1}, just so that we can tell them apart. Consider
the equivalence relation on X generated by

(x,1)∼ (x′,−1) ⇔ x′ = x < 0,

and let M = X/∼ the set of equivalence classes. That is, we ‘glue’ the two real lines
along their negative real axes (taking care that no glue gets on the origins of the axes).
Here is a (not very successful) attempt to sketch the resulting space:

As a set, M is a disjoint union of R<0 with two copies of R≥0. Let π : X →M be the
quotient map, and let

U = π(R×{1}), V = π(R×{−1})

the images of the two real lines. The projection map X →R, (x,±1) 7→ x is constant
on equivalence classes, hence it descends to a map f : M→R; let ϕ : U→R be the
restriction of f to U and ψ : V → R the restriction to V . Then

ϕ(U) = ψ(V ) = R, ϕ(U ∩V ) = ψ(U ∩V ) = R<0,

and the transition map is the identity map. Hence, A = {(U,ϕ), (V,ψ)} is an atlas
for M. A strange feature of M with this atlas is that although the points

p = ϕ
−1({0}) ∈U, q = ψ

−1({0}) ∈V,

are distinct (p 6= q), they are ‘arbitrarily close’: for any ε,δ > 0 the preimages
ϕ−1(−ε,ε)⊆U and ψ−1(−δ ,δ )⊆V have non-empty intersection. There is no re-
ally satisfactory way of drawing M (our picture above is inadequate).
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Since such a behavior is inconsistent with the idea of a manifold that ‘locally looks
like Rn’ (where, e.g. every converging sequence has a unique limit), we shall in-
sist that for any two distinct points p,q ∈ M, there are always disjoint coordinate
charts separating the two points. This is called the Hausdorff condition, after Felix
Hausdorff (1868-1942).

Definition 2.16. An m-dimensional manifold is a set M, together with a maximal
atlas A = {(Uα ,ϕα)} with the following properties:

a) (Countability condition) M is covered by countably many coordinate charts in
A . That is, there are indices α1,α2, . . . (not necessarily distinct) with

M =
∞⋃

i=1

Uαi

b) (Hausdorff condition) For any two distinct points p,q∈M there are coordinate
charts (Uα ,ϕα) and (Uβ ,ϕβ ) in A such that p ∈Uα , q ∈Uβ , and

Uα ∩Uβ = /0.

The charts (U,ϕ) ∈A are called (coordinate) charts on the manifold M.

Before giving examples, let us note the following useful fact concerning the Haus-
dorff condition. We shall use the following result, concerning the shrinking of a chart
domain:

Lemma 2.17. Let M be a set with a maximal atlas A = {(Uα ,ϕα)}, and suppose
p,q ∈M are distinct points contained in a single coordinate chart (U,ϕ) ∈A . Then
we can find indices α,β such that p ∈Uα , q ∈Uβ , with Uα ∩Uβ = /0.

Proof. Let (U,ϕ) be as in the lemma, and Ũ = ϕ(U)⊆ Rm. Since

p̃ = ϕ(p), q̃ = ϕ(q)

are distinct points in Ũ , we can choose disjoint open subsets Ũα , Ũβ ⊆ Ũ containing
p̃ = ϕ(p) and q̃ = ϕ(q), respectively. Let Uα , Uβ ⊆U be their preimages, and take
ϕα = ϕ|Uα

, ϕβ = ϕ|Uβ
. Then (Uα ,ϕα) and (Uβ ,ϕβ ) are charts in A , with disjoint

chart domains, and by construction we have that p ∈Uα and q ∈Uβ . ut

Example 2.18. Consider the 2-sphere S2 with the atlas given by the two coordinate
charts (U+,ϕ+) and (U−,ϕ−). This atlas extends uniquely to a maximal atlas. The
countability condition is satisfied, since S2 is already covered by two charts. The
Hausdorff condition is satisfied as well: Given distinct points p,q ∈ S2, if both are
contained in U+ or both in U−, we can apply the lemma. The only remaining case is
if one point (say p) is the north pole and the other (say q) the south pole. But here
we can construct Uα ,Uβ by replacing U+ and U− with the open upper hemisphere
and open lower hemisphere, respectively. Alternatively, we can use the chart given
by stereographic projection to the xz plane, noting that this is also in the maximal
atlas.
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Remark 2.19. As we explained above, the Hausdorff condition rules out some strange
examples that don’t quite fit our idea of a space that is locally like Rn. Nevertheless,
so-called non-Hausdorff manifolds (with non-Hausdorff more properly called not
necessarily Hausdorff ) do arise in some important applications. Much of the the-
ory can be developed without the Hausdorff property, but there are some complica-
tions. For instance, initial value problems for vector fields need not have unique so-
lutions for non-Hausdorff manifolds. Let us also note that while the classification of
1-dimensional manifolds is very easy, there is no nice classification of 1-dimensional
non-Hausdorff manifolds.

Remark 2.20 (Charts taking values in ‘abstract’ vector spaces). In the definition of
an m-dimensional manifold M, rather than letting the charts (Uα ,ϕα) take values in
Rm we could just as well let them take values in m-dimensional real vector spaces
Eα :

ϕα : Uα → Eα .

Transition functions are defined as before, except they now take an open subset of
Eβ to an open subset of Eα . A choice of basis identifies Eα = Rm, and takes us back
to the original definition.
As far as the definition of manifolds is concerned, nothing has been gained by adding
this level of abstraction. However, it often happens that the Eα ’s are given to us
‘naturally’. For example, if M is a surface inside R3, one would typically use xy-
coordinates, or xz-coordinates, or yz-coordinates on appropriate chart domains. It can
then be useful to regard the xy-plane, xz-plane, and yz-plane as the target spaces of
the coordinate maps, and for notational reasons it may be convenient not to associate
them with a single R2.

2.3 Examples of manifolds

We will now discuss some basic examples of manifolds. In each case, the manifold
structure is given by a finite atlas; hence the countability property is immediate. We
will not spend too much time on verifying the Hausdorff property; while it may be
done ‘by hand’, we will later have better ways of doing this.

We begin the list of examples with the observation that any open subset U of Rn is a
manifold, with atlas determined by the chart (U, idU ).

2.3.1 Spheres

The construction of an atlas for the 2-sphere S2, by stereographic projection, also
works for the n-sphere

Sn = {(x0, . . . ,xn)| (x0)2 + · · ·+(xn)2 = 1}.



2.3 Examples of manifolds 23

Let U± be the subsets obtained by removing (∓1,0, . . . ,0). Stereographic projection
from these two points defines bijections ϕ± : U±→ Rn, and by calculations similar
to those for the 2-sphere, we see that

ϕ±(x0, x1, . . . , xn) =
1

1± x0 (x
1, . . . ,xn) (2.4)

with inverse (writing u = (u1, . . . ,un))

ϕ
−1
± (u) =

1
1+ ||u||2

(
± (1−||u||2), 2u1, . . . ,2un). (2.5)

For the transition function one finds

(ϕ− ◦ϕ
−1
+ )(u) =

u
||u||2

. (2.6)

We leave it as an exercise to check the details. An equivalent atlas, with 2n+2 charts,
is given by the subsets U+

0 , . . . ,U+
n ,U−0 , . . . ,U−n where

U+
j = {x ∈ Sn| x j > 0}, U−j = {x ∈ Sn| x j < 0}

for j = 0, . . . ,n, with ϕ
±
j : U±j → Rn the projection to the j-th coordinate plane (in

other words, omitting the j-th component x j):

ϕ
±
j (x

0, . . . ,xn) = (x0, . . . ,x j−1,x j+1, . . . ,xn).

2.3.2 Real projective spaces

The n-dimensional projective space, denoted RPn, is the set of all lines ` ⊆ Rn+1,
where line is taken to mean ‘1-dimensional subspace’. It may also be regarded as a
quotient space (see Appendix A)

RPn = (Rn+1\{0})/∼

for the equivalence relation

x∼ x′⇔∃λ ∈ R\{0} : x′ = λx.

Indeed, any nonzero vector x ∈ Rn+1\{0} determines a line, while two vectors x,x′
determine the same line if and only if they agree up to a non-zero scalar multiple.
The equivalence class of x = (x0, . . . ,xn) under this relation is commonly denoted

[x] = (x0 : . . . : xn).

The (· : . . . : ·) are called homogeneous coordinates.
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13 (answer on page ??). Show that the following are equivalent
characterizations of RPn (in the sense that there are ‘natural’ set-theoretic
bijections):

a) The sphere Sn with antipodal identification.
b) The closed ball Bn :=

{
x ∈ Rn | ||x||2 ≤ 1

}
, with antipodal identifica-

tion on its boundary sphere Sn−1. (That is, x∼−x for x ∈ Sn−1.)
Specializing to n = 1, define a bijection RP1 ∼= S1.

The projective space RPn has a standard atlas

A = {(U0,ϕ0), . . . ,(Un,ϕn)}

defined as follows. For j = 0, . . . ,n, let

U j = {(x0 : . . . : xn) ∈ RPn| x j 6= 0}

be the set for which the j-th coordinate is non-zero, and put

ϕ j : U j→ Rn, (x0 : . . . : xn) 7→ (
x0

x j , . . . ,
x j−1

x j ,
x j+1

x j , . . . ,
xn

x j ).

This is well-defined, since the quotients do not change when all xi are multiplied by a
fixed scalar. Put differently, given an element [x]∈RPn for which the j-th component
x j is non-zero, we first rescale the representative x to make the j-th component equal
to 1, and then use the remaining components as our coordinates. As an example (with
n = 2),

ϕ1(7 : 3 : 2) = ϕ1
(7

3
: 1 :

2
3
)
=
(7

3
,

2
3
)
.

From this description, it is immediate that ϕ j is a bijection from U j onto Rn, with
inverse map

ϕ
−1
j (u1, . . . ,un) = (u1 : . . . : u j : 1 : u j+1 : . . . : un).

Geometrically, viewing RPn as the set of lines in Rn+1, the subset U j ⊆RPn consists
of those lines ` which intersect the affine hyperplane

H j = {x ∈ Rn+1| x j = 1},

and the map ϕ j takes such a line ` to its unique point of intersection `∩H j, followed
by the identification H j ∼= Rn (dropping the coordinate x j = 1).
Let us verify that A is indeed an atlas. Clearly, the domains U j cover RPn, since
any element [x] ∈ RPn has at least one of its components non-zero. For i 6= j, the
intersection Ui ∩U j consists of elements x with the property that both components
xi, x j are non-zero.
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14 (answer on page ??). Compute the transition maps ϕi ◦ϕ
−1
j , and

verify that they are smooth. (You will need to distinguish between the cases
i < j and i > j.)

To complete the proof that this atlas (or the unique maximal atlas containing it)
defines a manifold structure, it remains to check the Hausdorff property. This can be
done with the help of Lemma 2.17, but we postpone the proof since we will soon
have a simple argument in terms of smooth functions. See Proposition 3.5 below.
In summary, the real projective space RPn is a manifold of dimension n. For n = 1 it
is called the (real) projective line, for n = 2 the (real) projective plane.

Remark 2.21. Geometrically, Ui consists of all lines in Rn+1 meeting the affine hy-
perplane Hi, hence its complement consists of all lines that are parallel to Hi, i.e., the
lines in the coordinate subspace defined by xi = 0. The set of such lines is RPn−1.
In other words, the complement of Ui in RPn is identified with RPn−1. Thus, as sets,
RPn is a disjoint union

RPn = RntRPn−1,

where Rn is identified (by the coordinate map ϕi) with the open subset Un, and RPn−1

with its complement. Inductively, we obtain a decomposition

RPn = RntRn−1t·· ·tRtR0, (2.7)

where R0 = {0}. At this stage, it is simply a decomposition into subsets; later it will
be recognized as a decomposition into submanifolds (see Example 4.7).

15 (answer on page ??). Find an identification of the space of ro-
tations in R3 with the 3-dimensional projective space RP3. (Suggestion:
Associate a rotation to every x ∈ R3 with ||x|| ≤ π .)

2.3.3 Complex projective spaces

In a similar fashion, one can define a complex projective space CPn as the set of
complex 1-dimensional subspaces of Cn+1. We have

CPn = (Cn+1\{0})/∼

where the equivalence relation is given by the condition that z ∼ z′ if and only if
there exists a complex λ with z′ = λz. (Note that the scalar λ is then unique, and is
non-zero.) Identify C with R2, thus Cn+1 with R2n+2. Letting S2n+1 ⊆Cn+1 =R2n+2

be the ‘unit sphere’ consisting of complex vectors of length ||z||= 1, we have

CPn = S2n+1/∼,
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where z′ ∼ z if and only if there exists a complex number λ with z′ = λz. (Note that
the scalar λ is then unique, and has absolute value 1.) One defines charts (U j,ϕ j)
similarly to those for the real projective space:

U j =
{
(z0 : . . . : zn) |z j 6= 0

}
, ϕ j : U j→ Cn = R2n,

ϕ j(z0 : . . . : zn) =
( z0

z j , . . . ,
z j−1

z j ,
z j+1

z j , . . . ,
zn

z j

)
.

The transition maps between charts are given by similar formulas as for RPn (just
replace x with z); they are smooth maps between open subsets of Cn = R2n. Thus
CPn is a smooth manifold of dimension 2n. As with RPn (see Equation (2.7)) there
is a decomposition

CPn = CntCn−1t·· ·tCtC0.

We will show later (Section 3.7.2) that CP1 ∼= S2 as manifolds; for larger n we obtain
genuinely ‘new’ manifolds.

Remark 2.22. (For those who know a little bit of complex analysis.) We took m-
dimensional manifolds to be modeled on open subsets of Rm, with smooth transition
maps. In a similar way, one can define complex manifolds M of complex dimension m
to be modeled on open subsets of Cm, with transition maps that are infinitely differ-
entiable in the complex sense, i.e. holomorphic. In more detail, a complex manifold
of dimension m may be defined as a real manifold M of dimension 2m, with an atlas
A , such that all coordinate charts (Uα ,ϕα) take values in Cm ∼= R2m, and all transi-
tion maps ϕα ◦ϕ

−1
β

: ϕβ (Uα ∩Uβ )→ ϕα(Uα ∩Uβ ) are holomorphic . The complex
projective space CPn is an important example of a complex manifold, of complex
dimension n. For n = 1 it is called the complex projective line, for n = 2 the complex
projective plane.

2.3.4 Real Grassmannians

The set Gr(k,n) of all k-dimensional subspaces of Rn is called the Grassmannian of
k-planes in Rn. (Named after Hermann Grassmann (1809-1877).) As a special case,
Gr(1,n) = RPn−1.
We will show that the Grassmannian is a manifold of dimension

dim(Gr(k,n)) = k(n− k).

An atlas for Gr(k,n) may be constructed as follows. The idea is to present linear
subspaces E ⊆ Rn of dimension k as graphs of linear maps from Rk to Rn−k. Here
Rk is viewed as the coordinate subspace corresponding to a choice of k components
from x = (x1, . . . ,xn) ∈ Rn, and Rn−k the coordinate subspace for the remaining co-
ordinates.
To make it precise, we introduce some notation. For any subset I ⊆ {1, . . . ,n} of the
set of indices, let

I′ = {1, . . . ,n}\I
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be its complement. Let RI ⊆ Rn be the coordinate subspace

RI = {x ∈ Rn| xi = 0 for all i ∈ I′}.

If I has cardinality∗ |I|= k, then RI ∈ Gr(k,n). Note that RI′ = (RI)⊥. Let

UI = {E ∈ Gr(k,n)| E ∩RI′ = {0}},

the set of k-dimensional subspaces that are transverse to RI′ . Each E ∈UI is described
as the graph of a unique linear map AI : RI → RI′ , that is,

E = {y+AI(y)|y ∈ RI}.

16 (answer on page ??). Verify the claim that every E ∈UI deter-
mines a unique linear map AI :RI→RI′ such that E = {y+AI(y)| y∈RI}.

This gives a bijection

ϕI : UI → Hom(RI ,RI′), E 7→ ϕI(E) = AI ,

where Hom(V,W ) (also common is L(V,W )) denotes the space of linear maps from a
vector space V to a vector space W . Note Hom(RI ,RI′)∼=Rk(n−k), because the bases
of RI and RI′ identify the space of linear maps with (n− k)× k-matrices, which in
turn is just Rk(n−k) by listing the matrix entries. On the other hand, as explained in
2.20 it is not necessary to make this identification, and indeed it is better to work with
the vector space Hom(RI ,RI′) as the chart codomain. In terms of AI , the subspace
E ∈UI is the range of the injective linear map(

1
AI

)
: RI → RI⊕RI′ ∼= Rn (2.8)

∗ It is common to use | · | for the cardinality (“size”) of a set. Context will distinguish it from
absolute value or complex modulus.
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where we write elements of Rn as column vectors.
To check that the charts are compatible, suppose E ∈UI ∩UJ , and let AI and AJ be
the linear maps describing E in the two charts. We have to show that the map

ϕJ ◦ϕ
−1
I : Hom(RI ,RI′)→ Hom(RJ ,RJ′), AI = ϕI(E) 7→ AJ = ϕJ(E)

is smooth. By assumption, E is described as the range of (2.8) and also as the range
of a similar map for J. Here we are using the two decompositions RI⊕RI′ ∼=Rn and
RJ⊕RJ′ ∼= Rn. It is convenient to describe everything in terms of RJ⊕RJ′ . Let(

a b
c d

)
: RI⊕RI′ → RJ⊕RJ′

be the matrix corresponding to the identification RI ⊕RI′ → Rn followed by the
inverse of RJ ⊕RJ′ → Rn. For example, the lower left block ‘c’ is the inclusion
RI → Rn as the corresponding coordinate subspace, followed by projection to the
coordinate subspace RJ′ . By definition of E, the injective linear maps(

a b
c d

)(
1
AI

)
: RI → RJ⊕RJ′ ,

(
1

AJ

)
: RJ → RJ⊕RJ′

have the same range (namely, E once we identify RJ ⊕RJ ∼= Rn). In other words,
there is an isomorphism S : RI → RJ such that(

a b
c d

)(
1
AI

)
=

(
1

AJ

)
S

as maps RI → RJ⊕RJ′ . We obtain(
a+bAI
c+dAI

)
=

(
S

AJS

)
Using the first row of this equation to eliminate the second row of this equation,
we obtain the desired formula for the transition function ϕJ ◦ϕ

−1
I , expressing AJ in

terms of AI :
AJ = (c+dAI)(a+bAI)

−1.

The dependence of the right hand side on the matrix entries of AI is smooth, by
Cramer’s formula for the inverse matrix.
It follows that the collection of all ϕI : UI → Hom(RI ,RI′) ∼= Rk(n−k) defines on
Gr(k,n) the structure of a manifold of dimension k(n− k). The number of charts of
this atlas equals the number of subsets I ⊆ {1, . . . ,n} of cardinality k, that is, it is
equal to

(n
k

)
.

The Hausdorff property may be checked in a similar fashion to RPn. Here is a sketch
of an alternative argument (later, we will have much simpler criteria for the Hausdorff
property, avoiding these types of ad-hoc arguments). Given distinct E1,E2 ∈Gr(k,n),
choose a subspace F ∈ Gr(k,n) such that F⊥ has zero intersection with both E1,E2.
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(Such a subspace always exists.) One can then define a chart (U,ϕ), where U is the
set of subspaces E transverse to F⊥, and ϕ realizes any such map as the graph of a
linear map F → F⊥. Thus ϕ : U → Hom(F,F⊥). As above, we can check that this
is compatible with all the charts (UI ,ϕI). Since both E1,E2 are in this chart U , we
are done by Lemma 2.17.

17 (answer on page ??). Prove the parenthetical remark above: Given
E1,E2 ∈ Gr(k,n) there exists F ∈ Gr(k,n) such that F⊥ ∩E1 = {0} and
F⊥∩E2 = {0}.

Remark 2.23. As already mentioned, Gr(1,n) = RPn−1. One can check that our sys-
tem of charts in this case is the standard atlas for RPn−1.

18 (answer on page ??). This is a preparation for the following re-
mark. Recall that a linear map Π : Rn → Rn is an orthogonal projection
onto some subspace E ⊆Rn if Π(x)= x for x∈E and Π(x)= 0 for x∈E⊥.
Show that a square matrix P ∈MatR(n) is the matrix of an orthogonal pro-
jection if and only if it has the properties

P> = P, PP = P,

where the superscript > indicates ‘transpose’. What is the matrix of the
orthogonal projection onto E⊥?

For any k-dimensional subspace E ⊆Rn, let PE ∈MatR(n) be the matrix of the linear
map given by orthogonal projection onto E. By the 18,

P>E = PE , PEPE = PE ;

conversely, any square matrix P with the properties P>=P, PP=P with rank(P)= k
corresponds to a k-dimensional subspace E = {Px| x ∈Rn} ⊆Rn. This identifies the
Grassmannian Gr(k,n) with the set of orthogonal projections of rank k. In summary,
we have an inclusion

Gr(k,n) ↪→MatR(n)∼= Rn2
, E 7→ PE . (2.9)

Note that this inclusion takes values in the subspace SymR(n) ∼= Rn(n+1)/2 of sym-
metric n×n-matrices.

19 (answer on page ??). Describe a natural bijection Gr(k,n) ∼=
Gr(n− k,n), both in terms of subspaces and in terms of orthogonal pro-
jections.
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20 (answer on page ??). Given a real n-dimensional vector space
V , let Gr(k,V ) be the set of k-dimensional subspaces of V . It is identified
with Gr(k,n) once a basis of V is chosen; in particular it is a manifold
of dimension k(n− k). Letting V ∗ be the dual space, describe a bijection
Gr(k,V ) ∼= Gr(n− k,V ∗), which is ‘natural’ in the sense that it does not
depend on additional choices (such as a choice of basis).

Remark 2.24. Similar to RP2 = S2/∼, the quotient modulo antipodal identification,
one can also consider

M = (S2×S2)/∼

the quotient space by the equivalence relation

(x,x′)∼ (−x,−x′).

It turns out (see, e.g., [4]) that this manifold M is the same as Gr(2,4), in the sense
that there is a bijection of sets identifying the atlases.

2.3.5 Complex Grassmannians

Similar to the case of projective spaces, one can also consider the complex Grass-
mannian GrC(k,n) of complex k-dimensional subspaces of Cn. It is a manifold of
dimension 2k(n− k), which can also be regarded as a complex manifold of complex
dimension k(n− k).

2.4 Open subsets

Let M be a set equipped with an m-dimensional maximal atlas A = {(Uα ,ϕα)}.

Definition 2.25. A subset U ⊆M is open if and only if for all charts (Uα ,ϕα) ∈A
the set ϕα(U ∩Uα) is open.

To check that a subset U is open, it is not actually necessary to verify this condition
for all charts. As the following proposition shows, it is enough to check for any col-
lection of charts whose union contains U . In particular, we may take A in Definition
2.25 to be any atlas, not necessarily a maximal atlas.

Proposition 2.26. Given U ⊆M, let B⊆A be any collection of charts whose union
contains U. Then U is open if and only if for all charts (Uβ ,ϕβ ) from B, the sets
ϕβ (U ∩Uβ ) are open.
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Proof. In what follows, we reserve the index β to indicate charts (Uβ ,ϕβ ) from B.
Suppose ϕβ (U ∩Uβ ) is open for all such β . Let (Uα ,ϕα) be a given chart in the
maximal atlas A . We have that

ϕα(U ∩Uα) =
⋃
β

ϕα(U ∩Uα ∩Uβ )

=
⋃
β

(ϕα ◦ϕ
−1
β

)
(
ϕβ (U ∩Uα ∩Uβ )

)
=
⋃
β

(ϕα ◦ϕ
−1
β

)
(
ϕβ (Uα ∩Uβ )∩ϕβ (U ∩Uβ )

)
.

Since B ⊆ A , all ϕβ (Uα ∩Uβ ) are open. Hence the intersection with ϕβ (U ∩Uβ )

is open, and so is the preimage under the diffeomorphism ϕα ◦ϕ
−1
β

. Finally, we use
that a union of open sets of Rm is again open. This proves the ‘if’ part; the ‘only if’
part is obvious. ut

If A is an atlas on M, and U ⊆M is open, then U inherits an atlas by restriction:

AU = {(U ∩Uα ,ϕα |U∩Uα
)}.

21 (answer on page ??). Verify that if A is a maximal atlas, then so
is AU , and if this maximal atlas A satisfies the countability and Hausdorff
properties, then so does AU .

This then proves:

Proposition 2.27 (Open subsets are manifolds). An open subset of a manifold is
again a manifold.

The collection of open sets of M with respect to an atlas has properties similar to
those for Rn:

Proposition 2.28. Let M be a set with an m-dimensional maximal atlas. The collec-
tion of all open subsets of M has the following properties:

• /0,M are open.
• The intersection U ∩U ′ of any two open sets U,U ′ is again open.
• The union

⋃
i∈I Ui of a collection Ui, i ∈ I of open sets is again open. Here I is

any indexing set (not necessarily countable).

Proof. All of these properties follow from similar properties of open subsets in Rm.
For instance, if U,U ′ are open, then

ϕα((U ∩U ′)∩Uα) = ϕα(U ∩Uα)∩ϕα(U ′∩Uα)

is an intersection of open subsets of Rm, hence it is open and therefore U ∩U ′ is
open. ut
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These properties mean, by definition, that the collection of open subsets of M defines
a topology on M. This allows us to adopt various notions from topology:

a) If U is an open subset and p ∈U , then U is called an open neighborhood of p.
More generally, if A ⊆U is a subset contained in M, then U is called an open
neighborhood of A.

b) A subset A⊆M is called closed if its complement M\A is open.
c) M is called disconnected if it can be written as the disjoint union M =U tV of

two open subsets U,V ⊆M (with U ∩V = /0). M is called connected if it is not
disconnected; equivalently, if the only subsets A ⊆ M that are both closed and
open are A = /0 and A = M.

The Hausdorff condition in the definition of manifolds can now be restated as the
condition that any two distinct points p,q in M have disjoint open neighborhoods. (It
is not necessary to take them to be domains of coordinate charts.)
It is immediate from the definition that domains of coordinate charts are open. In-
deed, this gives an alternative way of defining the open sets:

22 (answer on page ??). Let M be a set with a maximal atlas. Show
that a subset U ⊆M is open if and only if it is either empty, or is a union
U =

⋃
i∈I Ui where the Ui are domains of coordinate charts.

23 (answer on page ??). Let M be a set with an m-dimensional max-
imal atlas A , and let (U,ϕ) be a chart in A . Let V ⊆ Rm be open. Prove
that ϕ−1(V ) is open.

Regarding the notion of connectedness, we have:

24 (answer on page ??). Let M be a set with an m-dimensional max-
imal atlas. A function f : M→ R is called locally constant if every point
p ∈M has an open neighborhood over which f is constant. Show that M is
connected if and only if every locally constant function is in fact constant.

2.5 Compact subsets

Another important concept from topology that we will need is the notion of com-
pactness. Recall (e.g. Munkres [13], Chapter 1§4) that a subset A ⊆ Rm is compact
if it has the following property: For every collection {Uα} of open subsets of Rm
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whose union contains A, the set A is already covered by finitely many subsets from
that collection. One then proves the important result (see Munkres [13], Theorems
4.2 and 4.9)

Theorem 2.29 (Heine-Borel). A subset A⊆Rm is compact if and only if it is closed
and bounded.

While ‘closed and bounded’ is a simpler characterization of compactness to work
with, it does not directly generalize to manifolds (or other topological spaces), while
the original definition does:

Definition 2.30. A subset A ⊆M of a manifold M is compact if it has the following
property: For every collection {Uα} of open subsets of M whose union contains A,
the set A is already covered by finitely many subsets from that collection.

In short, A ⊆M is compact if every open cover admits a finite subcover. Definition
2.30 works more generally for any topological space M, in particular also for non-
Hausdorff manifolds.

Proposition 2.31. Let M be a manifold, and A ⊆ M a subset which is contained in
the domain of a coordinate chart (U,ϕ). Then A is compact in M if and only if ϕ(A)
is compact in Rn.

Proof. Suppose ϕ(A) is compact. Let {Uα} be an open cover of A. Then the sets
U ∩Uα are again an open cover of A, and their images ϕ(U ∩Uα) are an open cover
of ϕ(A). Since ϕ(A) is compact, there are indices α1, . . . ,αN such that

ϕ(A)⊆ ϕ(U ∩Uα1)∪·· ·∪ϕ(U ∩UαN ).

Since ϕ : U → ϕ(U) is a bijection, this then implies that

A⊆ (U ∩Uα1)∪·· ·∪ (U ∩UαN )⊆Uα1 ∪·· ·∪UαN .

Consequently, Uα1 , . . . ,UαN are the desired finite subcover of A, which proves the
direction ‘ϕ(A) compact’⇒ ‘A compact’. We invite the reader to prove the converse.
ut

25 (answer on page ??). Complete the proof, by proving that if A is
compact, so is ϕ(A).

The proposition is useful, since we can check compactness of ϕ(A) by using the
Heine-Borel criterion, Theorem 2.29. For more general subsets of M, we can often
decide compactness by combining this result with the following:

Proposition 2.32. If A1, . . . ,Ak ⊆ M is a finite collection of compact subsets, then
their union A = A1∪·· ·∪Ak is again compact.
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Proof. If {Uα} is an open cover of A, then in particular it is an open cover of each
of the sets A1, . . . ,Ak. For each Ai, we can choose a finite subcover. The collection of
all Uα ’s that appear in at least one of these subcovers is then a finite subcover for A.

Example 2.33. Let M = Sn. The closed upper hemisphere {x ∈ Sn| x0 ≥ 0} is com-
pact, because it is contained in the coordinate chart (U+,ϕ+) for stereographic pro-
jection, and its image under ϕ+ is the closed and bounded subset {u∈Rn| ||u|| ≤ 1}.
Likewise the closed lower hemisphere is compact, and hence Sn itself (as the union
of the upper and lower hemispheres) is compact.

Example 2.34. Let {(Ui,ϕi)| i = 0, . . . ,n} be the standard atlas for RPn. Let

Ai = {(x0 : . . . : xn) ∈ RPn| ||x||2 ≤ (n+1)(xi)2}.

Then Ai ⊆Ui (since necessarily xi 6= 0 for elements of Ai). Furthermore,
⋃n

i=0 Ai =
RPn: Indeed, given any (x0 : . . . : xn)∈RPn, let i be an index for which |xi| is maximal
(here | · | denotes the absolute value). Then ||x||2 ≤ (n+1)(xi)2 (since the right hand
side is obtained from the left hand side by replacing each (x j)2 with (xi)2 ≥ (x j)2),
hence (x0 : . . . : xn) ∈ Ai. Finally, one checks that ϕi(Ai) ⊆ Rn is a closed ball of
radius

√
n+1, and in particular is compact.

In a similar way, one can prove the compactness of CPn, Gr(k,n), GrC(k,n). How-
ever, soon we will have a simpler way of verifying compactness, by showing that they
are closed and bounded subsets of RN for a suitable N, and applying the Heine-Borel
criterion 2.29.
For manifolds M, we may define a subset A ⊆M to be bounded if it is contained in
some compact subset of M. By 26 below, it is then true that closed, bounded subsets
of manifolds are compact. (But we cannot use this as a definition of compactness,
since we used compactness to define boundedness.)

26 (answer on page ??). Show that if A⊆M is compact, and C⊆M
is closed, then A∩C is compact. In particular, closed subsets of compact
subsets are compact.

The following fact uses the Hausdorff property (and holds in fact for any Hausdorff
topological space).

Proposition 2.35. If M is a manifold, then every compact subset A⊆M is closed.

Proof. Suppose A⊆M is compact. Let p ∈M\A be given. For every q ∈ A we may
choose, by the Hausdorff property, disjoint open neighborhoods Vq of q and Uq of p.
The collection {Vq, q ∈ A} is an open cover of A, hence there exists a finite subcover
Vq1 , . . . ,Vqk . The intersection U = Uq1 ∩ ·· · ∩Uqk is an open subset of M with p ∈
M and not meeting Vq1 ∪ ·· · ∪Vqk , hence not meeting A. We have thus shown that
every p ∈M\A has an open neighborhood U ⊆M\A. The union over all such open
neighborhoods for all p ∈M\A is all of M\A, which hence is open. It follows that A
is closed. ut
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For non-Hausdorff manifolds, compact subsets need not be closed. See Problem ??
at the end of this chapter.

2.6 Oriented manifolds

Our next aim is to give an intrinsic definition of orientation on a manifold. The
spheres or complex projective spaces will be examples of orientable manifolds,
whereas the Möbius strip, the projective plane RP2, and the Klein bottle, are typ-
ical examples of non-orientable manifolds.
For the definition, observe that since the Jacobian matrix D(ψ ◦ϕ−1) of the transition
map between any two charts (U,ϕ) and (V,ψ) on a set M is invertible, its determinant
(the Jacobian determinant) is non-zero everywhere on ϕ(U ∩V ).

Definition 2.36. Two charts (U,ϕ),(V,ψ) for a set M are oriented-compatible if the
Jacobian determinant is positive everywhere:

det
(
D(ψ ◦ϕ

−1(x))
)
> 0

for all x ∈ ϕ(U ∩V ). An oriented atlas on M is an atlas such that any two of its
charts are oriented-compatible; a maximal oriented atlas is one containing every
chart which is oriented-compatible with all charts in this atlas. An oriented manifold
is a set with a maximal oriented atlas, satisfying the Hausdorff and countability con-
ditions as in definition 2.16. A manifold is called orientable if it admits an oriented
atlas.

The notion of an orientation on a manifold will become crucial later, since integration
of differential forms over manifolds is only defined if the manifold is oriented.

Example 2.37. The spheres Sn are orientable. To see this, consider the atlas with
the two charts (U+,ϕ+) and (U−,ϕ−), given by stereographic projections. (Sec-
tion 2.3.1.) Here ϕ−(U+ ∩U−) = ϕ+(U+ ∩U−) = Rn\{0}, with transition map
ϕ− ◦ϕ

−1
+ (u) = u/||u||2. The Jacobian matrix D(ϕ− ◦ϕ

−1
+ )(u) has entries†

(
D(ϕ− ◦ϕ

−1
+ )(u)

)
i j =

∂

∂u j

( ui

||u||2
)
=

1
||u||2

δi j−
2uiu j

||u||4
. (2.10)

Its determinant is (see 27 below)

det
(
D(ϕ− ◦ϕ

−1
+ )(u)

)
=−||u||−2n < 0. (2.11)

Hence, the given atlas is not an oriented atlas. But this is easily remedied: Simply
compose one of the charts, say U−, with the map (u1,u2, . . . ,un) 7→ (−u1,u2, . . . ,un);
then with the resulting new coordinate map ϕ̃− the atlas (U+,ϕ+),(U−, ϕ̃−) will be
an oriented atlas.

† Here δi j =

{
0 if i 6= j
1 if i = j

is Kronecker delta function.
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27 (answer on page ??). Check that the given vector u (regarded as a vector
in Rn) is an eigenvector of the matrix A with entries Ai j given by (2.10), as is any
vector orthogonal to u. Find the corresponding eigenvalues, and use this to compute
det(A).

Example 2.38. The complex projective spaces CPn and the complex Grassmannians
GrC(k,n) are all orientable. This follows because they are complex manifolds (see
Remark 2.22), i.e., the transition maps for their standard charts, as maps between
open subsets of Cm, are actually complex-holomorphic. This implies that as real
maps, their Jacobian determinant is positive everywhere ( 28 below).

28 (answer on page ??). Let A ∈MatC(n) be a complex square ma-
trix, and AR ∈MatR(2n) the same matrix regarded as a real-linear transfor-
mation of R2n ∼= Cn. Show that

detR(AR) = |detC(A)|2.

(Here | · | signifies the complex modulus. You may want to start with the
case n = 1.)

We shall see shortly that if a connected manifold is orientable, then there are exactly
two orientations. Given one orientation, the other one is obtained by the following
procedure.

Definition 2.39. Let M be an oriented manifold, with oriented atlas {(Uα ,ϕα)}.
Then the opposite orientation on M is obtained by replacing each ϕα by its com-
position with the map (u1, . . . ,um) 7→ (−u1,u2, . . . ,um).

Proposition 2.40. Let M be an oriented manifold, and (U,ϕ) a connected chart com-
patible with the atlas of M. Then this chart is compatible either with the given orien-
tation of M, or with the opposite orientation.

Proof. Let {(Uα ,ϕα)} be an oriented atlas for M. Given p ∈U , with image x ∈ Ũ =
ϕ(U), let

ε(p) =±1

be the sign of the determinant of D(ϕα ◦ϕ−1)(x) for any chart (Uα ,ϕα) containing
p. This is well-defined, for if (Uβ ,ϕβ ) is another such chart, then the Jacobian matrix
D(ϕβ ◦ϕ−1)(x) is the product of D(ϕα ◦ϕ−1)(x) and D(ϕβ ◦ϕ−1

α )(x), and the latter
has positive determinant since the atlas is oriented by assumption. It is also clear
that the function ε : U → {1,−1} is constant near any given p, hence it is locally
constant and therefore constant (since U is connected). It follows that (U,ϕ) is either
compatible with the orientation of M (if ε =+1) or with the opposite orientation (if
ε =−1). ut
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29 (answer on page ??). Show that if M is a connected, orientable
manifold, then there are exactly two orientations on M. In fact, any con-
nected chart determines a unique orientation for which it is an oriented
chart.

Example 2.41. RP2 is non-orientable. To see this, consider its standard atlas with
charts (Ui,ϕi) for i = 0,1,2. Suppose RP2 has an orientation. By the proposition,
each of the charts is compatible either with the given orientation, or with the opposite
orientation. But the transition map between (U0,ϕ0), (U1,ϕ1) is

(ϕ1 ◦ϕ
−1
0 )(u1,u2) =

( 1
u1 ,

u2

u1

)
defined on ϕ0(U0∩U1) = {(u1,u2) : u1 6= 0}. This has Jacobian determinant −u−3

1 ,
which changes sign. Thus, the two charts cannot be oriented-compatible, even af-
ter composing the coordinate map of one of them with (u1,u2) 7→ (−u1,u2). This
contradiction shows that RP2 is not orientable.

Using similar arguments, one can show that RPn for n ≥ 2 is orientable if and only
if n is odd. See Problem ?? at the end of this chapter. More generally, the real Grass-
mannian Gr(k,n) for n≥ 2 is orientable if and only if n is even.

2.7 Building new manifolds

2.7.1 Disjoint Union

Given manifolds M,M′ of the same dimensions m, with atlases {(Uα ,ϕα)} and
{(U ′

β
,ϕ ′

β
)}, the disjoint union N = MtM′ is again an m-dimensional manifold with

atlas {(Uα ,ϕα)}∪ {(U ′β ,ϕ
′
β
)}. This manifold N is not much more interesting than

considering M and M′ separately, but is the first step towards “gluing” M and M′

in an interesting way, which often results in genuinely new manifold (more below).
More generally, given a countable collection of manifolds of the same dimension,
their disjoint union is a manifold.

2.7.2 Products

Given manifolds M,M′ of dimensions m,m′ (not necessarily the same), with atlases
{(Uα ,ϕα)} and {(U ′

β
,ϕ ′

β
)}, the cartesian product M×M′ is a manifold of dimension

m + m′. An atlas is given by the product charts Uα ×U ′
β

with the product maps
ϕα ×ϕ ′

β
: (x,x′) 7→ (ϕα(x),ϕ ′β (x

′)). For example, the 2-torus T 2 = S1×S1 becomes
a manifold in this way, and more generally the n-torus

T n = S1×·· ·×S1.
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2.7.3 Connected sums

Let M1,M2 be connected, oriented manifolds of the same dimension m. The con-
nected sum M1#M2 is obtained by first removing chosen points p1 ∈M1, p2 ∈M2,
and gluing in an open cylinder to connect the two ‘punctured’ manifolds. In more
detail let (Ui,ϕi) be coordinate charts around chosen points pi ∈Mi, with ϕi(pi) = 0,
and let ε > 0 be such that Bε(0) ⊆ ϕi(Ui). We assume that (U2,ϕ2) is oriented-
compatible, and (U1,ϕ1) is oriented-compatible with Mop

1 , the manifold with oppo-
site orientation (!) to that of M1. Denote

Z = Sm−1× (−ε,ε)

the ‘open cylinder’; elements of this cylinder will be denoted as pairs (v, t). We define

M1#M2 =
(
(M1\{p1})tZt (M2\{p2})

)
/∼,

where the equivalence relation identifies

(v, t)∼ ϕ
−1
2 (tv) ∈M2 for 0 < t < ε

(v, t)∼ ϕ
−1
1 (−tv) ∈M1 for − ε < t < 0

Note that both maps

Sm−1× (0,ε)→M2, (v, t)→ ϕ
−1
1 (tv)

and
Sm−1× (−ε,0)→M1, (v, t)→ ϕ

−1
1 (−tv)

are orientation preserving; for the latter this follows since it is a composition of two
orientation reversing maps. The result is an oriented manifold. It is a non-trivial fact
that up to diffeomorphism of oriented manifolds, the connected sum does not depend
on the choices made.
Generalizing the connected sum of two different manifolds, one can apply a similar
construction to a pair of points p1 6= p2 of a connected, oriented manifold M. This is
the higher-dimensional version of ‘attaching a handle’.

2.7.4 Quotients

We have seen various examples of manifolds defined as quotient spaces for equiva-
lence relations on given manifolds.

a) The real projective space RPn can be defined as the quotient (Rn+1\{0})/ ∼
under the equivalence relation x ∼ x′⇔ Rx = Rx′, or also as a quotient Sn/ ∼
for the equivalence relation x∼−x (antipodal identification).

b) The non-Hausdorff manifold 2.15 was also defined as the quotient under an
equivalence relation, (RtR)/ ∼. The non-example illustrates a typical prob-
lem for such constructions: even if the quotient inherits an atlas, it may fail to be
Hausdorff.
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c) Our construction of the connected sum of oriented manifolds, from the previous
section, also involved a quotient by an equivalence relation.

d) Let M be a manifold with a given countable atlas A = {(Uα ,ϕα)}. Let

Q =
⊔
α

Uα

be the manifold given as the disjoint union of the chart domains, and let π : Q→
M be the map whose restriction to Uα is the obvious inclusion into M. Since π

is surjective, this realizes M as a quotient Q/∼, formalizing the idea that every
manifold is obtained by gluing charts.

There is a general criterion for deciding when the quotient space of a manifold M
under an equivalence relation determines a manifold structure on the quotient space
M/∼. However, we shall need more tools to formulate this result. See Theorem 4.35
below.
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Smooth Maps

3.1 Smooth functions on manifolds

A real-valued function on an open subset U ⊆ Rm is called smooth at x ∈U if it is
infinitely differentiable on an open neighborhood of x. It is called smooth on U if
it is smooth at all points of U . The notion of smooth functions on open subsets of
Euclidean spaces carries over to manifolds: A function is smooth if its expression in
local coordinates is smooth.

Definition 3.1. Let M be a manifold. A function f : M→R is called smooth at p∈M
if there exists a chart (U,ϕ) around p such that the function

f ◦ϕ
−1 : ϕ(U)→ R

is smooth at ϕ(p); it is called smooth if it is smooth at all points of M. The set of
smooth functions on M is denoted C∞(M).

The condition for smoothness at p does not depend on the choice of chart: If (U ′,ϕ ′)
is another chart containing p, then the two maps

( f ◦ϕ
−1)|ϕ(U∩U ′), ( f ◦ (ϕ ′)−1)|ϕ ′(U∩U ′)

are related by the transition map ϕ ◦ (ϕ ′)−1, which is a diffeomorphism. It follows
that the first map is smooth at ϕ(p) if and only if the second map is smooth at ϕ ′(p).
Consequently, to check if f is smooth on M, it suffices to take any atlas {(Uα ,ϕα)}
for M (not necessarily the maximal atlas), and verify that for all charts from this
atlas, the maps f ◦ϕ−1

α : ϕ(Uα)→ R are smooth.

Example 3.2. The ‘height function’

f : S2→ R, (x,y,z) 7→ z

is smooth. This may be checked, for example, by using the 6-chart atlas given by
projection onto the coordinate planes: E.g., in the chart U = {(x,y,z)| z > 0} with
ϕ(x,y,z) = (x,y), we have that
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( f ◦ϕ
−1)(x,y) =

√
1− (x2 + y2)

which is smooth on ϕ(U) = {(x,y)| x2 +y2 < 1}. (The argument for the other charts
in this atlas is similar.) Alternatively, we could also use the atlas with two charts,
given by stereographic projection.
A similar argument shows, more generally, that for any smooth function h ∈C∞(R3)
(for example the coordinate functions), the restriction f = h|S2 is again smooth.

30 (answer on page ??). Check the whether or not the map f : S2→
R, (x,y,z) 7→

√
1− z2 is smooth.

31 (answer on page ??). Check that the map

f : RP2→ R, (x : y : z) 7→ yz+ xz+ xy
x2 + y2 + z2

is well-defined, and use charts to show that it is smooth.

From the properties of smooth functions on Rm, one gets the following properties of
smooth R-valued functions on manifolds M:

• If f ,g ∈C∞(M) and λ ,µ ∈ R, then λ f +µg ∈C∞(M).
• If f ,g ∈C∞(M), then f g ∈C∞(M).
• 1 ∈C∞(M) (where ‘1’ denotes the constant function taking on the value 1).

32 (answer on page ??). Prove the assertion that
f ,g ∈C∞(M) =⇒ f g ∈C∞(M).

These properties say that C∞(M) is an algebra, with unit the constant function 1.
(See Appendix A.3 for some background information on algebras.) Below, we will
develop many of the concepts of manifolds in terms of the algebra of smooth func-
tions. In particular, M itself may be recovered from this algebra. (See Problem ??.)

Definition 3.3. The support of a function f : M→ R is the smallest closed subset

supp( f )⊆M

with the property that f is zero outside of supp( f ).

In other words, supp( f ) is the closure (see Appendix B) of the subset where f is
non-zero. The following result will be needed later on.
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Lemma 3.4 (Extension by zero). Suppose U is an open subset of a manifold M,
and let g ∈ C∞(U) be such that supp(g) ⊆U is closed as a subset of M. Then the
function f : M→ R, given by f |U = g and f |M\U = 0, is smooth.

Proof. By assumption, V = M\supp(g) is open, and contains M\U . Thus, U and V
are an open cover of M. Since both f |U = g and f |V = 0 are smooth, it follows that
f is smooth.

33 (answer on page ??). Give examples of an open subset U ⊆ M
and a smooth function g ∈C∞(U) such that

a) g does not extend to a smooth function f ∈C∞(M).
b) g extends by zero to a smooth function f ∈ C∞(M), even though

supp(g)⊆U is not closed in M.

3.2 The Hausdorff property via smooth functions

Suppose M is any set with a maximal atlas. The definition of the algebra of smooth
functions C∞(M) does not use the Hausdorff or countability conditions; hence it
makes sense in this more general context. In fact, we may use smooth functions to
check the Hausdorff property:

Proposition 3.5. Suppose M is any set with an m-dimensional maximal atlas, and
p,q are two distinct points in M. Then the following are equivalent:

a) There are disjoint open neighborhoods U of p and V of q.
b) There exists a smooth function f : M→ R with f (p) 6= f (q).

Proof. “(i)⇒ (ii)”. Suppose (i) holds. As explained in Section 2.4, we may take U
and V to be the domains of coordinate charts (U,ϕ) around p and (V,ψ) around q.
Choose χ ∈C∞(Rm) with supp(χ) ⊆ ϕ(U), and such that χ(p) = 1. (For example,
we may take χ to be a ‘bump function’ on a small ball centered at ϕ(p), see Lemma
B.8 in the Appendix.)
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Then
supp(χ ◦ϕ) = ϕ

−1(supp(χ))

is closed as a subset of M, hence Lemma 3.4 shows that χ ◦ ϕ extends by 0 to
a smooth function f ∈ C∞(M). This function satisfies f (p) = χ(ϕ(p)) = 1 while
f (q) = 0 since q ∈V ⊆M\supp(χ ◦ϕ).
“(ii)⇒ (i)”. Given f ∈C∞(M) as in (ii), let a = f (p), b = f (q). Choose coordinate
charts (U,ϕ) around p and (V,ψ) around q. Since the function f ◦ ϕ−1 on Ũ =
ϕ(U)⊆ Rm is smooth, it is in particular continuous. Hence, the set

Ũ ′ = {x ∈ Ũ |
∣∣ f ◦ϕ

−1(x)−a
∣∣< |b−a|/2}

is open, and so is U ′ = ϕ−1(Ũ ′). Replacing U with U ′, we may thus arrange that
| f |U − a| < |b− a|/2. Similarly, we may arrange that | f |V − b| < |a− b|/2. Then
U,V are the desired disjoint open neighborhoods of p,q.

In other words, the separability of points by disjoint open neighborhoods (Hausdorff
condition) is equivalent to separability by smooth functions. A consequence of this
result is:

Corollary 3.6 (Criterion for Hausdorff condition). A set M with a maximal atlas
satisfies the Hausdorff condition if and only if for any two distinct points p,q ∈M,
there exists a smooth function f : M→ R with f (p) 6= f (q). In particular, if there
exists a smooth injective map F : M→ RN , then M is Hausdorff.

Here, a map F : M→ RN is called smooth if its component functions are smooth.

34 (answer on page ??). Justify the last assertion: if there exists a
smooth injective map F : M→ RN , then M is Hausdorff.

Example 3.7 (Projective spaces). Write vectors x ∈ Rn+1 as column vectors, hence
x> is the corresponding row vector. The matrix product xx> is a square matrix with
entries x jxk. The map

F : RPn→MatR(n+1)∼= R(n+1)2
, (x0 : . . . : xn) 7→ x x>

||x||2
(3.1)

is well-defined, since the right hand side does not change when x is replaced with λx
for a nonzero scalar λ . It is also smooth, as one may check by considering the map
in local charts, similarly to 31. Finally, it is injective: Given F(x), one recovers the
1-dimensional subspace Rx⊆ Rn+1 as the range of the rank 1 orthogonal projection
F(x). Hence, the criterion applies, and the Hausdorff condition follows.
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35 (answer on page ??). Use a similar argument to verify the Haus-
dorff condition for CPn.

The criterion may also be used for the real and complex Grassmannians (see Problem
??), and many other examples. In the opposite direction, the criterion tells us that for
a set M with a maximal atlas, if the Hausdorff condition does not hold then no smooth
injective map into RN exists. This is one reason why it is often difficult to ‘visualize’
non-Hausdorff manifolds.

Example 3.8. Consider the non-Hausdorff manifold M from Example 2.15. Here,
there are two points p,q that do not admit disjoint open neighborhoods, and we see
directly that every f ∈ C∞(M) must take on the same values at p and q: With the
coordinate charts (U,ϕ), (V,ψ) in that example,

f (p) = f (ϕ−1(0)) = lim
t→0−

f (ϕ−1(t)) = lim
t→0−

f (ψ−1(t)) = f (ψ−1(0)) = f (q),

since ϕ−1(t) = ψ−1(t) for t < 0.

3.3 Continuous functions

Smooth functions on open subsets of Rm are, in particular, continuous. The same is
true for smooth functions on manifolds M:

Proposition 3.9. Let M be a manifold (or a set with a maximal atlas), and f ∈
C∞(M). Then f is continuous: For every open subset J ⊆ R, the preimage f−1(J)⊆
M is open.

Proof. Let {(Uα ,ϕα)} be an atlas of M. For all α , the function f ◦ϕ−1
α : ϕα(Uα)→

R is smooth, hence continuous. Hence, for all open J ⊆ R the preimage

( f ◦ϕ
−1
α )−1(J) = ϕα

(
f−1(J)∩Uα

)
is open. By Definition 2.25, this means that f−1(J) is open. ut

We have characterized smooth functions as functions that are smooth “in charts.”
There is a similar characterization for continuous functions:

36 (answer on page ??). Show that f : M→ R is continuous (as in
Proposition 3.9) if and only if for all charts (U,ϕ) the function f ◦ϕ−1 is
continuous.

Continuous functions form an algebra C(M), containing C∞(M) as a subalgebra.
In our criterion for the Hausdorff condition, Corollary 3.6, we may replace smooth
functions with continuous functions, with essentially the same proof.
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Remark 3.10. The analogous result does not hold for arbitrary topological spaces:
separation of points by continuous functions implies separation by disjoint open
neighborhoods, but not conversely.

3.4 Smooth maps between manifolds

The notion of smooth maps from M to R generalizes to smooth maps between man-
ifolds.

Definition 3.11. A map F : M→ N between manifolds is smooth at p ∈M if there
are coordinate charts (U,ϕ) around p and (V,ψ) around F(p) such that F(U)⊆V
and such that the composition

ψ ◦F ◦ϕ
−1 : ϕ(U)→ ψ(V )

is smooth. The function F is called a smooth map from M to N if it is smooth at all
p ∈M. The collection of smooth maps f : M→ N is denoted C∞(M,N).

As before, to check smoothness of F , it suffices to take any atlas {(Uα ,ϕα)} of M
with the property that F(Uα) ⊆ Vα for some chart (Vα ,ψα) of N, and then check
smoothness of the maps

ψα ◦F ◦ϕ
−1
α : ϕα(Uα)→ ψα(Vα).

This is because the condition for smoothness at p does not depend on the choice of
charts (compare to the remark following Definition 3.11): Given a different choice
of charts (U ′,ϕ ′) and (V ′,ψ ′) with F(U ′)⊆V ′, we have

ψ
′ ◦F ◦ (ϕ ′)−1 = (ψ ′ ◦ψ

−1)◦ (ψ ◦F ◦ϕ
−1)◦ (ϕ ◦ (ϕ ′)−1)
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on ϕ ′(U∩U ′). Since (ψ ′◦ψ−1) and (ϕ ◦(ϕ ′)−1) are smooth, we see that ψ ′◦F ◦(ϕ ′)−1

is smooth at ϕ ′(p) if and only if (ψ ◦F ◦ϕ−1) is smooth at ϕ(p).
The previous proof illustrates the motivation behind the requirement that transition
charts be diffeomorphisms (i.e. that an atlas is comprised of compatible charts): if
some smoothness property holds ‘locally’ in a chart around a point, the compatibility
condition is used to verify that the choice of chart is irrelevant.

37 (answer on page ??). Show that C∞(M,R) =C∞(M). (Part of the
task is understanding the question!)

38 (answer on page ??). Show that the quotient maps

π : Rn+1 \{0}→ RPn

π : Cn+1 \{0}→ CPn

are smooth.

39 (answer on page ??).
a) Show that the map F : RP1→ RP1 given by{

(1 : 0) 7→ (1 : 0),
(t : 1) 7→ (exp(t2) : 1)

is smooth. (Why is it well-defined?)
b) Show that the map F : CP1 → CP1 given by the same formula is not

smooth.

The discussion of Section 3.3 generalizes to C∞(M,N):

Proposition 3.12. Smooth functions F ∈ C∞(M,N) are continuous: For any open
subset V ⊆ N the preimage F−1(V ) is open.

We leave the proof as an exercise; see Problem ?? at the end of this chapter. Further-
more, a map F : M→ N is continuous at p ∈ M if and only if its local coordinate
expressions ψ ◦F ◦ϕ−1 is continuous at ϕ(p).
Smooth functions γ : J→M from an open interval J ⊆ R to M are called (smooth)
curves in M. Note that the image of a smooth curve need not look smooth.

Example 3.13. The image of γ : R→ R2, t 7→ (t2, t3) has a ‘cusp singularity’ at
(0,0).
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3.5 Composition of smooth maps

Just as for smooth maps between open subsets of Euclidean spaces, the composition
of smooth maps between manifolds is again smooth:

Proposition 3.14. Suppose F1 : M1→M2 is smooth at p ∈M1 and F2 : M2→M3 is
smooth at F1(p). Then the composition

F2 ◦F1 : M1→M3

is smooth at p. Hence, if F1 ∈ C∞(M1,M2) and F2 ∈ C∞(M2,M3) then F2 ◦ F1 ∈
C∞(M1,M3).

Proof. Let (U3,ϕ3) be a chart around F2(F1(p)). Choose a chart (U2,ϕ2) around
F1(p) with F2(U2) ⊆ U3, as well as a chart (U1,ϕ1) around p with F1(U1) ⊆ U2.
Such charts always exist; see 40 below. Then F2(F1(U1))⊆U3, and we have:

ϕ3 ◦ (F2 ◦F1)◦ϕ
−1
1 = (ϕ3 ◦F2 ◦ϕ

−1
2 )◦ (ϕ2 ◦F1 ◦ϕ

−1
1 ).

Since ϕ2 ◦ F1 ◦ ϕ
−1
1 : ϕ1(U1) → ϕ2(U2) is smooth at ϕ1(p) and ϕ3 ◦ F2 ◦ ϕ

−1
2 :

ϕ2(U2)→ ϕ3(U3) is smooth at ϕ2(F1(p)), the composition is smooth at ϕ1(p).

40 (answer on page ??). Let F ∈C∞(M,N). Given p ∈M and any
open neighborhood V ⊆ N of F(p), show that there exists a chart (U,ϕ)
around p such that F(U)⊆V .

Example 3.15. As a simple application, once we know that the inclusion i : S2→R3

of the 2-sphere is smooth, we see that for any open neighborhood U ⊆ R3 and any
h ∈C∞(U), the restriction h|S2 : S2→ R is smooth. (Cf. Example 3.2.) Indeed, this
is immediate from Proposition 3.14 since
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h|S2 = h◦ i

(where we think of i as a map S2 → U). This simple observation applies to many
similar examples.

41 (answer on page ??). Let f ∈ C∞(M) be a function with f > 0
everywhere on M. Show (without using charts) that the function

1
f

: M→ R, p 7→ 1
f (p)

is smooth.

3.6 Diffeomorphisms of manifolds

Definition 3.16. A smooth map F : M→ N is called a diffeomorphism if it is invert-
ible, with a smooth inverse F−1 : N→M. Manifolds M,N are called diffeomorphic
if there exists a diffeomorphism from M to N.

You should verify that being diffeomorphic is an equivalence relation (transitivity is
implied by Proposition 3.14). A diffeomorphism of manifolds is a bijection of the
underlying sets that identifies the maximal atlases of the manifolds. Manifolds that
are diffeomorphic are therefore considered ‘the same manifold’.

Example 3.17. By definition, every coordinate chart (U,ϕ) on a manifold M gives a
diffeomorphism ϕ : U → ϕ(U).

Example 3.18. In Section 3.7.2 we will describe explicit diffeomorphisms between
RP1 and S1, and between CP1 and S2.

Example 3.19. The claim from Example 2.24 may now be rephrased as the asser-
tion that the quotient of S2×S2 under the equivalence relation (x,x′)∼ (−x,−x′) is
diffeomorphic to Gr(2,4).

A continuous map F : M→ N between manifolds (or, more generally, topological
spaces) is called a homeomorphism if it is invertible, with a continuous inverse. Man-
ifolds that are homeomorphic are considered ‘the same topologically’. Since every
smooth map is continuous, every diffeomorphism is a homeomorphism.

Example 3.20. The standard example of a homeomorphism of smooth manifolds that
is not a diffeomorphism is the map

R→ R, x 7→ x3.

Indeed, this map is smooth and invertible, but the inverse map y 7→ y
1
3 is not smooth.
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The following 42 gives another way of looking at this example: we get two distinct
manifold structures on R, with the same collection of open sets.

42 (answer on page ??). Consider M =R with the trivial atlas A =
{(R, id)}, and let M′ = R with the atlas A ′ = {(R,ϕ)} where ϕ(x) = x3.

a) Show that R equipped with the atlas A ′ is a 1-dimensional manifold,
whose open sets are just the usual open subsets of R.

b) Show that the maximal atlases generated by A and A ′ are different.
c) Show that the map f : M→M′ given by f (x) = x1/3 is a diffeomor-

phism.
While the two manifold structures on R are not equal ‘on the nose’ (the
identity map R→ R is a homeomorphism M → M′ but not a diffeomor-
phism), they are still diffeomorphic.

Remark 3.21. In the introduction (Section 1.6), we presented the classification of
2-dimensional compact, connected manifolds (i.e., surfaces) up to diffeomorphism.
This classification coincides with their classification up to homeomorphism. That
is, homeomorphic 2-manifolds Σ ,Σ ′ are also diffeomorphic. In higher dimensions,
it becomes much more complicated: It is possible for two manifolds to be homeo-
morphic but not diffeomorphic. The first example of ‘exotic’ manifold structures was
discovered by John Milnor [12] in 1956, who found that the 7-sphere S7 admits man-
ifold structures that are not diffeomorphic to the standard manifold structure, even
though they induce the standard topology. Kervaire and Milnor [9] proved in 1963
that up to diffeomorphism, there are exactly 28 distinct manifold structures on S7,
and in fact classified all manifold structures on all spheres Sn with the exception of
the case n= 4. For example, they showed that S3,S5,S6 do not admit exotic (i.e., non-
standard) manifold structures, while S15 has 16256 different manifold structures. For
S4 the existence of exotic manifold structures is an open problem; this is known as
the smooth Poincaré conjecture. Around 1982, Michael Freedman [7] (using results
of Simon Donaldson [6]) discovered the existence of exotic manifold structures on
R4; in 1987 Clifford Taubes [19] showed that there are uncountably many such. For
Rn with n 6= 4, it is known that there are no exotic manifold structures on Rn.

3.7 Examples of smooth maps

3.7.1 Products, diagonal maps

a) If M,N are manifolds, then the projection maps

prM : M×N→M, prN : M×N→ N

are smooth. (This follows immediately by taking product charts Uα ×Vβ .)
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b) The diagonal inclusion
diagM : M→M×M

is smooth. (In a coordinate chart (U,ϕ) around p and the chart (U ×U,ϕ ×ϕ)
around (p, p), the map is the restriction to ϕ(U)⊆ Rn of the diagonal inclusion
Rn→ Rn×Rn.)

c) Suppose F : M→N and F ′ : M′→N′ are smooth maps. Then the direct product

F×F ′ : M×M′→ N×N′

is smooth. This follows from the analogous statement for smooth maps on open
subsets of Euclidean spaces.

3.7.2 The diffeomorphisms RP1 ∼= S1 and CP1 ∼= S2

We have stated before that RP1 ∼= S1. We will now describe an explicit diffeomor-
phism F : RP1 → S1, using the homogeneous coordinates (w0 : w1) for RP1 and
regarding S1 as the unit circle in R2. Consider the standard atlas {(U0,ϕ0), (U1,ϕ1)}
for RP1, as described in Section 2.3.2. Thus Ui consists of all (w0 : w1) such that
wi 6= 0; the coordinate maps are

ϕ0(w0 : w1) =
w1

w0 , ϕ1(w0 : w1) =
w0

w1

and have range the entire real line. The image of U0∩U1 under each of the coordinate
maps is R\{0}, and the transition map is

ϕ1 ◦ϕ
−1
0 : R\{0}→ R\{0}, u 7→ 1

u
.

Under the desired identification RP1 ∼= S1, this atlas should correspond to an at-
las with two charts for the circle, S1, with the same chart images (namely, R) and
the same transition functions. A natural candidate is the atlas {(U+,ϕ+), (U−,ϕ−)}
given by stereographic projection, see Section 2.3.1: Thus U+ = S1\{(0,−1)},
U− = S1\{(0,1)}, with the coordinate maps

ϕ+(x,y) =
x

1+ y
, ϕ−(x,y) =

x
1− y

.

Again, the range of each coordinate map is the real line R, the image of U+ ∩U−
is R\{0}, and by (2.6) the transition map is ϕ− ◦ϕ

−1
+ (u) = 1/u. Hence, there is a

unique diffeomorphism F : RP1→ S1 identifying the coordinate charts, in the sense
that F(U0) =U+, F(U1) =U−, and such that

ϕ+ ◦F |U0 = ϕ0, ϕ− ◦F |U1 = ϕ1.

For (w0 : w1) ∈U0, we obtain



52 3 Smooth Maps

F(w0 : w1) = ϕ
−1
+ (ϕ0(w0 : w1)) = ϕ

−1
+

(w1

w0

)
.

Using the formula for the inverse map of stereographic projection,

ϕ
−1
+ (u) =

1
1+u2

(
2u, (1−u2)

)
,

we arrive at
F(w0 : w1) =

1
||w||2

(
2w1w0, (w0)2− (w1)2). (3.2)

See Problem ?? at the end of this chapter for an explanation of (3.2) in terms of the
squaring map C→ C, z 7→ z2.

43 (answer on page ??). Our derivation of (3.2) used the assumption
(w0 : w1) ∈U0, but one obtains the same result for (w0 : w1) ∈U1. In fact,
this is clear without repeating the calculation – why?

44 (answer on page ??). Use a similar strategy to compute the in-
verse map G : S1→ RP1. (You may want to consider (w0 : w1) = G(x,y)
for the two cases (x,y) ∈U+ and (x,y) ∈U−.)

A similar strategy works for the complex projective line. Again, we compare the
standard atlas for CP1 with the atlas for the 2-sphere S2, given by stereographic
projection. This results in the following

Proposition 3.22. There is a unique diffeomorphism F : CP1→ S2 with the property
F |U0 = ϕ

−1
+ ◦ϕ0. In homogeneous coordinates, it is given by the formula

F(w0 : w1) =
1

|w0|2 + |w1|2
(

2Re(w1w0), 2Im(w1w0), |w0|2−|w1|2
)

(3.3)

where Re(z) and Im(z) are the real and imaginary part of a complex number z.

45 (answer on page ??). Prove Proposition 3.22. (You will discover
that the transition map for the standard atlas of CP1 is not quite the same
as for the stereographic atlas of S2, and a small adjustment is needed.) Also
find expressions for the restriction of the inverse map G = F−1 : S2→CP1

to U±.
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3.7.3 Maps to and from projective space

In 38 you have verified that the quotient map

π : Rn+1 \{0}→ RPn, x = (x0, . . . ,xn) 7→ (x0 : . . . : xn)

is smooth. Given a map F : RPn → N, we take its lift to be the composition F̃ =
F ◦π : Rn+1 \{0}→ N. That is,

F̃(x0, . . . ,xn) = F(x0 : . . . : xn).

Note that F̃(λx0, . . . ,λxn) = F̃(x0, . . . ,xn) for all non-zero λ ∈ R \{0}; conversely,
every map F̃ with this property descends to a map F on projective space. Similarly,
maps F : CPn→ N are in 1-1 correspondence with maps F̃ : Cn+1 \{0} → N that
are invariant under scalar multiplication.

Lemma 3.23. A map F : RPn → N is smooth if and only the lifted map F̃ :
Rn+1\{0} → N is smooth. Similarly, a map F : CPn → N is smooth if and only
the lifted map F̃ : Cn+1\{0}→ N is smooth.

Proof. Let {(Ui,ϕi)} be the standard atlas. If F̃ is smooth,then

(F ◦ϕ
−1
i )(u1, . . . ,un) = F̃(u1, . . . ,ui,1,ui+1, . . . ,un)

are smooth for all i, hence F is smooth. Conversely, if F is smooth then F̃ = F ◦π is
smooth. ut

46 (answer on page ??). Show that the map

CP1→ CP2, (z0 : z1) 7→
(
(z0)2 : (z1)2 : z0z1)

is smooth.

As remarked earlier, the projective space RPn may also be regarded as a quotient
of the unit sphere Sn ⊆ Rn+1, since every point [x] = (x0 : . . . : xn) ∈ RPn has a
representative x ∈ Rn+1 with ||x||= 1. The quotient map

π : Sn→ RPn

is again smooth, since it is a composition of the inclusion ι : Sn→ Rn+1 \{0} with
the quotient map Rn+1 \{0}→ RPn.
Similarly, the complex projective space CPn may also be regarded as a quotient of the
unit sphere S2n+1 inside Cn+1 =R2n+2, since any equivalence class [z] = (z0 : . . . : zn)
has a representative z ∈ Cn+1 with ||z||= 1, with a smooth quotient map

π : S2n+1→ CPn (3.4)
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is smooth. Note that for any point p∈CPn, the fiber π−1(p)⊆ S2n+1 is diffeomorphic
to a circle S1, regarded as complex numbers of absolute value 1. Indeed, given any
point (z0, . . . ,zn)∈ π−1(p) in the fiber, the other points are obtained as (λ z0, . . . ,λ zn)
where λ ∈ C with |λ | = 1. This defines a decomposition of the odd dimensional
sphere

S2n+1 =
⊔

p∈CPn

π
−1(p)

as a disjoint union of circles, parametrized by the points of CPn. This is an example
of what differential geometers call a fiber bundle or fibration. We won’t give a for-
mal definition here, but remark that this fibration is ‘non-trivial’ since S2n+1 is not
diffeomorphic to a product CPn×S1, as we will see later.

3.8 The Hopf fibration

The case n = 1 of the fibration (3.4) is of particular importance. Let us describe
some of the properties of this fibration; our discussion will be somewhat informal,
with details deferred to homework problems.
Identifying CP1 ∼= S2 as in Proposition 3.22, the map (3.4) becomes a smooth map

π : S3→ S2

with fibers diffeomorphic to S1. Explicitly, by Equation (3.3),

π(z,w) =
(

2Re(wz), 2Im(wz), |z|2−|w|2
)

(3.5)

for (z,w) ∈ S3 ⊆ R4 ∼= C2, i.e., |z|2 + |w|2 = 1. This map appears in many contexts;
it is called the Hopf fibration (after Heinz Hopf (1894-1971)). To get a picture of
the Hopf fibration, recall that stereographic projection identifies the complement of a
given point p in S3 with R3; hence we obtain a decomposition of R3 into a collection
of circles together with one line (corresponding to the circle in S3 containing p); the
line may be thought of as the circle through the ‘point at infinity’.
To be specific, take p to be the ‘south pole’ (0, i)∈ S3. Stereographic projection from
this point is the map

F : S3\{(0, i)}
∼=−→ R3, (z,w) 7→ 1

1+ Im(w)
(z,Re(w)). (3.6)

Denote by n = (0,0,1) the north pole and by s = (0,0,−1) the south pole of S2.
The fiber π−1(s) consists of elements of the form (0,w) ∈C2 with |w|= 1, and after
removing (0, i) from this circle, the image under F is the 3-axis in R3:

F
(
π
−1(s)\(0, i)

)
= {x ∈ R3| x1 = x2 = 0}.

Similarly, π−1(n) consists of elements (z,0) ∈ C2 with |z|2 = 1; its image under
stereographic projection is the unit circle in the x1-x2-coordinate plane,

F
(
π
−1(n)

)
= {x ∈ R3| ||x||= 1, x3 = 0}.
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Note that this circle winds around the vertical line exactly once, and cannot be con-
tinuously shrunk to a point without intersecting the vertical line. This illustrates that
the two circles π−1(s) and π−1(n) are linked. In particular, these two circles cannot
be separated in S3 through continuous movements of the circles, without intersecting
the circles. When n,s are replaced with a different pair of distinct points p,q ∈ S2,
the corresponding circle π−1(p),π−1(q) will also be linked. (Indeed, we can con-
tinuously move n,s to the new pair p,q, and the corresponding circles will move
continuously also.) That is, any two distinct circles of the Hopf fibration are linked.

To get a more complete picture, consider the pre-image π−1(Za) of a circle of latitude
a ∈ (−1,1), i.e.,

Za = {x ∈ S2| x3 = a}.

The fiber π−1(p) of any p ∈ Za is a circle; since Za itself is a circle we expect that
π−1(Za) is a 2-torus, and so is its image F(π−1(Za)). This is confirmed by explicit
calculation (see Problem ?? at the end of this chapter). For a → 1, the circle of
latitude Za approaches the north pole n, hence this torus is rather ‘thin’, and surrounds
the circle π−1(n). The circle F(π−1(p)) for p ∈ Za lies inside this torus winding
around it slowly, in such a way that it is linked with the circle F(π−1(n)). Note that
for p close to n, this circle should be just a small perturbation of the circle F(π−1(n)).
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As a moves towards −1, the tori get ‘fatter’ and larger. The intersection of this col-
lection of 2-tori with the coordinate plane {x ∈ R3| x2 = 0} looks like this:

The full picture looks as follows:

Here is another interesting feature of the Hopf fibration. Let U+ = S2\{s} and
U− = S2\{n}. A calculation (see Problem ?? at the end of this chapter) gives dif-
feomorphisms

π
−1(U±)

∼=−→U±×S1,

in such a way that π becomes simply projection onto the first factor, U±. In particular,
the preimage of the closed upper hemisphere of S2 is a solid 2-torus

D2×S1
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(with D2 = {z ∈ C| |z| ≤ 1} the unit disk), geometrically depicted as a 2-torus in R3

together with its interior.∗ Likewise, the preimage of the closed lower hemisphere is
a solid 2-torus D2×S1. The preimage of the equator is a 2-torus S1×S1. We hence
see that the S3 may be obtained by gluing two solid 2-tori along their boundaries
∂ (D2× S1) = S1× S1. More precisely, the gluing identifies (z,w) ∈ S1× S1 in the
boundary of the first solid torus with (w,z) in the boundary of the second solid torus.
Note that one can also glue two copies of D2×S1 to produce S2×S1. However, here
one uses a different gluing map, and indeed S3 is not diffeomorphic to S2×S1. (We
will prove this fact later.)

Remark 3.24. (For those who are familiar with quaternions – see Example A.18 in
the appendix for a brief discussion.) Let H = C2 = R4 be the quaternion numbers.
The unit quaternions are a 3-sphere S3. Generalizing the definition of RPn and CPn,
there are also quaternionic projective spaces, HPn. These are quotients of the unit
sphere inside Hn+1 = R4n+4, hence one obtains a quotient map

S4n+3→HPn;

its fibers are diffeomorphic to S3. For n = 1, one can show that HP1 = S4, hence one
obtains a smooth map

π : S7→ S4

with fibers diffeomorphic to S3.

∗ A solid torus is an example of a “manifold with boundary”, a concept we haven’t properly
discussed yet.
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Submanifolds

4.1 Submanifolds

Let M be a manifold of dimension m. We will define a k-dimensional submanifold
S ⊆ M to be a subset that looks locally like Rk ⊆ Rm, regarded as the coordinate
subspace defined by xk+1 = · · ·= xm = 0.

Definition 4.1. A subset S⊆M is called a submanifold of dimension k ≤ m, if it has
the following property: for every p ∈ S there is a coordinate chart (U,ϕ) around p
such that

ϕ(U ∩S) = ϕ(U)∩Rk. (4.1)

Charts (U,ϕ) of M with this property are called submanifold charts for S.

Remark 4.2.

a) A chart (U,ϕ) such that U ∩S = /0 and ϕ(U)∩Rk = /0 is considered a submani-
fold chart.

b) We stress that the existence of submanifold charts is only required for points p
that lie in S. For example, the half-open line S = (0,∞) is a submanifold of R (of
dimension 1). There does not exist a submanifold chart around p = 0, but this is
not a problem since 0 6∈ S.

Strictly speaking, a submanifold chart for S is not a chart for S, but rather a chart for
M which is adapted to S. On the other hand, submanifold charts restrict to charts for
S, and this may be used to construct an atlas for S:

Proposition 4.3. Suppose S is a submanifold of M. Then S is a k-dimensional mani-
fold in its own right, with atlas consisting of all charts (U ∩S,ϕ ′) such that (U,ϕ) is
a submanifold chart, and ϕ ′ = π ◦ϕ|U∩S where π : Rm→ Rk is projection onto the
first k-coordinates. The inclusion map

i : S→M

(taking p ∈ S to the same point p viewed as an element of M) is smooth.
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Proof. Let (U,ϕ) and (V,ψ) be two submanifold charts for S. We have to show that
the charts (U ∩S,ϕ ′) and (V ∩S,ψ ′) are compatible. The map

ψ
′ ◦ (ϕ ′)−1 : ϕ

′(U ∩V ∩S)→ ψ
′(U ∩V ∩S)

is smooth, because it is the restriction of ψ ◦ϕ−1 : ϕ(U ∩V ∩ S)→ ψ(U ∩V ∩ S)
to the coordinate subspace Rk. Likewise its inverse map is smooth. The Hausdorff
condition follows because any two distinct points p,q ∈ S, one can take disjoint
submanifold charts around p,q. (Just take any submanifold charts around p,q, and
restrict the chart domains to the intersection with disjoint open neighborhoods.)
The argument that S admits a countable atlas is unfortunately a bit technical. Our
plan is to construct a countable collection of submanifold charts covering S. (The
atlas for S itself is then obtained by restriction.) We will use the following

47 (answer on page ??). Prove that every open subset of Rm is a
union of rational ε-balls Bε (x), ε > 0. Here, ‘rational’ means that both the
center of the ball and its radius are rational: x ∈Qn, ε ∈Q.

Start with any countable atlas {(Uα ,ϕα)} for M. Given p ∈ S∩Uα , we can choose a
submanifold chart (V,ψ) for S containing p, and by 47, we can choose a rational
ε-ball Bε(x)⊆ Rm with

ϕ(p) ∈ Bε(x)⊆ ϕα(Uα ∩V ).

This shows that S∩Uα is covered by preimages of rational ε-balls Bε(x)⊆ ϕα(Uα)
with the additional property that ϕ−1

α (Bε(x)) is contained in some submanifold chart.
In particular, we have a countable cover of S ∩Uα by submanifold charts (take
ϕ−1

α (Bε(x)) as the domains, and the restriction of ψ as coordinate map.) Taking the
union over all α , we obtain the desired countable collection of submanifold charts
covering S. (Recall (cf. Appendix A.1.1) that a countable union of countable sets is
again countable.)

48 (answer on page ??). Complete the proof by verifying that the
inclusion map i : S→M is smooth. ut

Example 4.4 (Open subsets). The m-dimensional submanifolds of an m-dimensional
manifold are exactly the open subsets.

Example 4.5 (Euclidean space). For k ≤ n, we may regard Rk ⊆ Rn as the subset
where the last n− k coordinates are zero. These are submanifolds, with any chart as
submanifold chart.
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Example 4.6 (Spheres). Let Sn = {x ∈Rn+1| ||x||2 = 1}. Write x = (x0, . . . ,xn), and
regard

Sk ⊆ Sn

for k < n as the subset where the last n− k coordinates are zero. These are submani-
folds: The charts (U±,ϕ±) for Sn given by stereographic projection

ϕ±(x0, . . . ,xn) =
1

1± x0 (x
1, . . . ,xn)

are submanifold charts. Alternatively, the charts (U±i ,ϕ±i ), where U±i ⊆ Sn is the
subset where ±xi > 0, with ϕ

±
i the projection to the remaining coordinates, are sub-

manifold charts as well.

Example 4.7 (Projective spaces). For k < n, regard

RPk ⊆ RPn

as the subset of all (x0 : . . . : xn) for which xk+1 = · · · = xn = 0. These are submani-
folds, with the standard charts (Ui,ϕi) for RPn as submanifold charts. (Note that the
charts Uk+1, . . . ,Un do not intersect RPk, but this does not cause a problem.) In fact,
the resulting charts for RPk obtained by restricting these submanifold charts, are just
the standard charts of RPk. Similarly,

CPk ⊆ CPn

are submanifolds, and for n < n′ we have Gr(k,n)⊆Gr(k,n′) as a submanifold. This
proves the claim that the decomposition (2.7) is a decomposition into submanifolds.

Proposition 4.8 (Graphs are submanifolds). Let F : M → N be a smooth map
between manifolds of dimensions m and n. Then

graph(F) = {(F(p), p)| p ∈M} ⊆ N×M (4.2)

is a submanifold of N×M, of dimension equal to the dimension of M.

Remark 4.9. Many authors define the graph as a subset of M×N rather than N×M.
An advantage of the convention above is that it gives

graph(F ′ ◦F) = graph(F ′)◦graph(F)

under composition of relations.

Proof. Given p ∈ M, choose charts (U,ϕ) around p and (V,ψ) around F(p), with
F(U)⊆V . We claim that (W,κ) with W =V ×U and

κ(q, p) = (ϕ(p), ψ(q)−ψ(F(p))) (4.3)

is a submanifold chart for (4.2). Note that this is indeed a chart of N×M, because
it is obtained from the product chart (V ×U,ψ×ϕ) by composition with the diffeo-
morphism (see 49 below)



62 4 Submanifolds

ψ(V )×ϕ(U)→ κ(W ), (v,u) 7→ (u,v− F̃(u)). (4.4)

where F̃ = ψ ◦F ◦ϕ−1. Furthermore, the second component in (4.3) vanishes if and
only if F(p) = q. That is,

κ(W ∩graph(F)) = κ(W )∩Rm

as required. ut

49 (answer on page ??). Prove that the map (4.4) is a diffeomor-
phism.

This result has the following consequence: If S ⊆M is a subset of a manifold, such
that S can be locally described as the graph of a smooth map, then S is a submanifold.
In more detail, suppose that S can be covered by open sets U ⊆M, such that for each
U there is a diffeomorphism U → P×Q taking S∩U to the graph of a smooth map
Q→ P, then S is a submanifold.

Example 4.10. The 2-torus S = f−1(0)⊆ R3, where

f (x,y,z) = (
√

x2 + y2−R)2 + z2− r2

is a submanifold of R3, since it can locally be expressed as the graph of a function
of two of the coordinates (see 50 below).

50 (answer on page ??). Show that on the subset where z > 0, S is
the graph of a smooth function on the annulus

{(x,y)| (R− r)2 < x2 + y2 < (R+ r)2}.

How many open subsets of this kind (where S is given as the graph of a
function of two of the coordinates) are necessary to cover S?

Example 4.11. More generally, suppose S ⊆ R3 is given as a level set S = f−1(0)
of a smooth map f ∈ C∞(R3). (Actually, we only need f to be defined on an open
neighborhood of S.) Let p ∈ S, and suppose

∂ f
∂x

∣∣∣∣
p
6= 0.

By the implicit function theorem from multivariable calculus, there is an open neigh-
borhood U ⊆R3 of p on which the equation f (x,y,z) = 0 can be uniquely solved for
x. That is,
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S∩U = {(x,y,z) ∈U | x = F(y,z)}
for a smooth function F , defined on a suitable open subset of R2. By Proposition 4.8,
this shows that S is a submanifold near p, and that we may use y,z as coordinates on
S near p. Similar arguments apply for ∂ f

∂y |p 6= 0 or ∂ f
∂ z |p 6= 0. Hence, if the gradient

grad f =
(

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

)
is non-vanishing at all points p∈ S = f−1(0), then S is a 2-dimensional submanifold.
Of course, there is nothing special about 2-dimensional submanifolds of R3, and
below we will put this discussion in a more general framework.

Suppose S→M is a submanifold, and F ∈C∞(M,N). Then the restriction

F |S : S→ N

is again smooth. Indeed, since the inclusion i : S→M is smooth (Proposition 4.3),
the restriction may be seen as a composition of smooth maps F |S = F ◦ i. This is
useful in practice, because in such cases there is no need to verify smoothness in the
local coordinates of S. For example, the map S2→ R, (x,y,z) 7→ z is smooth since it
is the restriction of a smooth map R3→R to the submanifold S2. We now invite you
to prove a related result:

51 (answer on page ??). Let S⊆M be a submanifold, with inclusion
map i, and let F : Q→ S be a map from another manifold Q. Then F is
smooth if and only if i◦F is smooth. (In other words, F is smooth as a map
to S if and only if it is smooth as a map to M.)

The following proposition shows that the topology of S as a manifold (i.e., its col-
lection of open subsets) coincides with the ‘subspace topology’ as a subset of the
manifold M.

Proposition 4.12. Suppose S is a submanifold of M. Then the open subsets of S for
its manifold structure are exactly those of the form U ∩S, where U is an open subset
of M.

Proof. We have to show:

U ′ ⊆ S is open ⇔ U ′ =U ∩S where U ⊆M is open.

“⇐”. Suppose U ⊆M is open, and let U ′ =U∩S. For any submanifold chart (V,ψ),
with corresponding chart (V ∩ S,ψ ′) for S (where, as before, ψ ′ = π ◦ψ|V∩S),
we have that

ψ
′((V ∩S)∩U ′) = π ◦ψ(V ∩S∩U) = π(ψ(U)∩ψ(V )∩Rk).

Now, ψ(U)∩ψ(V )∩Rk is the intersection of the open set ψ(U)∩ψ(V ) ⊆ Rn

with the subspace Rk, hence is open in Rk. Since charts of the form (V ∩S,ψ ′)
cover all of S, this shows that U ′ is open.
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“⇒”. Suppose U ′ ⊆ S is open in S. Define

U =
⋃
V

ψ
−1(ψ ′(U ′∩V )×Rm−k)⊆M,

where the union is over any collection of submanifold charts (V,ψ) that cover
all of S. This satisfies

U ∩S =U ′ (4.5)

52 (answer on page ??). Verify (4.5).

To show that U is open, it suffices to show that for all submanifold charts (V,ψ),
the set ψ−1(ψ(U ′∩V )×Rm−k) is open. Indeed:

U ′ is open in S⇒U ′∩V is open in S

⇒ ψ ′(U ′∩V ) is open in Rk

⇒ ψ ′(U ′∩V )×Rm−k is open in Rm

⇒ ψ−1(ψ(U ′∩V )×Rm−k) is open in M.ut

Corollary 4.13. A submanifold S⊆M is compact with respect to its manifold topol-
ogy if and only if it is compact as a subset of M.

In particular, if a manifold M can be realized as a submanifold M ⊆ Rn, then M
is compact with respect to its manifold topology if and only if it is a closed and
bounded subset of Rn. This can be used to give quick proofs of the facts that the real
or complex projective spaces, as well as the real or complex Grassmannians, are all
compact.

4.2 The rank of a smooth map

Let F ∈C∞(M,N) be a smooth map. Then the fibers (level sets)

F−1(q)⊆M

for q ∈ N need not be submanifolds, in general. Similarly, the image

F(M)⊆ N

need not be a submanifold – even if we allow self-intersections. (More precisely,
there may be points p such that the image F(U) ⊆ N of any open neighborhood U
of p is never a submanifold.) Here are some counter-examples:

a) The fibers f−1(c) of the map f (x,y) = xy are hyperbolas for c 6= 0, but f−1(0)
is the union of coordinate axes. What makes this possible is that the gradient of
f is zero at the origin.
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b) As we mentioned earlier (cf. Example 3.13), the image of the smooth map

γ : R→ R2, γ(t) = (t2, t3)

does not look smooth near (0,0) (and replacing R by an open interval around 0
does not help). What makes this is possible is that the velocity γ̇(t) vanishes for
t = 0: the curve described by γ ‘comes to a halt’ at t = 0, and then turns around.

In both cases, the problems arise at points where the map does not have maximal
rank. After reviewing the notion of rank of a map from multivariable calculus we
will generalize to manifolds.

4.2.1 The rank of the Jacobian matrix

We shall need some notions from multivariable calculus. Let U ⊆Rm and V ⊆Rn be
open subsets, and F ∈C∞(U,V ) a smooth map. Recall from Definition 2.3 that the
Jacobian matrix of F at p is the matrix of partial derivatives

DpF =


∂F1

∂x1

∣∣
p

∂F1

∂x2

∣∣
p · · ·

∂F1

∂xm

∣∣
p

∂F2

∂x1

∣∣
p

∂F2

∂x2

∣∣
p · · ·

∂F2

∂xm

∣∣
p

...
...

. . .
...

∂Fn

∂x1

∣∣
p

∂Fn

∂x2

∣∣
p · · ·

∂Fn

∂xm

∣∣
p

 .

Definition 4.14. The rank of F at p ∈U is the rank of the Jacobian matrix DpF at p.

Thus, the rank may be computed as the number of linearly independent rows, or
equivalently the number of linearly independent columns. Note that

rankp(F)≤min(m,n). (4.6)

We will prefer to think of the Jacobian matrix not as an array of numbers, but as a
linear map from Rm to Rn, more conceptually defined as follows:

Definition 4.15. The derivative of F at p ∈U is the linear map

DpF : Rm→ Rn, v 7→ d
dt

∣∣∣∣
t=0

F(p+ tv).

So, the rank of F at p is the rank of this linear map, i.e., the dimension of its range.
Note that we will use the same notation for this linear map and its matrix. By the
chain rule for differentiation, the derivative of a composition of two smooth maps
satisfies

Dp(F ′ ◦F) = DF(p)(F
′)◦Dp(F). (4.7)

In particular, if F ′ is a diffeomorphism then rankp(F ′ ◦F) = rankp(F), and if F is a
diffeomorphism then rankp(F ′ ◦F) = rankF(p)(F ′).
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4.2.2 The rank of smooth maps between manifolds

Using charts, we may generalize the notion of rank to smooth maps between mani-
folds:

Definition 4.16. Let F ∈C∞(M,N) be a smooth map between manifolds, and p∈M.
The rank of F at p ∈M is defined as

rankp(F) = rankϕ(p)(ψ ◦F ◦ϕ
−1),

for any two coordinate charts (U,ϕ) around p and (V,ψ) around F(p) such that
F(U)⊆V .

By (4.7), this is well-defined: if we use different charts (U ′,ϕ ′) and (V ′,ψ ′), then the
rank of

ψ
′ ◦F ◦ (ϕ ′)−1 = (ψ ′ ◦ψ

−1)◦ (ψ ◦F ◦ϕ
−1)◦ (ϕ ◦ (ϕ ′)−1)

at ϕ ′(p) equals that of ψ ◦F ◦ϕ−1 at ϕ(p), since the two maps are related by diffeo-
morphisms.
By (4.6),

rankp(F)≤min(dimM, dimN)

for all p ∈M.

Definition 4.17. A smooth map F ∈C∞(M,N) has maximal rank at p ∈M if

rankp(F) = min(dimM, dimN).

A point p ∈M is called a critical point for F if does not have maximal rank at p.

53 (answer on page ??). Consider the lemniscate of Gerono:

F : R→ R2, θ 7→ (cosθ ,sinθ cosθ).

Find rankp(F) for all p∈R, and determine the critical points (if any). How
does the graph look like?

54 (answer on page ??). Consider the map

F : R3→ R4, (x,y,z) 7→ (yz,xy,xz,x2 +2y2 +3z2).

Find rankp(F) for all p ∈ R3, and determine the critical points (if any).
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4.3 Smooth maps of maximal rank

The following discussion will focus on maps F ∈C∞(M,N) of maximal rank (Defi-
nition 4.17). We will separate the three cases where dimM is equal to, greater than,
or less than dimN.

4.3.1 Local diffeomorphisms

In this section we will consider the case dimM = dimN. Our ‘workhorse theorem’
from multivariable calculus is going to be the following fact.

Theorem 4.18 (Inverse Function Theorem for Rm). Let F ∈C∞(U,V ) be a smooth
map between open subsets of Rm, and suppose that the derivative DpF at p ∈U is
invertible. Then there exists an open neighborhood U1 ⊆U of p such that F restricts
to a diffeomorphism U1→ F(U1).

Among other things, the theorem tells us that if F ∈ C∞(U,V ) is a bijection from
U →V , then the inverse F−1 : V →U is smooth provided that the differential (i.e.,
the first derivative) of F is invertible everywhere. It is not necessary to check anything
involving higher derivatives.
It is good to see, in just one dimension, how this is possible. Given an invertible
smooth function y = f (x), with inverse x = g(y), and using d

dy =
dx
dy

d
dx , we have

g′(y) =
1

f ′(x)
,

g′′(y) =
− f ′′(x)
f ′(x)3 ,

g′′′(y) =
− f ′′′(x)

f ′(x)4 +3
f ′′(x)2

f ′(x)5 ,

and so on; only powers of f ′(x) appear in the denominator.
Using charts, we can pass from open subsets of Rm to manifolds.

Theorem 4.19 (Inverse function theorem for manifolds). Let F ∈ C∞(M,N) be
a smooth map between manifolds of the same dimension m = n. If p ∈ M is such
that rankp(F) = m, then there exists an open neighborhood U ⊆M of p such that F
restricts to a diffeomorphism U → F(U).

Proof. Choose charts (U,ϕ) around p and (V,ψ) around F(p) such that F(U)⊆V .
The map

F̃ = ψ ◦F ◦ϕ
−1 : Ũ := ϕ(U)→ Ṽ := ψ(V )

has rank m at ϕ(p). Hence, by the inverse function theorem for Rm (Theorem 4.18),
after replacing Ũ with a smaller open neighborhood of ϕ(p) in Rm (equivalently,
replacing U with a smaller open neighborhood of p in M) the map F̃ becomes a
diffeomorphism from Ũ onto F̃(Ũ) = ψ(F(U)). It then follows that
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F = ψ
−1 ◦ F̃ ◦ϕ : U →V

is a diffeomorphism U → F(U). ut

Definition 4.20. A smooth map F ∈C∞(M,N) is called a local diffeomorphism if for
every point p ∈M there exists an open neighborhood U of p such that F(U) is open,
and F restricts to a diffeomorphism U → F(U).

By the theorem, this is equivalent to the condition that

rankp(F) = dimM = dimN

for all p ∈ M. It depends on the map in question which of these two conditions is
easier to verify.

55 (answer on page ??). Show that the map R→ S1,
t 7→ (cos(2πt),sin(2πt)) is a local diffeomorphism. How does it fail to be
a diffeomorphism?

Example 4.21. The quotient map π : Sn → RPn is a local diffeomorphism. For ex-
ample, one can see that π restricts to diffeomorphisms from the charts U±j = {x ∈
Sn| ±x j > 0} (with coordinate map given by the remaining coordinates) to the stan-
dard chart U j of the projective space. Note that π is not bijective and so cannot be a
diffeomorphism.

Example 4.22. Let M be a manifold with a countable open cover {Uα}. Then the
disjoint union

Q =
⊔
α

Uα

is a manifold. The map π : Q→M, given on Uα ⊆ Q by the inclusion into M, is a
local diffeomorphism. Since π is surjective, it determines an equivalence relation on
Q, with π as the quotient map and M = Q/∼.

56 (answer on page ??). Why did we make the assumption that the
cover is countable?

57 (answer on page ??). Show that if the Uα ’s are the domains of
coordinate charts, then Q is diffeomorphic to an open subset of Rm. We
hence conclude that any manifold is realized as a quotient of an open subset
of Rm, in such a way that the quotient map is a local diffeomorphism.



4.3 Smooth maps of maximal rank 69

Remark 4.23 (Mapping degree). Suppose F ∈ C∞(M,N) is a smooth map between
manifolds of the same dimension m = n, where M,N are oriented. If F has maximal
rank at p ∈ M, and taking the open subset U in Theorem 4.19 to be connected,
the diffeomorphism F |U : U → F(U) is either orientation preserving or orientation
reversing. Put εp = +1 in the first case, εp = −1 in the second case. If q ∈ N is
a regular value, so that F has maximal rank at all p ∈ F−1(q), and assuming that
F−1(q) is finite, one calls

degq(F) = ∑
p∈F−1(q)

εp ∈ Z

the degree of F at q. If q is not in the range of F , we put degq(F) = 0. We will see
later that when N is connected and M is compact, then the degree does not depend
on the choice of regular value q ∈ N. In particular, it is zero unless F is surjective.

4.3.2 Submersions

We next consider maps F : M→ N of maximal rank between manifolds of dimen-
sions m ≥ n. This discussion will rely on the implicit function theorem from multi-
variable calculus.

Theorem 4.24 (Implicit Function Theorem for Rm). Suppose F ∈C∞(U,V ) is a
smooth map between open subsets U ⊆ Rm and V ⊆ Rn, and suppose p ∈U is such
that the derivative DpF is surjective. Then there exists an open neighborhood U1⊆U
of p and a diffeomorphism κ : U1→ κ(U1)⊆ Rm such that

(F ◦κ
−1)(u1, . . . ,um) = (um−n+1, . . . ,um)

for all u = (u1, . . . ,um) ∈ κ(U1).

Thus, in suitable coordinates F is given by a projection onto the last n coordinates.

Although it belongs to multivariable calculus, let us recall how to get this result from
the inverse function theorem.
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Proof. The idea is to extend F to a map between open subsets of Rm, and then apply
the inverse function theorem.
By assumption, the derivative DpF has rank equal to n. Hence it has n linearly inde-
pendent columns. By re-indexing the coordinates of Rm (this permutation is itself a
change of coordinates, i.e. , a diffeomorphism) we may assume that these are the last
n columns. That is, writing

DpF =
(
C D

)
where C is the n× (m− n)-matrix formed by the first m− n columns and D the
n× n-matrix formed by the last n columns, the square matrix D is invertible. Write
elements x ∈ Rm in the form x = (x′,x′′) where x′ are the first m−n coordinates and
x′′ the last n coordinates. Let

G : U → Rm, x = (x′,x′′) 7→ (x′,F(x)).

Then the derivative DpG has block form

DpG =

(
Im−n 0

C D

)
,

(where Im−n is the square (m−n)× (m−n) identity matrix), and is therefore invert-
ible. Hence, by the inverse function theorem there exists a smaller open neighbor-
hood U1 of p such that G restricts to a diffeomorphism κ : U1→ κ(U1) ⊆ Rm. We
have,

G◦κ
−1(u′,u′′) = (u′,u′′)

for all (u′,u′′)∈ κ(U1). Since F is just G followed by projection to the x′′ component,
we conclude

F ◦κ
−1(u′,u′′) = u′′.

Again, this result has a version for manifolds:

Theorem 4.25 (Normal form for Submersions). Let F ∈ C∞(M,N) be a smooth
map between manifolds of dimensions m ≥ n, and suppose p ∈ M is such that
rankp(F) = n. Then there exist coordinate charts (U,ϕ) around p and (V,ψ) around
F(p), with F(U)⊆V , such that

(ψ ◦F ◦ϕ
−1)(u′,u′′) = u′′

for all u = (u′,u′′) ∈ ϕ(U). In particular, for all q ∈V the intersection

F−1(q)∩U

is a submanifold of dimension m−n.

Proof. Start with coordinate charts (U,ϕ) around p and (V,ψ) around F(p) such
that F(U) ⊆ V . Apply Theorem 4.24 to the map F̃ = ψ ◦F ◦ϕ−1 : ϕ(U)→ ψ(V ),
to define a smaller neighborhood ϕ(U1)⊆ ϕ(U) and change of coordinates κ so that
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F̃ ◦κ
−1(u′,u′′) = u′′.

After renaming (U1,κ ◦ϕ|U1) as (U,ϕ) we have the desired charts for F . The last
part of the theorem follows since the chart (U,ϕ) gives a submanifold chart for
F−1(q)∩U . ut

Definition 4.26. Let F ∈C∞(M,N). A point p ∈M is called a regular point of F, if
rankp(F) = dimN, otherwise it is called a critical point (or singular point).
A point q ∈ N is called a regular value of F ∈C∞(M,N) if for all p ∈ F−1(q), one
has

rankp(F) = dimN.

It is called a critical value (or singular value) if it is not a regular value.

Points of N that are not in the image of the map F are considered regular values. We
may restate Theorem 4.25 as follows:

Theorem 4.27 (Regular Value Theorem). For any regular value q∈N of a smooth
map F ∈C∞(M,N), the level set S = F−1(q) is a submanifold of dimension

dimS = dimM−dimN.

Example 4.28. The n-sphere Sn may be defined as the level set F−1(1) of the function
F ∈C∞(Rn+1,R) given by

F(x0, . . . ,xn) = ||x||2 = (x0)2 + · · ·+(xn)2.

The derivative of F at p = x is the 1× (n+ 1)-matrix of partial derivatives, that is,
the gradient ∇F :

DpF = (2x0, . . . ,2xn).

For x 6= 0 this has maximal rank. A real number q ∈ R is a regular value of F if and
only if q 6= 0 (since 0 6∈ F−1(q) in this case); hence all the level sets F−1(q) for q 6= 0
are submanifolds of dimension (n+1)−1 = n. The number q = 0 is a critical value;
the level set F−1(0) = {0} is a submanifold but of the ‘wrong’ dimension.

58 (answer on page ??). Let 0 < r < R. Show that

F(x,y,z) = (

√
x2 + y2−R)2 + z2

has r2 as a regular value. What is the resulting submanifold?

Example 4.29. The orthogonal group O(n) is the group of matrices A ∈ MatR(n)
satisfying 〈Ax, Ay〉= 〈x,y〉 for all x,y ∈ Rn; here 〈·, ·〉 is the standard inner product
(dot product) on Rn. This is equivalent to the property
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A> = A−1

of the matrix A, or A>A = I. We claim that O(n) is a submanifold of MatR(n). To see
this, let us regard O(n) as the level set F−1(I) of the function

F : MatR(n)→ SymR(n), A 7→ A>A,

where SymR(n) ⊆MatR(n) denotes the subspace of symmetric matrices. We want
to show that the identity matrix I is a regular value of F . We compute the differential
DAF : MatR(n)→ SymR(n) using the definition. (It would be confusing to work
with the description of DAF as a matrix of partial derivatives.)

(DAF)(X) =
d
dt

∣∣∣
t=0

F(A+ tX)

=
d
dt

∣∣∣
t=0

((A>+ tX>)(A+ tX))

= A>X +X>A.

To see that this is surjective for A ∈ F−1(I), we need to show that for any Y ∈
SymR(n) there exists a solution X ∈MatR(n) for

A>X +X>A = Y.

Using A>A = F(A) = I we see that X = 1
2 AY is a solution. We conclude that I is a

regular value, and hence that O(n) = F−1(I) is a submanifold. Its dimension is

dimO(n) = dimMatR(n)−dimSymR(n) = n2− 1
2

n(n+1) =
1
2

n(n−1).

Note that it was important here to regard F as a map to SymR(n); for F viewed as a
map to MatR(n) the identity would not be a regular value.

Definition 4.30. A smooth map F ∈C∞(M,N) is a submersion if rankp(F) = dimN
for all p ∈M.

Thus, for a submersion all level sets F−1(q) are submanifolds.

Example 4.31. Local diffeomorphisms are submersions; here the level sets F−1(q)
are discrete points, i.e. 0-dimensional manifolds.

Example 4.32. For a product manifold N×Q, the projection to the first factor

prN : N×Q→ N

is a submersion. The normal form theorem for submersions, Theorem 4.25, shows
that locally, any submersion F : M→ N is of this form. That is, given p ∈M there is
an open neighborhood U ⊆M of p and a map ψ ∈C∞(U,N×Q) (where Q is a man-
ifold of dimension m− n, for example Q = Rm−n) such that ψ is a diffeomorphism
onto its image and such that the diagram
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M ⊇U
ψ
//

F |U
$$

N×Q

prN

��

N

commutes. (That is, F |U = prN ◦ψ .)

4.3.3 Example: The Steiner surface

In this section, we give a more detailed example, investigating the smoothness of
level sets.

Example 4.33 (Steiner’s surface). Let S⊆ R3 be the solution set of

y2z2 + x2z2 + x2y2 = xyz.

Is this a surface in R3? (We use surface as another term for 2-dimensional manifold;
by a surface in M we mean a 2-dimensional submanifold.) Actually, it is not. If we
take one of x,y,z equal to 0, then the equation holds if and only if one of the other
two coordinates is 0. Hence, the intersection of S with the set where xyz = 0 (the
union of the coordinate hyperplanes) is the union of the three coordinate axes. Let
U ⊆ R3 be the subset where xyz 6= 0, then S∩U is entirely contained in the set{

(x,y,z) ∈ R3 | |x| ≤ 1, |y| ≤ 1, |z| ≤ 1
}
.

Let V ⊆ R3 be an open set around, say, (2,0,0); by replacing it with a possibly
smaller open set we may assume that V ∩ S ⊆ R1. Thus, V ∩ S is an open subset of
R1, and thus a 1-dimensional manifold. On the other hand, Proposition 4.12 shows
that V ∩ S is an open subset of S. Hence, if S were a surface, V ∩ S would be a 2-
dimensional manifold, contradicting invariance of dimension (cf. Chapter 3, Problem
??).

59 (answer on page ??). Show that U ∩S is entirely contained in the
set {

(x,y,z) ∈ R3
∣∣∣|x| ≤ 1, |y| ≤ 1, |z| ≤ 1

}
as claimed.

Let us therefore rephrase the question: is S∩U a surface? To investigate the problem,
consider the function

f (x,y,z) = y2z2 + x2z2 + x2y2− xyz.
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60 (answer on page ??). Find the critical points of

f (x,y,z) = y2z2 + x2z2 + x2y2− xyz.

Conclude that S∩U is indeed a submanifold.

How does S∩U look like? It turns out that there is a nice answer. First, let’s divide
the defining equation by xyz. The equation takes on the form

xyz(
1
x2 +

1
y2 +

1
z2 ) = 1. (4.8)

Since 1
x2 +

1
y2 +

1
z2 > 0, the solution set of (4.8) is contained in the set of all (x,y,z)

such that xyz > 0. On this subset, we introduce new variables

α =

√
xyz
x

, β =

√
xyz
y

, γ =

√
xyz
z

;

the old variables x,y,z are recovered as

x = βγ, y = αγ, z = αβ .

In terms of α,β ,γ , Equation (4.8) becomes the equation α2 +β 2 + γ2 = 1. Actually,
it is even better to consider the corresponding points

(α : β : γ) = (
1
x

:
1
y

:
1
z
) ∈ RP2,

because we could take either square root of xyz (changing the sign of all α,β ,γ
doesn’t affect x,y,z). We conclude that the map U → RP2, (x,y,z) 7→ ( 1

x : 1
y : 1

z )
restricts to a diffeomorphism from S∩U onto

RP2\{(α : β : γ)| αβγ = 0}.

The image of the map

RP2→ R3, (α : β : γ) 7→ 1
|α|2 + |β |2 + |γ|2

(βγ,αβ ,αγ).

is called Steiner’s surface, even though it is not a submanifold (not even an immersed
submanifold). Here is a picture:
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Note that the subset of RP2 defined by αβγ = 0 is a union of three RP1 ∼= S1, each of
which maps into a coordinate axis (but not the entire coordinate axis). For example,
the circle defined by α = 0 maps to the set of all (x,0,0) with − 1

2 ≤ x ≤ 1
2 . In any

case, S is the union of the Steiner surface with the three coordinate axes.

Example 4.34. Let S⊆ R4 be the solution set of

y2x2 + x2z2 + x2y2 = xyz, y2x2 +2x2z2 +3x2y2 = xyzw.

Again, this cannot quite be a surface because it contains the coordinate axes for x,y,z.
Closer investigation shows that S is the union of the three coordinate axes, together
with the image of an injective map

RP2→ R4, (α : β : γ) 7→ 1
α2 +β 2 + γ2 (βγ,αβ ,αγ,α2 +2β

2 +3γ
2).

It turns out (see Section 5.2.4 below) that the latter is a submanifold, which realizes
RP2 as a surface in R4.

4.3.4 Quotient maps

A surjective submersion F : M → N may be regarded as the quotient map for an
equivalence relation on M, where p ∼ p′ if and only if p, p′ are in the same fiber of
F . It is natural to ask the converse (see Section 2.7.4): Under what conditions does
an equivalence relation ∼ on a manifold M determine a manifold structure on the
quotient space N = M/∼, in such a way that the quotient map

π : M→M/∼

is a submersion. (In Problem ??, you are asked to show that there can be at most one
such manifold structure on M/∼.) The answer involves the graph of the equivalence
relation,

R = {(p, p′) ∈M×M| p∼ p′}.

Theorem 4.35. There is a manifold structure on M/ ∼ with the property that the
quotient map π : M→M/∼ is a submersion, if and only if the following conditions
are satisfied:

a) R is a closed submanifold of M×M,
b) the map pr1 : M×M→M, (p,q) 7→ p restricts to a submersion pr1|R : R→M.

We will not present the proof of this result, which may be found, for example, in
Bourbaki [1, Section 5.9]. One direction is 61 below. Also, the special case that
pr1|R is a local diffeomorphism (in particular, dimR = dimM) is left as Problem ??
at the end of this chapter.
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61 (answer on page ??). Suppose M/∼ has the structure of a (pos-
sibly non-Hausdorff) manifold, in such a way that π is a submersion. Show
that R is a submanifold of M×M, which is closed if and only if M/ ∼
satisfies the Hausdorff property.

4.3.5 Immersions

We next consider maps F : M→ N of maximal rank between manifolds of dimen-
sions m ≤ n. Once again, such a map can be put into a ‘normal form’: By choosing
suitable coordinates it becomes linear.

Proposition 4.36. Suppose F ∈ C∞(U,V ) is a smooth map between open subsets
U ⊆ Rm and V ⊆ Rn, and suppose p ∈U is such that the derivative DpF is injec-
tive. Then there exist smaller neighborhoods U1 ⊆U of p and V1 ⊆V of F(p), with
F(U1)⊆V1, and a diffeomorphism χ : V1→ χ(V1), such that

(χ ◦F)(u) = (u,0) ∈ Rm×Rn−m

Proof. Since DpF is injective, it has m linearly independent rows. By re-indexing the
rows (which amounts to a change of coordinates on V ), we may assume that these
are the first m rows. That is, writing

DpF =

(
A
C

)
where A is the m×m-matrix formed by the first m rows and C is the (n−m)×m-
matrix formed by the last n−m rows, the square matrix A is invertible. Consider the
map
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H : U×Rn−m→ Rn, (x,y) 7→ F(x)+(0,y).

Its Jacobian at (p,0) is

D(p,0)H =

(
A 0
C In−m

)
which is invertible. Hence, by the inverse function theorem for Rn (Theorem 4.18),
H is a diffeomorphism from some neighborhood of (p,0) in U ×Rn−m onto some
neighborhood V1 of H(p,0) = F(p), which we may take to be contained in V . Let

χ : V1→ χ(V1)⊆U×Rn−m

be the inverse; thus
(χ ◦H)(x,y) = (x,y)

for all (x,y) ∈ χ(V1). Replace U with the smaller open neighborhood

U1 = F−1(V1)∩U

of p. Then F(U1)⊆V1, and

(χ ◦F)(u) = (χ ◦H)(u,0) = (u,0)

for all u ∈U1. ut

The manifolds version reads as follows:

Theorem 4.37 (Normal Form for Immersions). Let F ∈ C∞(M,N) be a smooth
map between manifolds of dimensions m≤ n, and p ∈M a point with

rankp(F) = m.

Then there are coordinate charts (U,ϕ) around p and (V,ψ) around F(p) such that
F(U)⊆V and

(ψ ◦F ◦ϕ
−1)(u) = (u,0).

In particular, F(U)⊆ N is a submanifold of dimension m.

Proof. Once again, this is proved by introducing charts around p and F(p), to reduce
to a map between open subsets of Rm, Rn, and then use the multivariable version of
the result (Proposition 4.36) to obtain a change of coordinates, putting the map into
normal form. We leave the details as an exercise to the reader (see Problem ?? at the
end of this chapter). ut

Definition 4.38. A smooth map F : M → N is an immersion if rankp(F) = dimM
for all p ∈M.

Theorem 4.37 gives a local normal form for immersions.
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Example 4.39. Let J ⊆ R be an open interval, and γ : J→M a smooth map, i.e., a
smooth curve. We see that the image of γ is an immersed submanifold, provided that
rankp(γ) = 1 for all p∈M. In local coordinates (U,ϕ), this means that d

dt (ϕ ◦γ)(t) 6=
0 for all t with γ(t) ∈U . For example, the curve γ(t) = (t2, t3) from Example 3.13
fails to have this property at t = 0.

Example 4.40 (Figure eight). The map

γ : R→ R2, t 7→
(

sin(t),sin(2t)
)

is an immersion; indeed, for all t ∈ R we have Dtγ ≡ γ̇(t) 6= 0. The image is a figure
eight:

Example 4.41 (A mystery immersion). Consider the surface in R3 obtained by the
following procedure. Consider the figure eight in the xz-plane, as in previous exam-
ple. Shift in the x-direction by an amount R > 1, so that the resulting figure lies in
the region where x > 0. Then rotate the plane containing the figure eight about the
z-axis, while at the same time rotating the figure eight about its center, with exactly
half the speed of rotation. That is, after a full turn ϕ 7→ ϕ + 2π the figure eight has
performed a half turn. (Think of a single propeller plane flying in a circle, with the
figure eight as its propeller.)

The picture suggests that the resulting subset S⊆ R3 is the image of an immersion

ι : Σ → R3

of a compact, connected surface Σ . To make Σ uniquely defined, we should assume
that the map ι is 1-1 on Σ . Since we know the classification of such surfaces, this
raises the question: Which surface is it? Let us first try to come up with a good guess,
without writing formulas:
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62 (answer on page ??). What is the surface Σ , in terms of the clas-
sification of compact, connected surfaces? Hint: It may be instructive to
investigate the subset Σ+ ⊆ Σ generated by half of the figure eight, cor-
responding to −π/2 < t < π/2 in terms of the parametrization from the
previous example.

To get an explicit formula for the immersion, note that the procedure described above
is a composition F = F3 ◦F2 ◦F1 of the three maps. The map

F1 : (t,ϕ) 7→ (sin(t),sin(2t),ϕ) = (u,v,ϕ)

describes the figure eight in the uv-plane (with ϕ just a bystander). Next,

F2 : (u,v,ϕ) 7→
(

ucos(
ϕ

2
)+ vsin(

ϕ

2
), vcos(

ϕ

2
)−usin(

ϕ

2
),ϕ
)
= (a,b,ϕ)

rotates the uv-plane as it moves in the direction of ϕ , by an angle of ϕ/2; thus ϕ = 2π

corresponds to a half-turn. Finally,

F3 :
(
a,b,ϕ) 7→ ((a+R)cosϕ, (a+R)sinϕ, b

)
= (x,y,z)

takes this family of rotating uv-planes, and wraps it around the circle in the xy-plane
of radius R, with ϕ now playing the role of the angular coordinate. The resulting map
F = F3 ◦F2 ◦F1 : R2→ R3 is given by F(t,ϕ) = (x,y,z), where

x =
(

R+ cos(
ϕ

2
)sin(t)+ sin(

ϕ

2
)sin(2t)

)
cosϕ,

y =
(

R+ cos(
ϕ

2
)sin(t)+ sin(

ϕ

2
)sin(2t)

)
sinϕ,

z = cos(
ϕ

2
)sin(2t)− sin(

ϕ

2
)sin(t).

To verify that this is an immersion, it would be cumbersome to work out the Jacobian
matrix of F directly. It is much easier to use that F1 is an immersion, F2 is a diffeo-
morphism, and F3 is a local diffeomorphism from the open subset where |a|< R onto
its image.

63 (answer on page ??). With these formulas in place, confirm the
result from 62.

Example 4.42. Let M be a manifold, and S ⊆M a k-dimensional submanifold. Then
the inclusion map ι : S→M, x 7→ x is an immersion. Indeed, if (V,ψ) is a subman-
ifold chart for S, with p ∈U =V ∩S, and letting ϕ = ψ|V∩S, we have that
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(ψ ◦F ◦ϕ
−1)(u) = (u,0),

which shows
rankp(F) = rankϕ(p)(ψ ◦F ◦ϕ

−1) = k.

By an embedding, we will mean an immersion given as the inclusion map for a
submanifold. Not every injective immersion is an embedding; the following picture
indicates an injective immersion R→ R2 whose image is not a submanifold.

In practice, showing that an injective smooth map is an immersion (which amounts
to showing that the rank is maximal everywhere) tends to be easier than proving
that its image is a submanifold (which amounts to constructing submanifold charts).
Fortunately, for compact manifolds we have the following fact:

Theorem 4.43. Let F : M→ N be an injective immersion, where the manifold M is
compact. Then the image F(M)⊆ N is an embedded submanifold.

Proof. We have to show that there exists a submanifold chart for S = F(M) around
any given point F(p) ∈ N, for p ∈M. By Theorem 4.37, we can find charts (U,ϕ)
around p and (V,ψ) around F(p), with F(U) ⊆ V , such that the local coordinate
expression F̃ = ψ ◦F ◦ϕ−1 is in normal form: i.e.,

F̃(u) = (u,0).

We would like to take (V,ψ) as a submanifold chart for S = F(M), but this may
not work yet since the normal form above is only given for F(U)∩V , and the set
F(M)∩V = S∩V may be strictly larger than that. Note however that A := M\U is
compact, hence its image F(A)⊆N is compact, and therefore closed (see Proposition
2.35; note we are using that N is Hausdorff). Since F is injective, we have that p 6∈
F(A). Replace V with the smaller open neighborhood

V1 =V\(V ∩F(A)).

Then (V1,ψ|V1) is the desired submanifold chart.

Remark 4.44. Unfortunately, the terminology for submanifolds used in the literature
is not quite uniform. For example, some authors refer to injective immersions ι : S→
M as submanifolds (thus, a submanifold is taken to be a map rather than a subset).
To clarify, ‘our’ submanifolds are sometimes called ‘embedded submanifolds’ or
‘regular submanifolds’.
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Example 4.45. Let A,B,C be distinct real numbers. We will leave it as a homework
problem (Problem ??) below) to verify that the map

F : RP2→ R4, (α : β : γ) 7→ (βγ,αγ,αβ , Aα
2 +Bβ

2 +Cγ
2),

where we use representatives (α,β ,γ) such that α2 + β 2 + γ2 = 1, is an injective
immersion. Hence, by Theorem 4.43, it is an embedding of RP2 as a submanifold of
R4.

To summarize the outcome from the last few sections:

If a smooth map F ∈C∞(M,N) has maximal rank near a given point p ∈M,
then one can choose local coordinates around p and around F(p) such that
the coordinate expression of F becomes a linear map.

In particular, near any given point of m, submersions look like surjective linear maps,
while immersions look like injective linear maps.

Remark 4.46. This generalizes further to maps of constant rank. That is, if rankp(F)
is independent of p on some open subset U ⊆M, then for all p ∈U one can choose
coordinates near p and near F(p) in which F becomes linear. In particular, the image
of a sufficiently small open neighborhood of p is a submanifold of N.

4.3.6 Further remarks on embeddings and immersions

Remark 4.47. Let M be a manifold of dimension m. Given k∈N, one may ask if there
exists an embedding of M into Rk, or at least an immersion into Rk? For example,
one knows that compact 2-manifolds (surfaces) Σ can be embedded into R4 (even
R3 if Σ is orientable), and immersed into R3.
These and similar question belong to the realm of differential topology, with many
deep and difficult results. The Whitney embedding theorem states that every m-
dimensional manifold M can be realized as an embedded submanifold of R2m. (For
a much weaker version of this result, see Theorem B.10 Appendix B.) This was im-
proved later by various authors to R2m−1, provided that m is not a power of 2, but
it is not known what the optimal bound is, in general. The Whitney immersion theo-
rem states that every m-dimensional manifold M can be immersed into R2m−1. There
had been conjectured optimal bounds k = 2m−α(m) (due to Massey), for a specific
function α(m), so that any m-dimensional manifold can be immersed into R2m−α(m).
This conjecture was proved in a 1985 paper of Cohen [5].
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Remark 4.48. Another area of differential topology concerns the classification of im-
mersions M→ N up to isotopy, in particular for the case that the target is N = Rk.
We say that two immersions F0, F1 : M → N are isotopic if there exists a smooth
map

F : R×M→ N

such that
F0 = F(0, ·), F1 = F(1, ·),

and such that all Ft = F(t, ·) are immersions. In the late 1950s, Stephen Smale
developed criteria for the existence of isotopies, and for example gave a striking
application to the problem of ‘sphere eversion’ [18]. To explain this result, consider
a standard 2-sphere in R3, with the ‘outer side’ of the sphere painted red, and the
‘inner side’ painted blue. Consider the following question: “Is it possible to turn the
sphere inside out, without creating kinks or edges, ending up with the red paint on the
inner side and the blue paint on the outer side?” In mathematical terms, letting F0 :
S2→ R3 be the standard inclusion of the sphere, and F1 : S2→ R3 its composition
with the map x 7→ −x, this is the question whether the immersions F0 and F1 are
isotopic. Our experience with immersions of the circle in R2 tends to suggest that
this is probably not possible (a circle in R2 cannot be turned inside out). It hence
came as quite a surprise when Stephen Smale proved, in 1957, that such a ‘sphere
eversion’ does in fact exist. In subsequent years, various mathematicians developed
concrete visualizations for sphere eversions, one of which is the subject of the 1994
movie ‘Outside In’.
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Tangent Spaces

5.1 Intrinsic definition of tangent spaces

For embedded submanifolds M⊆Rn, the tangent space TpM at p∈M can be defined
as the set of all velocity vectors v= γ̇(0), for smooth curves γ : J→M with γ(0) = p;
here J ⊆ R is an open interval around 0.

It turns out (not entirely obvious!) that TpM becomes a vector subspace of Rn. (Warn-
ing: In pictures we tend to draw the tangent space as an affine subspace, where the
origin has been moved to p.)

Example 5.1. Consider the sphere Sn ⊆Rn+1, given as the set of x such that ||x||= 1.
A curve γ(t) lies in Sn if and only if ||γ(t)||= 1. Taking the derivative of the equation
γ(t) · γ(t) = 1 at t = 0, we obtain (after dividing by 2, and using γ(0) = p)

p · γ̇(0) = 0.

That is, TpM consists of vectors v ∈ Rn+1 that are orthogonal to p ∈ Sn. Con-
versely, every such vector v is of the form γ̇(0): Given v, we may take γ(t) =
(p+ tv)/||p+ tv||, for example. Hence
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TpSn = (Rp)⊥,

the hyperplane orthogonal to the line through p.

For general manifolds M, without a given embedding into a Euclidean space, we
would like to make sense of ‘velocity vectors’ of curves, and hence of the tangent
space, intrinsically. The basic observation is that the curve t 7→ γ(t) defines a ‘direc-
tional derivative’ on functions f ∈C∞(M):

f 7→ d
dt

∣∣∣∣
t=0

f
(
γ(t)

)

64 (answer on page ??). Show that if M is a submanifold of Rn, then
the map C∞(M)→ R, f 7→ d

dt

∣∣
t=0 f

(
γ(t)

)
depends only on p = γ(0) and

the velocity vector v = γ̇(0).

For a general manifold, we think of tangent vectors not as vectors in some ambient
Euclidean space, but as the set of directional derivatives:

Definition 5.2 (Tangent spaces – first definition). Let M be a manifold, p∈M. The
tangent space TpM is the set of all linear maps v : C∞(M)→ R of the form

v( f ) =
d
dt

∣∣∣∣
t=0

f
(
γ(t)

)
,

for smooth curves γ ∈C∞(J,M) with γ(0) = p, for some open interval J ⊆R around
0. The elements v ∈ TpM are called the tangent vectors to M at p.

As it stands, TpM is defined as a certain subset of the infinite-dimensional vector
space

L(C∞(M),R)

of all linear maps C∞(M)→ R. The following local coordinate description makes it
clear that TpM is a linear subspace of this vector space, of dimension equal to the
dimension of M.

Theorem 5.3. Let (U,ϕ) be a coordinate chart around p. A linear map v : C∞(M)→
R is in TpM if and only if it has the form,

v( f ) =
m

∑
i=1

ai ∂ ( f ◦ϕ−1)

∂ui

∣∣∣∣∣
u=ϕ(p)

(5.1)

for some a = (a1, . . . ,am) ∈ Rm.



5.1 Intrinsic definition of tangent spaces 85

Proof. Given a linear map v of this form, let γ̃ : R→ ϕ(U) be a curve with γ̃(t) =
ϕ(p)+ ta for |t| sufficiently small. Let γ = ϕ−1 ◦ γ̃ . Then

d
dt

∣∣∣∣
t=0

f (γ(t)) =
d
dt

∣∣∣∣
t=0

( f ◦ϕ
−1)(ϕ(p)+ ta)

=
m

∑
i=1

ai ∂ ( f ◦ϕ−1)

∂ui

∣∣∣∣∣
u=ϕ(p)

by the chain rule. Conversely, given any curve γ with γ(0) = p, let γ̃ = ϕ ◦ γ be the
corresponding curve in ϕ(U) (defined for small |t|). Then γ̃(0) = ϕ(p), and

d
dt

∣∣∣∣
t=0

f (γ(t)) =
d
dt

∣∣∣∣
t=0

( f ◦ϕ
−1)(γ̃(t))

=
m

∑
i=1

ai ∂ ( f ◦ϕ−1)

∂ui

∣∣∣∣∣
u=γ(p)

where a =
dγ̃

dt

∣∣∣∣
t=0

. ut

We can use this result as an alternative definition of the tangent space, namely:

Definition 5.4 (Tangent spaces – second definition). Let (U,ϕ) be a chart around
p. The tangent space TpM is the set of all linear maps v : C∞(M)→ R of the form

v( f ) =
m

∑
i=1

ai ∂ ( f ◦ϕ−1)

∂ui

∣∣∣∣∣
u=ϕ(p)

(5.2)

for some a = (a1, . . . ,am) ∈ Rm.

Remark 5.5. From this version of the definition, it is immediate that TpM is an m-
dimensional vector space. It is not immediately obvious from this second definition
that TpM is independent of the choice of coordinate chart, but this follows from the
equivalence with the first definition. Alternatively, one may check directly that the
subspace of L(C∞(M),R) characterized by (5.2) does not depend on the chart, by
studying the effect of a change of coordinates (see Problem ?? at the end of the
chapter).

According to (5.2), any choice of coordinate chart (U,ϕ) around p defines a vector
space isomorphism TpM ∼=Rm, taking v to a = (a1, . . . ,am). In particular, we see that
if U ⊆ Rm is an open subset, and p ∈U , then TpU is the subspace of the space of
linear maps C∞(U)→ R spanned by the partial derivatives at p. That is, TpU has a
basis

∂

∂x1

∣∣∣∣
p
, . . . ,

∂

∂xm

∣∣∣∣
p

identifying TpU ∼= Rm. Given
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v = ∑ai ∂

∂xi

∣∣∣∣
p

the coefficients ai are obtained by applying v to the coordinate functions x1, . . . ,xm :
U → R, that is, ai = v(xi).
We now describe yet another approach to tangent spaces which again characterizes
“directional derivatives” in a coordinate-free way, but without reference to curves γ .
Note first that every tangent vector satisfies the product rule, also called the Leibniz
rule:

Lemma 5.6. Let v ∈ TpM be a tangent vector at p ∈M. Then

v( f g) = f (p)v(g)+ v( f )g(p) (5.3)

for all f ,g ∈C∞(M).

Proof. Letting v be represented by a curve γ , this follows from

v( f g) =
d
dt

∣∣∣∣
t=0

(
f
(
γ(t)

)
g
(
γ(t)

))
= f (γ(0))

( d
dt

∣∣∣∣
t=0

g
(
γ(t)

))
+
( d

dt

∣∣∣∣
t=0

f
(
γ(t)

))
g(γ(0))

= f (p)v(g)+ v( f )g(p)

where we used the product rule for functions of t ∈ R. ut

Alternatively, using local coordinates, Equation (5.3) amounts to the product rule for
partial derivatives.
Note that there is an abundance of linear functionals v ∈ L(C∞(M),R) that do not
satisfy the product rule. For example, the evaluation map evp : f 7→ f (p) is linear,
but does not satisfy (5.3) with respect to p (or any other point).

65 (answer on page ??). Let M =R. Give several examples of linear
maps v∈ L(C∞(R),R) that do not satisfy the product rule (5.3) with respect
to p = 0.

66 (answer on page ??). Suppose that v : C∞(M)→ R is a linear
map satisfying the product rule (5.3). Prove the following two facts:

a) v vanishes on constants. That is, if f ∈ C∞(M) is the constant map,
then v( f ) = 0.

b) Suppose f ,g ∈C∞(M) with f (p) = g(p) = 0. Then v( f g) = 0.
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It turns out that the product rule completely characterizes tangent vectors:

Theorem 5.7. A linear map v : C∞(M)→R defines an element of TpM if and only if
it satisfies the product rule (5.3).

The proof of Theorem 5.7 will require the following fact from multivariable calculus:

Lemma 5.8 (Hadamard’s Lemma). Let U = BR(0)⊆Rm be an open ball of radius
R > 0 centered at 0, and h ∈ C∞(U) a smooth function. Then there exist smooth
functions hi ∈C∞(U) with

h(u) = h(0)+
m

∑
i=1

uihi(u) (5.4)

for all u ∈U. For any choice of such functions,

hi(0) =
∂h
∂ui (0). (5.5)

Proof. For fixed u ∈U , consider the function t 7→ h(tu) = h(tu1, . . . , tun). We have
that

h(u)−h(0) =
∫ 1

0

d
dt

h(tu)dt =
∫ 1

0

n

∑
i=1

ui ∂h
∂ui (tu)dt =

n

∑
i=1

uihi(u)

where

hi(u) =
∫ 1

0

∂h
∂ui (tu)dt

are smooth functions of u. Taking the derivative of (5.4)

∂h
∂ui =

∂

∂ui

(
h(0)+

m

∑
i=1

uihi(u)

)
= hi(u)+∑

k
uk ∂hk

∂ui

and putting u = 0, we see that ∂h
∂ui

∣∣∣
u=0

= hi(0). ut

Proof (of Theorem 5.7). Let v : C∞(M)→ R be a linear map satisfying the product
rule (5.3). The proof consists of the following three steps.
Step 1: If f1 = f2 on some open neighborhood U of p, then v( f1) = v( f2).
Equivalently, letting f = f1− f2, we show that v( f ) = 0 if f |U = 0. Choose a ‘bump
function’ χ ∈C∞(M) with χ(p) = 1, and χ|M\U = 0. Then f χ = 0. The product rule
tells us that

0 = v( f χ) = v( f )χ(p)+ v(χ) f (p) = v( f ).

Step 2: Let (U,ϕ) be a chart around p, with image Ũ = ϕ(U). Then there is unique
linear map ṽ : C∞(Ũ)→ R, again satisfying the product rule, such that ṽ( f̃ ) = v( f )
whenever f̃ agrees with f ◦ϕ−1 on some neighborhood of p̃ = ϕ(p).
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We want to define ṽ by putting ṽ( f̃ ) = v( f ), for any choice of function f such that f̃
agrees with f ◦ϕ−1 on some neighborhood of p̃. (Note that such a function f always
exists, for any given f̃ .) If g is another function such that f̃ agrees with g ◦ϕ−1 on
some neighborhood of p̃, it follows from Step 1 that v( f ) = v(g). This shows that ṽ
is well-defined; the product rule for v implies the product rule for ṽ.
Step 3: In a chart (U,ϕ) around p, the map v : C∞(M)→ R is of the form (5.2).

Since the condition (5.2) does not depend on the choice of chart around p, we may
assume that p̃ = ϕ(p) = 0, and that Ũ is an open ball around 0. Define ṽ as in Step
2. Given f ∈C∞(M), let f̃ = f ◦ϕ−1. By Hadamard’s Lemma 5.8, we have that

f̃ (u) = f̃ (0)+
m

∑
i=1

uihi(u)

where hi ∈C∞(Ũ) with hi(0) = ∂ f̃
∂ui (0). Using that ṽ satisfies the product rule, and in

particular that it vanishes on constants, we obtain

v( f ) = ṽ( f̃ ) =
m

∑
i=1

ṽ(ui)hi(0) =
m

∑
i=1

ai ∂ f̃
∂ui (0)

where we put ai = ṽ(ui). ut

To summarize, we have the following alternative definition of tangent spaces:

Definition 5.9 (Tangent spaces – third definition). The tangent space TpM is the
space of linear maps C∞(M)→ R satisfying the product rule,

v( f g) = f (p)v(g)+ v( f )g(p)

for all f ,g ∈C∞(M).

At first sight, this characterization may seem a bit less intuitive than the definition
as directional derivatives along curves. But it has the advantage of being less re-
dundant – a tangent vector may be represented by many curves. Furthermore, it is
immediate from this third definition (just as for the second definition, in terms of
coordinates) that TpM is a linear subspace of the vector space L(C∞(M),R). (The
fact that dimTpM = dimM is less obvious, though – for this the second definition is
best.)
The following remark gives yet another characterization of the tangent space. Please
read it only if you like it abstract – otherwise skip this!

Remark 5.10 (A fourth definition). There is a fourth definition of TpM, as follows.
For any p ∈M, let C∞

p (M) denotes the subspace of functions vanishing at p, and let
C∞

p (M)2 consist of finite sums ∑i fi gi where fi,gi ∈ C∞
p (M). We have a direct sum

decomposition
C∞(M) = R⊕C∞

p (M),
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where R is regarded as the constant functions. Since any tangent vector v : C∞(M)→
R vanishes on constants, v is effectively a map v : C∞

p (M)→ R. By the product
rule, v vanishes on the subspace C∞

p (M)2 ⊆C∞
p (M). Thus v descends to a linear map

C∞
p (M)/C∞

p (M)2 → R, i.e. an element of the dual space (C∞
p (M)/C∞

p (M)2)∗. The
map

TpM→ (C∞
p (M)/C∞

p (M)2)∗

just defined is an isomorphism, and can therefore be used as a definition of TpM. This
may appear very fancy on first sight, but really it just says that a tangent vector is a
linear functional on C∞(M) that vanishes on constants and depends only on the first
order Taylor expansion of the function at p. Furthermore, this viewpoint lends itself
to generalizations which are relevant to algebraic geometry and non-commutative
geometry: The ‘vanishing ideals’ C∞

p (M) are the maximal ideals in the algebra of
smooth functions, with C∞

p (M)2 their second power (in the sense of products of ide-
als). Thus, for any maximal ideal I in a commutative algebra A one may regard
(I /I 2)∗ as a ‘tangent space’.

After this lengthy discussion of tangent spaces, observe that the ‘velocity vectors’ of
curves are naturally elements of the tangent space. Indeed, let J ⊆ R be an open in-
terval, and γ ∈C∞(J,M) a smooth curve. Then for any t0 ∈ J, the tangent (or velocity)
vector

γ̇(t0) ∈ Tγ(t0)M.

at time t0 is given in terms of its action on functions by

(γ̇(t0))( f ) =
d
dt

∣∣∣∣
t=t0

f (γ(t)) (5.6)

We will also use the notation
dγ

dt
(t0) or

dγ

dt

∣∣∣∣
t0

to denote this velocity vector.

5.2 Tangent maps

5.2.1 Definition of the tangent map, basic properties

For smooth maps F ∈C∞(U,V ) between open subsets U ⊆ Rm and V ⊆ Rn of Eu-
clidean spaces, and any given p ∈U , we considered the derivative to be the linear
map

DpF : Rm→ Rn, a 7→ d
dt

∣∣∣∣
t=0

F(p+ ta).

(See Definition 4.15.) The corresponding matrix is the Jacobian matrix of partial
derivatives of F . The following definition generalizes the derivative to smooth maps
between manifolds.
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Definition 5.11. Let M,N be manifolds and F ∈C∞(M,N). For any p∈M, we define
the tangent map to be the linear map

TpF : TpM→ TF(p)N

given by (
TpF(v)

)
(g) = v(g◦F)

for v ∈ TpM and g ∈C∞(N).

One needs to verify that the right-hand side does indeed define a tangent vector:

67 (answer on page ??). Show that for all v ∈ TpM, the map g 7→
v(g◦F) satisfies the product rule at q = F(p), hence defines an element of
TqN.

Proposition 5.12. If v ∈ TpM is represented by a curve γ : J→M, then (TpF)(v) is
represented by the curve F ◦ γ .

Proof. Let γ : J→M be a smooth curve passing through p at t = 0, such that

v(g) =
d
dt

∣∣∣∣
t=0

g(γ(t))

for any g ∈C∞(M). (I.e., v = γ̇(0) in the notation of (5.6).) Then F ◦ γ : J→ N is a
smooth curve passing through F(p) = q at t = 0. By definition, for any h ∈C∞(N):

(TpF(v))(h) = v(h◦F) =
d
dt

∣∣∣∣
t=0

(h◦F)(γ(t)) =
d
dt

∣∣∣∣
t=0

h(F ◦ γ(t)).

That is, TpF(v) is represented by the curve F ◦ γ . ut

Remark 5.13 (Pull-backs, push-forwards). For smooth maps F ∈C∞(M,N), one can
consider various ‘pull-backs’ of objects on N to objects on M, and ‘push-forwards’ of
objects on M to objects on N. Pull-backs are generally denoted by F∗, push-forwards
by F∗. For example, functions on N can be pulled back to functions on M:

g ∈C∞(N)  F∗g = g◦F ∈C∞(M).

Curves on M can be pushed forward to curves on N:

γ : J→M  F∗γ = F ◦ γ : J→ N.

Tangent vectors to M can also be pushed forward to tangent vectors to N:

v ∈ TpM  F∗(v) = (TpF)(v).

The definition of the tangent map can be phrased in these terms as (F∗v)(g)= v(F∗g).
Note also that if v is represented by the curve γ , then F∗v is represented by the curve
F∗γ .
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Proposition 5.14 (Chain rule). Let M,N,Q be manifolds. Under composition of
maps F ∈C∞(M,N) and F ′ ∈C∞(N,Q),

Tp(F ′ ◦F) = TF(p)F
′ ◦TpF.

Proof. Observe that Tp(F ′ ◦F) is determined by its action on tangent vectors v ∈
TpM, and the resulting tangent vector (Tp(F ′ ◦F))(v) ∈ TF ′(F(p))Q is determined by
its action on functions g ∈C∞(Q). We have, using the definitions,(

Tp(F ′ ◦F)(v)
)
(g) = v(g◦ (F ′ ◦F))

= v((g◦F ′)◦F)

=
(
(TpF)(v)

)
(g◦F ′)

=
(
(TF(p)F

′)
(
(TpF)(v)

))
(g).

68 (answer on page ??). Give a second proof of Proposition 5.14, using the
characterization of tangent vectors as velocity vectors of curves (see Proposition
5.12).

69 (answer on page ??).
a) Show that the tangent map of the identity map idM : M→ M at p ∈ M is the

identity map on the tangent space:

Tp idM = idTpM .

b) Show that if F ∈ C∞(M,N) is a diffeomorphism, then TpF is a linear isomor-
phism, with inverse

(TpF)−1 = (TF(p)F
−1).

c) Suppose that F ∈ C∞(M,N) is a constant map, that is, F(M) = {q} for some
element q ∈ N. Show that TpF is the zero map, for all p ∈M.

5.2.2 Coordinate description of the tangent map

To get a better understanding of the tangent map, let us first consider the special case
where F ∈ C∞(U,V ) is a smooth map between open subsets U ⊆ Rm and V ⊆ Rn.
For p ∈U , the tangent space TpU is canonically identified with Rm, using the basis

∂

∂x1

∣∣∣∣
p
, . . . ,

∂

∂xm

∣∣∣∣
p
∈ TpU

of the tangent space (cf. Remark 5.5). Similarly, TF(p)V ∼= Rn, using the basis given

by partial derivatives ∂

∂y j

∣∣∣
F(p)

. Using these identifications, the tangent map becomes

a linear map TpF : Rm → Rn, i.e. it is given by an n×m-matrix. This matrix is
exactly the Jacobian:



92 5 Tangent Spaces

Proposition 5.15. Let F ∈C∞(U,V ) be a smooth map between open subsets U ⊆Rm

and V ⊆ Rn. For all p ∈M, the tangent map TpF coincides with the derivative (i.e.,
Jacobian matrix) DpF of F at p.

Proof. For g ∈C∞(V ), we calculate(
(TpF)

( ∂

∂xi

∣∣∣∣
p

))
(g) =

∂

∂xi

∣∣∣∣
p
(g◦F)

=
n

∑
j=1

∂g
∂y j

∣∣∣∣
F(p)

∂F j

∂xi

∣∣∣∣
p

=
( n

∑
j=1

∂F j

∂xi

∣∣∣∣
p

∂

∂y j

∣∣∣∣
F(p)

)
(g).

This shows

(TpF)
( ∂

∂xi

∣∣∣∣
p

)
=

n

∑
j=1

∂F j

∂xi

∣∣∣∣
p

∂

∂y j

∣∣∣∣
F(p)

.

Hence, in terms of the given bases of TpU and TF(p)V , the matrix of the linear map

TpF has entries
∂F j

∂xi

∣∣∣∣
p
. ut

Remark 5.16. For F ∈ C∞(U,V ), it is common to write y = F(x), and accordingly
write

(
∂y j

∂xi

)
for the entries of the Jacobian matrix. In these terms, the derivative reads

as

TpF
(

∂

∂xi

∣∣∣∣
p

)
= ∑

j

∂y j

∂xi

∣∣∣∣
p

∂

∂y j

∣∣∣∣
F(p)

.

This suggestive formula is often used for explicit calculations.

70 (answer on page ??). Consider R2 with standard coordinates x,y. On the
open subset R2 \{(x,0) : x≤ 0} introduce polar coordinates r,θ by

x = r cosθ , y = r sinθ ;

here 0 < r < ∞ and −π < θ < π . Express the tangent vectors

∂

∂ r

∣∣∣∣
p
,

∂

∂θ

∣∣∣∣
p

as a combination of the tangent vectors

∂

∂x

∣∣∣∣
p
,

∂

∂y

∣∣∣∣
p
.
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For a general smooth map F ∈ C∞(M,N), we obtain a similar description once we
pick coordinate charts. Given p ∈ M, choose charts (U,ϕ) around p and (V,ψ)
around F(p), with F(U)⊆V . Let Ũ = ϕ(U), Ṽ = ψ(V ), and put

F̃ = ψ ◦F ◦ϕ
−1 : Ũ → Ṽ .

Since the coordinate map ϕ : U → Rm is a diffeomorphism onto Ũ , it gives an
isomorphism (cf. 69)

Tpϕ : TpU → Tϕ(p)Ũ = Rm.

Similarly, TF(p)ψ gives an isomorphism of TF(p)V with Rn. Note also that since
U ⊆M, V ⊆ N are open, we have that TpU = TpM, TF(p)V = TF(p)N. We obtain,

Tϕ(p)F̃ = TF(p)ψ ◦TpF ◦ (Tpϕ)−1.

which may be depicted in a commutative diagram

Rm
Dϕ(p)F̃

// Rn

TpM = TpU

∼=Tpϕ

OO

TpF
// TF(p)V = TF(p)N

∼= TF(p)ψ

OO

So, the choice of coordinates identifies the tangent spaces TpM, TF(p)N with Rm,Rn

respectively, and the tangent map TpF with the derivative of the coordinate expres-
sion of F (equivalently, the Jacobian matrix).
Now that we have recognized TpF as the derivative expressed in a coordinate-free
way, we may liberate some of our earlier definitions from coordinates:

Definition 5.17. Let F ∈C∞(M,N).

• The rank of F at p ∈M, denoted rankp(F), is the rank of the linear map TpF.
• F has maximal rank at p if rankp(F) = min(dimM,dimN).
• F is a submersion if TpF is surjective for all p ∈M,
• F is an immersion if TpF is injective for all p ∈M,
• F is a local diffeomorphism if TpF is an isomorphism for all p ∈M.
• p ∈M is a critical point of F is TpF does not have maximal rank at p.
• q∈N is a regular value of F if TpF is surjective for all p∈ F−1(q) (in particular,

if q 6∈ F(M)).
• q ∈ N is a singular value (sometimes called critical value) if it is not a regular

value.

71 (answer on page ??). To illustrate the merits of the coordinate
free definitions, give simple proofs of the facts that the compositions of
two submersions is again a submersion, and that the composition of two
immersions is an immersion.
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5.2.3 Tangent spaces of submanifolds

Suppose S ⊆ M is a submanifold, and p ∈ S. Then the tangent space TpS is canon-
ically identified as a subspace of TpM. Indeed, since the inclusion i : S ↪→ M is an
immersion, the tangent map is an injective linear map,

Tpi : TpS→ TpM,

and we identify TpS with the subspace given as the image of this map∗. As a special
case, we see that whenever M is realized as a submanifold of Rn, then its tangent
spaces TpM may be viewed as subspaces of TpRn = Rn.

Proposition 5.18. Let F ∈ C∞(M,N) be a smooth map, and let S = F−1(q) be a
submanifold given as the fiber of some regular value q ∈ N. For all p ∈ S,

TpS = ker(TpF),

as subspaces of TpM.

Proof. Let m = dimM, n = dimN. Since TpF is surjective, its kernel has dimension
m−n. By the regular value theorem, this is also the dimension of S, hence of TpS. It
is therefore enough to show that TpS⊆ ker(TpF). Letting i : S→M be the inclusion,
we have to show that

TpF ◦Tpi = Tp(F ◦ i)

is the zero map. But F ◦ i is a constant map, taking all points of S to the constant value
q ∈ N. The tangent map to a constant map is just zero ( 69). Hence Tp(F ◦ i) = 0.
ut

As a special case, we can apply this result to smooth maps between open subsets
of Euclidean spaces, where the tangent maps are directly given by the derivative
(Jacobian matrix). Thus, suppose V ⊆ Rn is open, and q ∈ Rk is a regular value of
F ∈ C∞(V,Rk), defining an embedded submanifold M = F−1(q). Then the tangent
spaces TpM ⊆ TpRn = Rn are given as

TpM = ker(TpF) = ker(DpF). (5.7)

Example 5.19. Recall that at the beginning of the chapter we have calculated TpSn

directly from the curves definition of the tangent space. Alternatively, we may use
(5.7): Regard Sn as the regular level set F−1(1) of the function F : Rn+1→ R, x 7→
||x||2. Then, for all p ∈ Sn, and all a ∈ Rn+1,

(DpF)(a) =
d
dt

∣∣∣∣
t=0

F(p+ ta) =
d
dt

∣∣∣∣
t=0

(p+ ta) · (p+ ta) = 2p ·a,

hence TpSn = {a ∈ Rn+1| a · p = 0}= span(p)⊥.

∗ Hopefully, the identifications are not getting too confusing: S gets identified with i(S)⊆M,
hence also p ∈ S with its image i(p) in M, and TpS gets identified with (Tpi)(TpS)⊆ TpM.
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As another typical application, suppose that S⊆M is a submanifold, and f ∈C∞(S) is
a smooth function given as the restriction f = h|S of a smooth function h ∈C∞(M).
Consider the problem of finding the critical points p ∈ S of f . Since f is a scalar
function, Tp f fails to have maximal rank if and only if it is zero:

Crit( f ) = {p ∈ S| Tp f = 0}.

Letting i : S→M be the inclusion, we have f = h|S = h◦ i, hence Tp f = Tph◦Tpi.
It follows that Tp f = 0 if and only if Tph vanishes on the range of Tpi, that is on TpS:

Crit( f ) = {p ∈ S| TpS⊆ ker(Tph)}.

If M = Rm, then Tph is just the Jacobian Dph, whose kernel is sometimes relatively
easy to compute – in any case this approach tends to be faster than a calculation in
charts for S.

Example 5.20. Let S⊆R3 be a surface, and f ∈C∞(S) the ‘height function’ given by
f (x,y,z) = z. To find Crit( f ), regard f as the restriction of h∈C∞(R3), h(x,y,z) = z.
The tangent map is

Tph = Dph =
(

0 0 1
)

as a linear map R3→ R. Hence, kerTph is the xy-plane. On the other hand, TpS for
p ∈ S is 2-dimensional, hence the condition TpS ⊆ kerTph is equivalent to TpS =
kerTph. We conclude that the critical points of f are exactly those points of S where
the tangent plane is ‘horizontal’, i.e. equal to the xy-plane.

72 (answer on page ??). Consider f = h|S2 , where

h : R3→ R, (x,y,z) 7→ xy.

a) Find Tph = Dph : R3→ R, and compute its kernel kerTph.
b) Find Crit( f ) as the set of all p ∈ S2 such that TpS2 ⊆ ker(Tph). How

many critical points are there?

Example 5.21. We had discussed various matrix Lie groups G as examples of man-
ifolds (cf. Example 4.29). By definition, these are submanifolds G ⊆MatR(n) (for
some n ∈ N), consisting of invertible matrices with the properties

I ∈ G, A,B ∈ G⇒ AB ∈ G, A ∈ G⇒ A−1 ∈ G.

The tangent space to the identity (group unit) for such matrix Lie groups G turns out
to be important; it is commonly denoted by lower case fraktur letter:

g= TIG⊆MatR(n).
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One calls g the Lie algebra of G. It is a key fact (see 74) that g is closed under
commutation of matrices:

X1,X2 ∈ g ⇒ [X1,X2] = X1X2−X2X1 ∈ g.

A vector subspace g⊆MatR(n) that is closed under matrix commutators is called a
matrix Lie algebra.
Some concrete examples:

a) The matrix Lie group

GL(n,R) = {A ∈MatR(n)| det(A) 6= 0}

of all invertible matrices is an open subset of MatR(n), hence

gl(n,R) = MatR(n)

is the entire space of matrices.
b) For the group O(n), consisting of matrices with F(A) := A>A = I, we found in

Example 4.29 that TAF(X) = X>A+A>X . In particular, TIF(X) = X>+X . We
read off the Lie algebra o(n) as the kernel of this map:

o(n) = {X ∈MatR(n)| X> =−X}.

73 (answer on page ??). Show that for every X ∈MatR(n),

d
dt

∣∣∣∣
t=0

det(I + tX) = tr(X).

Use this result to compute the Lie algebra SL(n,R) of the special linear
group

sl(n,R) = {A ∈MatR(n)| det(A) = 1}.

The following 74 develops some important properties of matrix Lie groups.

74 (answer on page ??).
a) Show (using for example the curves definition of the tangent space)

that the tangent space at general elements A ∈ G can be described by
left translation

TAG = {AX | X ∈ g}
or also by right translation TAG = {XA| X ∈ g}.

b) Show that A ∈ G, X ∈ g ⇒ AXA−1 ∈ g.
c) Show that X ,Y ∈ g ⇒ XY −Y X ∈ g. (Hint: Choose a curve γ(t) in

G representing Y .)
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5.2.4 Example: Steiner’s surface revisited

As we discussed in Section 4.3.3, Steiner’s ‘Roman surface’ is the image of the map

RP2→ R3, (x : y : z) 7→ 1
x2 + y2 + z2 (yz, xz, xy). (5.8)

(We changed notation from α,β ,γ to x,y,z.) What are the critical points of this map?
(Recall that if p ∈ RP2 is not a critical point, then the map restricts to an immersion
on an open neighborhood of p.) To investigate this question, one can express the
map in local charts, and compute the resulting Jacobian matrix. While this approach
is perfectly fine, the resulting expressions will become rather complicated. A simpler
approach is to consider the composition with the local diffeomorphism π : S2→RP2,
given as

S2→ R3, (x,y,z) 7→ (yz, xz, xy). (5.9)

Since π is a surjective local diffeomorphism, the critical points of (5.8) are the images
of the critical points of (5.9). In turn, this map is the restriction F |S2 of the map

F : R3→ R3, (x,y,z) 7→ (yz, xz, xy). (5.10)

We have Tp(F |S2) = TpF |TpS2 , hence ker(Tp(F |S2)) = ker(TpF)∩TpS2. We are inter-
ested in points p ∈ S2 where this intersection is non-zero.

75 (answer on page ??).
a) Compute TpF = DpF , and find its determinant. Conclude that the ker-

nel is empty except when one of the coordinates is 0.
b) Suppose p = (x,y,z) with x = 0. Find the kernel of the tangent map at

p, and ker(TpF)∩TpS. Repeat with the cases y = 0 and z = 0.
c) What are the critical points of the map RP2→ R3?

If you have completed 75, you have found that the map (5.8) has 6 critical points.
It is thus an immersion away from those points.
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Vector fields

6.1 Vector fields as derivations

A vector field on a manifold may be regarded as a family of tangent vectors Xp ∈ TpM
for p∈M, depending smoothly on the base points p∈M. One way of making precise
what is meant by ‘depending smoothly’ is the following.

Definition 6.1 (Vector fields – first definition). A collection of tangent vectors X =
{Xp} for p ∈M defines a vector field if and only if for all functions f ∈C∞(M) the
function p 7→ Xp( f ) is smooth. The space of all vector fields on M is denoted X(M).

76 (answer on page ??). Verify the (implicit) claim that the set X(M)
of all vector fields on M is a vector space.

We hence obtain a linear map, denoted by the same letter,

X : C∞(M)→C∞(M)

such that (
X( f )

)
(p) = Xp( f ). (6.1)

Since each individual tangent vector Xp satisfy a product rule (5.3), it follows that
X itself satisfies a product rule. We can use this as an alternative definition, realizing
X(M) as a subspace of the space L(C∞(M),C∞(M)):

Definition 6.2 (Vector fields – second definition). A vector field on M is a linear
map

X : C∞(M)→C∞(M)

satisfying the product rule,

X( f g) = X( f )g+ f X(g) (6.2)

for f ,g ∈C∞(M).
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77 (answer on page ??). Explain in more detail why these two defi-
nitions of vector fields are equivalent.

Remark 6.3. The condition (6.2) says that X is a derivation of the algebra C∞(M)
of smooth functions. More generally, a derivation of an algebra A is a linear map
D : A →A such that for any a1,a2 ∈A

D(a1a2) = D(a1) a2 +a1 D(a2).

(Appendix A.3.3 reviews some facts about derivations.)
Vector fields can be multiplied by smooth functions:

C∞(M)×X(M)→ X(M), (h,X) 7→ hX

where (hX)( f ) = hX( f ). In algebraic terminology, this makes the space of vector
fields into a module over the algebra of smooth functions. (See A.3.4 in the ap-
pendix.)

78 (answer on page ??). Explain why hX is again a vector field.

We can also express the smoothness of the collection of tangent vectors {Xp} in
terms of coordinate charts (U,ϕ). Recall that for any p ∈U , and all f ∈C∞(M), the
tangent vector Xp is expressed as

Xp( f ) =
m

∑
i=1

ai ∂

∂ui

∣∣∣
u=ϕ(p)

( f ◦ϕ
−1).

The vector a = (a1, . . . ,am) ∈ Rm represents Xp in the chart; i.e., (Tpϕ)(Xp) = a
under the identification Tϕ(p)ϕ(U) = Rm. As p varies in U , the vector a becomes a
function of p ∈U , or equivalently of u = ϕ(p).

Proposition 6.4. The collection of tangent vectors {Xp ∈ TpM, p ∈ M} defines a
vector field X such that X( f )|p = Xp( f ), if and only if for all charts (U,ϕ), the
functions ai : ϕ(U)→ R defined by

Xϕ−1(u)( f ) =
m

∑
i=1

ai(u)
∂

∂ui

∣∣∣∣
u
( f ◦ϕ

−1),

are smooth.
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Proof. “⇐” Suppose the coefficient functions ai are smooth, for all charts (U,ϕ).
Then it follows that for all f ∈C∞(M), the function

X( f )◦ϕ
−1 : ϕ(U)→ R, u 7→ Xϕ−1(u)( f )

is smooth. Consequently X( f )|U is smooth, and since this is true for all charts, X( f )
is smooth.
“⇒” Let X be a vector field, defining a collection of tangent vectors Xp. Given a chart
(U,ϕ), we want to show that the coefficient functions ai are smooth near any given
point p̃ = ϕ(p) ∈ Ũ = ϕ(U). Let g ∈ C∞(U) be function whose local coordinate
expression g̃ = g ◦ ϕ−1 is the coordinate function u 7→ ui. This function may not
directly extend from U to M, but we may choose f ∈C∞(M) such that

f |U1 = g|U1

over a possibly smaller neighborhood U1 ⊆U of p. (See 79 below.) Then f ◦ϕ−1

coincides with ui on Ũ1 = ϕ(U1), and hence X( f )◦ϕ−1 = ai on Ũ1. In particular, the
ai are smooth on Ũ1. ut

79 (answer on page ??). Explain how to construct the function f in
the second part of the proof.

In particular, we see that vector fields on open subsets U ⊆ Rm are of the form

X = ∑
i

ai ∂

∂xi

where ai ∈C∞(U). Under a diffeomorphism F : U→V, x 7→ y=F(x), the coordinate
vector fields transform with the Jacobian

T F(
∂

∂xi ) = ∑
j

∂F j

∂xi

∣∣∣
x=F−1(y)

∂

∂y j .

See Proposition 5.15; as in the remark following that proposition this ‘change of
coordinates’ is often written

∂

∂xi = ∑
j

∂y j

∂xi
∂

∂y j .

Here one thinks of the xi and y j as coordinates on the same set (U and V are ‘identi-
fied’ via F), and one uses the simplified notation y = y(x) instead of y = F(x).
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80 (answer on page ??). Consider R3 with coordinates x,y,z. Intro-
duce new coordinates u,v,w by setting

x = euv, y = ev, z = uv2w

valid on the region where x≥ y > 1.
a) Express u,v,w in terms of x,y,z.
b) Express the coordinate vector fields ∂

∂u ,
∂

∂v ,
∂

∂w as a combination of the
coordinate vector fields ∂

∂x ,
∂

∂y ,
∂

∂ z with coefficients functions of x,y,z.

6.2 Lie brackets

Let M be a manifold. Given vector fields X ,Y : C∞(M)→C∞(M), the composition
X ◦Y is not a vector field: For example, if X = Y = ∂

∂x as vector fields on R, then

X ◦Y = ∂ 2

∂x2 is a second order derivative, which is not a vector field (it does not satisfy
the Leibnitz rule). However, the commutator turns out to be a vector field:

Theorem 6.5. For any two vector fields X ,Y ∈X(M) (regarded as derivations, as in
Definition 6.2), the commutator

[X ,Y ] := X ◦Y −Y ◦X : C∞(M)→C∞(M)

is again a vector field.

Proof. We need to show that [X ,Y ] is a derivation of the algebra C∞(M). Let f ,g ∈
C∞(M). Then

(X ◦Y )( f g) = X
(
Y ( f )g+ fY (g)

)
= (X ◦Y )( f )g+ f (X ◦Y )(g)+Y ( f )X(g)+X( f )Y (g).

Similarly,

(Y ◦X)( f g) = (Y ◦X)( f )g+ f (Y ◦X)(g)+X( f )Y (g)+Y ( f )X(g).

Subtracting the latter equation from the former, several terms cancel, and we obtain

[X ,Y ]( f g) = [X ,Y ]( f )g+ f [X ,Y ](g)

as desired.

Remark 6.6. A similar calculation applies to derivations of algebras in general: The
commutator of two derivations is again a derivations.

Definition 6.7. The vector field

[X ,Y ] := X ◦Y −Y ◦X

is called the Lie bracket of X ,Y ∈ X(M). If [X ,Y ] = 0 we say that the vector fields
X ,Y commute.
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The Lie brackets are named after Sophus Lie (1842-1899); the space of vector fields
with its Lie bracket is a special case of a Lie algebra. (The [·, ·] is a common notation
for the commutator in an algebra, see Appendix A.3.3.)
It is instructive to see how the Lie bracket of vector fields works out in local coordi-
nates. For open subsets U ⊆ Rm, if

X =
m

∑
i=1

ai ∂

∂xi , Y =
m

∑
i=1

bi ∂

∂xi ,

with coefficient functions ai,bi ∈ C∞(U), the composition X ◦Y is a second order
differential operator, calculated by the product rule:

X ◦Y =
m

∑
i=1

m

∑
j=1

a j ∂bi

∂x j
∂

∂xi +
m

∑
i=1

m

∑
j=1

aib j ∂ 2

∂xi∂x j

(an equality of operators acting on C∞(U)). Subtracting a similar expression for
Y ◦X , the terms involving second derivatives cancel, and we obtain

[X ,Y ] =
m

∑
i=1

m

∑
j=1

(
a j ∂bi

∂x j −b j ∂ai

∂x j

)
∂

∂xi .

This calculation applies to general manifolds, by taking local coordinates.
Note: When calculating Lie brackets X ◦Y −Y ◦ X of vector fields X ,Y in local
coordinates, it is not necessary to work out the second order derivatives – we know
in advance that these are going to cancel out!
The following fact is often used in calculations.

81 (answer on page ??). Let X ,Y ∈ X(M), and f ,g ∈C∞(M). Show
that

[X , fY ] = (X f )Y + f [X ,Y ] .

Derive a similar formula for [ f X ,gY ].

The geometric significance of the Lie bracket will become clear later. At this stage,
let us just note that since the Lie bracket of two vector fields is defined in a
coordinate-free way, its vanishing or non-vanishing does not depend on choices of
coordinates. For example, since the Lie brackets between coordinate vector fields
vanish, [

∂

∂xi ,
∂

∂x j

]
= 0, 0≤ i < j ≤ m,

two non-zero vector fields X ,Y can only be coordinate vector fields in suitable coor-
dinates if their Lie bracket is zero, i.e. if X ,Y commute.
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Example 6.8. Consider the vector fields on R2 given by

X =
∂

∂x
, Y = (1+ x2)

∂

∂y
.

Does there exists a change of coordinates (u,v) = ϕ(x,y) (at least locally, near any
given point) such that in the new coordinates, these vector fields are the coordinate
vector fields ∂

∂u ,
∂

∂v ? The answer is no: Since

[X ,Y ] = 2x
∂

∂y
,

is non-vanishing in x,y coordinates, there cannot be a change of coordinates to make
it vanish in u,v coordinates.

Example 6.9. Consider the same problem for the vector fields

X = x
∂

∂y
− y

∂

∂x
, Y = x

∂

∂x
+ y

∂

∂y
.

This time, we may verify that X ,Y commute: [X ,Y ] = 0. Can we make a coordinate
change so that X ,Y become the coordinate vector fields? Note that we will have
to remove the origin p = 0, since X ,Y vanish there. Near points of R2\{0}, it is
convenient to introduce polar coordinates

x = r cosθ , y = r sinθ

(with r > 0 and θ varying in an open interval of length at most 2π). We have

∂

∂ r
=

∂x
∂ r

∂

∂x
+

∂y
∂ r

∂

∂y
=

1
r

Y,
∂

∂θ
=

∂x
∂θ

∂

∂x
+

∂y
∂θ

∂

∂y
= X

Hence

X =
∂

∂θ
, Y = r

∂

∂ r
.

To get this into the desired form, we make another change of coordinates ρ = ρ(r)
in such a way that Y becomes ∂

∂ρ
. Since

∂

∂ r
=

∂ρ

∂ r
∂

∂ρ
= ρ

′(r)
∂

∂ρ

we want ρ ′(r) = 1
r , thus ρ = ln(r), or r = eρ . Hence, the desired change of coordi-

nates is
x = eρ cosθ , y = eρ sinθ .
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82 (answer on page ??). Consider the following two vector fields on
R2, on the open subset where xy > 0,

X =
x
y

∂

∂x
+

∂

∂y
, Y = 2

√
xy

∂

∂x

a) Compute their Lie bracket [X ,Y ].
b) Can you find coordinates u,v in which X ,Y becomes the coordinate

vector fields?

Definition 6.10. Let S ⊆ M be a submanifold. A vector field X ∈ X(M) is called
tangent to S if for all p∈ S, the tangent vector Xp lies in TpS⊆ TpM. (Thus X restricts
to a vector field X |S ∈ X(S).)

Proposition 6.11. If two vector fields X ,Y ∈ X(M) are tangent to a submanifold
S⊆M, then their Lie bracket [X ,Y ] is again tangent to S.

Proposition 6.11 can be proved by using the coordinate expressions of X ,Y in sub-
manifold charts. But we will postpone the proof for now since there is a much shorter,
coordinate-independent proof (see 87 in the next section).

83 (answer on page ??).
a) Show that the three vector fields

X = y
∂

∂ z
− z

∂

∂y
, Y = z

∂

∂x
− x

∂

∂ z
, Z = x

∂

∂y
− y

∂

∂x

on R3 are tangent to the 2-sphere S2.
b) Show that the brackets [X ,Y ], [Y,Z], [Z,X ] are again tangent to the

2-sphere.

As mentioned above, vector fields with the Lie bracket are a special case of Lie
algebras. More generally, a Lie algebra is a vector space g together with a bilinear
bracket g×g→ g, (X ,Y ) 7→ [X ,Y ] which is skew-symmetric (i.e., [X ,Y ] =−[Y,X ])
and satisfies the Jacobi identity

[X , [Y,Z]]+ [Z, [X ,Y ]]+ [Y, [Z,X ]] = 0 (6.3)

for all X ,Y,Z ∈ g. Spaces X(M) of vector fields on manifolds provide one class of
examples, the matrix Lie algebras g⊆MatR(n) are another class.

84 (answer on page ??). Verify that the Lie bracket on vector fields
on a manifold M satisfies the Jacobi identity, thus g = X(M) is a Lie al-
gebra. If you like it more abstract, verify more generally that the space of
derivations of any algebra A is a Lie algebra g= Der(A ).
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6.3 Related vector fields

Given a smooth map F ∈ C∞(M,N), the tangent map may be used to map individ-
ual tangent vectors at points of M to tangent vectors at points of N. However, this
point-wise ‘push-forward’ operation of tangent vectors does not give rise to a push-
forward operation of vector fields X on M to vector fields Y on N, unless F is a
diffeomorphism.

85 (answer on page ??). Let F ∈ C∞(M,N) and X ∈ X(M). We
would like to define a vector field F∗X ∈ X(N) such that

(F∗X)F(p) = TpF(Xp)

for all p ∈M. What’s the problem with this ‘definition’ when
a) F is not surjective?
b) F is not injective?
c) F is bijective, but not a diffeomorphism?

The following may be seen as a ‘workaround’, which turns out to be extremely use-
ful.

Definition 6.12. Let F ∈ C∞(M,N) be a smooth map. Vector fields X ∈ X(M) and
Y ∈ X(N) are called F-related, written as

X ∼F Y,

if TpF(Xp) = YF(p) for all p ∈M.

As an immediate consequence of the definition, under composition of smooth maps
between manifolds,

X ∼F Y, Y ∼F ′ Z ⇒ X ∼F ′◦F Z. (6.4)

Example 6.13. Suppose F : M→ N is a submersion, and X ∈ X(M). Then X ∼F 0
if and only if TpF(Xp) = 0 for all p ∈ M. That is, Xp ∈ ker(TpF). Since F is a
submersion, ker(TpF) is just the tangent space to the fiber S = F−1(q), where q =
F(p). (See Proposition 5.18.) We conclude that

X ∼F 0 ⇔ X is tangent to the fibers of F .

More generally, X ∼F Y is the statement that X is a lift of the vector field Y ; if the
submersion F is surjective it is justified to write this as Y = F∗X since Y is uniquely
determined by X .

Example 6.14. Let π : Sn→ RPn be the usual quotient map for the projective space,
and X ∈X(Sn). Then X ∼π Y for some Y ∈X(RPn) if and only if X is invariant under
the transformation F : Sn → Sn, x 7→ −x (that is, T F ◦X = X ◦F), and with Y the
induced vector field on the quotient.
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The following 86 examines the notion of related vector fields in the case of em-
beddings:

86 (answer on page ??). Suppose S ⊆ M is an embedded subman-
ifold, and i : S ↪→ M the inclusion map. For vector fields X ∈ X(S) and
Y ∈ X(M), show:

X ∼i Y ⇔ Y is tangent to S, with X as its restriction

0∼i Y ⇔ Y vanishes along the submanifold S.

The F-relation of vector fields has a simple interpretation in terms of the ‘vector
fields as derivations’
Proposition 6.15. One has X ∼F Y if and only if for all g ∈C∞(N),

X(g◦F) = Y (g)◦F.

Proof. The condition X(g◦F) = Y (g)◦F says that

(TpF(Xp))(g) = YF(p)(g)

for all p ∈M. ut
In terms of the pull-back notation, with F∗g = g◦F for g ∈C∞(N), the proposition
amounts to X ◦F∗ = F∗ ◦Y , which can be depicted as the commutative diagram:

C∞(M)
X
// C∞(M)

C∞(N)

F∗

OO

Y
// C∞(N)

F∗

OO
(6.5)

The key fact concerning related vector fields is the following.
Theorem 6.16. Let F ∈C∞(M,N), and let vector fields X1,X2 ∈ X(M) and Y1,Y2 ∈
X(N) be given. Then

X1 ∼F Y1, X2 ∼F Y2⇒ [X1,X2]∼F [Y1,Y2].

Proof. Let g ∈C∞(N) be arbitrary. Then, since X1 ∼F Y1 and X2 ∼F Y2, we have

[X1,X2](g◦F) = X1(X2(g◦F))−X2(X1(g◦F))

= X1(Y2(g)◦F)−X2(Y1(g)◦F)

= Y1(Y2(g))◦F−Y2(Y1(g))◦F

= [Y1,Y2](g)◦F.ut

87 (answer on page ??). Prove Proposition 6.11 from page 105: If
two vector fields Y1,Y2 are tangent to a submanifold S ⊆M then their Lie
bracket [Y1,Y2] is again tangent to S, and the Lie bracket of their restriction
is the restriction of the Lie brackets.
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6.4 Flows of vector fields

6.4.1 Solution curves

Let γ : J → M be a curve, with J ⊆ R an open interval. In (5.6) we defined the
velocity vector at time t ∈ J

γ̇(t) ∈ Tγ(t)M

in terms of its action on functions as(
γ̇(t)

)
( f ) =

d
dt

f
(
γ(t)

)
.

The curve representing this tangent vector for a given t, in the sense of Definition
5.2, is the shifted curve τ 7→ γ(t + τ). Equivalently, one may think of the velocity
vector as the image of the coordinate vector ∂

∂ t

∣∣∣
t
∈ TtJ ∼= R under the tangent map

Ttγ:

γ̇(t) = (Ttγ)
( ∂

∂ t

∣∣∣∣
t

)
.

Definition 6.17. Suppose X ∈ X(M) is a vector field on a manifold M. A smooth
curve γ ∈C∞(J,M), where J ⊆ R is an open interval, is called a solution curve to X
if

γ̇(t) = Xγ(t) (6.6)

for all t ∈ J.

Geometrically, Equation (6.6) means that the solution curve γ is at all times t tangent
to the given vector field, with a ‘speed’ as prescribed by the vector field.

We can also restate the definition of solution curves in terms of related vector fields:

∂

∂ t
∼γ X . (6.7)

This last characterization has as a direct consequence:
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Proposition 6.18. Suppose F ∈ C∞(M,N) is a smooth map of manifolds, and let
X ∈ X(M), Y ∈ X(N) be vector fields with X ∼F Y . If γ : J→M is a solution curve
for X, then F ◦ γ : J→ N is a solution curve for Y .

Proof. By (6.4),
∂

∂ t
∼γ X , X ∼F Y ⇒ ∂

∂ t
∼F◦γ Y.

Alternatively, the claim follows from Proposition 5.12. ut

Given a vector field X ∈ X(M) and a point p ∈M, one may ask about the existence
of a solution curve γ : J → M, for some interval J around 0, with the given initial
conditions γ(0) = p, γ̇(0) =Xp. Furthermore, one may ask whether such a solution is
unique, i.e. whether any two solutions agree on their common domain of definition.
We shall discuss this problem first for open subsets of Euclidean spaces.

6.4.2 Existence and uniqueness for open subsets of Rm

Consider first the case that M =U ⊆ Rm. Here curves γ(t) are of the form

γ(t) = x(t) = (x1(t), . . . ,xm(t)),

hence

γ̇(t)( f ) =
d
dt

f (x(t)) =
m

∑
i=1

dxi

dt
∂ f
∂xi (x(t)).

That is

γ̇(t) =
m

∑
i=1

dxi

dt
∂

∂xi

∣∣∣
x(t)

.

On the other hand, vector fields have the form X = ∑
m
i=1 ai(x) ∂

∂xi . Hence (6.6) be-
comes the system of first order ordinary differential equations,

dxi

dt
= ai(x(t)), i = 1, . . . ,m; (6.8)

the initial condition γ(0) = p takes the form

x(0) = x0 (6.9)

where x0 = (x1
0, . . . ,x

m
0 ) ∈U is the coordinate vector for p.

Example 6.19. Consider the case of a constant vector field X = ∑ai ∂

∂xi , with a =

(a1, . . . ,am) ∈ Rm regarded as a constant function of x. Then the solutions of (6.8)
with initial condition x(0) = x0 = (x1

0, . . . ,x
m
0 ) are given by xi(t) = xi

0 + ai t for i =
1, . . . ,m. That is, the solutions curves are affine lines,

x(t) = x0 + ta.
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As a special case, the solution curves for the coordinate vector field ∂

∂x j , with initial
condition x(0) = x0 = (x1

0, . . . ,x
m
0 ) are

xi(t) =

{
xi

0 i 6= j,
x j

0 + t i = j
.

Example 6.20. Consider the following vector field on Rm,

X =
m

∑
i=1

xi ∂

∂xi .

Here ai(x) = xi, hence (6.8) reads as dxi

dt = xi, with solutions xi(t) = ciet , for arbitrary
constants ci. Such a solution satisfies the initial condition (6.9) if and only if ci = xi

0;
hence the we obtain

x(t) = et x0

as the solution of the initial value problem.

88 (answer on page ??). Consider the vector field on R2,

X =−y
∂

∂x
+ x

∂

∂y
.

Find the solution curve for any given initial condition (x0,y0) ∈ R2. Draw
a picture of the vector field.

Explicit solutions of the initial value problem (6.8), (6.9) can only be found for cer-
tain classes of such equations, studied in the theory of ODE’s. Even without finding
explicit solutions, ODE theory gives a wealth of information on qualitative behavior
of solutions. The first general result says that a solution to the initial value problem
always exists, and moreover that there is a unique maximal solution:

Theorem 6.21 (Existence and uniqueness theorem for ODEs). Let U ⊆ Rm be an
open subset, and a ∈ C∞(U,Rm). For any given x0 ∈ U, there is an open interval
Jx0 ⊆ R around 0, and a solution x : Jx0 →U of the system of ODEs

dxi

dt
= ai(x(t)), i = 1, . . . ,m

with initial condition x(0) = x0, and which is maximal in the sense that any other
solution to this initial value problem is obtained by restriction to some subinterval of
Jx0 .

Thus, Jx0 is the maximal open interval on which the solution is defined. The solution
depends smoothly on initial conditions, in the following sense. For any given x0, let
Φ(t,x0) be the solution x(t) of the initial value problem with initial condition x0.
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Since we are interested in x0 as a ‘variable’ rather than a ‘constant’, we will write x
in place of x0; thus t 7→ Φ(t,x) is the solution curve that was earlier denoted x(t).
Then, Φ(t,x) is a function defined for t ∈ Jx, which is smooth as a function of t, and
is characterized by the equations

d
dt

Φ(t,x) = a
(
Φ(t,x)

)
, Φ(0,x) = x. (6.10)

Theorem 6.22 (Dependence on initial conditions for ODEs). For a ∈C∞(U,Rm)
as above, the set

J = {(t,x) ∈ R×U | t ∈ Jx}.
is an open neighborhood of {0}×U in R×U, and the map

Φ : J →U, (t,x) 7→Φ(t,x)

is smooth.

In general, the interval Jx for given x may be strictly smaller than R, because a solu-
tion might “escape to infinity in finite time,” as illustrated in the following example.
(This language regards t as a time-parameter for the solution curve x(t).)

Example 6.23. Consider the ODE in one variable,

dx
dt

= x2.

The initial value problem x(t0) = x0 for this ODE is solved by the method of separa-
tion of variables: One formally writes dt = x−2dx, and then integrates both sides to
obtain t− t0 =

∫ x
x0

u−2du =−x−1 + x−1
0 . In our case, t0 = 0. Solving for x, we obtain

x(t) =
x0

1− tx0
.

(This solution is also correct for x0 = 0, even though the calculation did not apply to
this case.) Note that the solution is only defined for 1− tx0 6= 0, and since we start
at t0 = 0 we must have 1− tx0 > 0. Hence, the domain of definition of the solution
curve x(t) with initial condition x0 is Jx0 = {t ∈ R| tx0 < 1}. We read off that

Φ(t,x) =
x

1− tx
.

with domain of definition J = {(t,x)| tx < 1}.

89 (answer on page ??). For each of the following ODEs: find the so-
lution curves with initial condition x(t) = x0 ∈U ; find Jx0 , J , and Φ(t,x).

a)
dx
dt

= 1 on U = (0,1)⊆ R.

b)
dx
dt

= 1+ x2 on U = R.
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6.4.3 Existence and uniqueness for vector fields on manifolds

For general vector fields X ∈X(M) on manifolds, Equation (6.6) becomes (6.8) after
introducing local coordinates. In detail: Let (U,ϕ) be a coordinate chart. In the chart,
X becomes the vector field

ϕ∗(X) =
m

∑
i=1

a j(x)
∂

∂xi

and ϕ(γ(t)) = x(t) with
dxi

dt
= ai(x(t)).

If a = (a1, . . . ,am) : ϕ(U)→ Rm corresponds to X in a local chart (U,ϕ), then any
solution curve x : J→ ϕ(U) for a defines a solution curve γ(t) = ϕ−1(x(t)) for X .
The existence and uniqueness theorem for ODEs extends to manifolds, as follows:

Theorem 6.24 (Solutions of vector fields on manifolds). Let X ∈X(M) be a vector
field on a manifold M. For any given p ∈M, there is an open interval Jp ⊆R around
0, and a unique solution γ : Jp→M of the initial value problem

γ̇(t) = Xγ(t), γ(0) = p, (6.11)

which is maximal in the sense that any other solution is obtained by restriction to a
subinterval. The set

J = {(t, p) ∈ R×M| t ∈ Jp}

is an open neighborhood of {0}×M, and the map

Φ : J →M, (t, p) 7→Φ(t, p)

such that γ(t) = Φ(t, p) solves the initial value problem (6.11), is smooth.

Proof. Existence and uniqueness of solutions for small times t follows from the ex-
istence and uniqueness theorem for ODEs, by considering the vector field in local
charts. To prove uniqueness even for large times t, let γ : J→M be a maximal solu-
tion of (6.11) (i.e., a solution that cannot be extended to a larger open interval), and
let γ1 : J1→M be another solution of the same initial value problem. Suppose that
γ1(t) 6= γ(t) for some t ∈ J∩ J1, t > 0.
Then we can define

b = inf{t ∈ J∩ J1| t > 0, γ1(t) 6= γ(t)}.

By the uniqueness for small t, we have b > 0. We will get a contradiction in each of
the following cases:
Case 1: γ1(b) = γ(b) =: q. Then both λ1(s) = γ1(b+ s) and λ (s) = γ(b+ s) are
solutions to the initial value problem

λ (0) = q, λ̇ (s) = Xλ (s);
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hence they have to agree for small |s|, and consequently γ1(t),γ(t) have to agree for
t close to b. This contradicts the definition of b.
Case 2: γ1(b) 6= γ(b). Using the Hausdorff property of M, we can choose disjoint
open neighborhoods U of γ(b) and U1 of γ(b1). For t = b−ε with ε > 0 sufficiently
small, γ(t)∈U while γ1(t)∈U1. But this is impossible since γ(t) = γ1(t) for 0≤ t <
b.
These contradictions show that γ1(t)= γ(t) for t ∈ J1∩J, t > 0. Similarly γ1(t)= γ(t)
for t ∈ J1∩J, t < 0. Hence γ1(t)= γ(t) for all t ∈ J1∩J. Since γ is a maximal solution,
it follows that J1 ⊆ J, with γ1 = γ|J1 .
The result for ODEs about the smooth dependence on initial conditions shows,
by working in local coordinate charts, that J contains an open neighborhood of
{0}×M, on which Φ is given by a smooth map. The fact that J itself is open,
and the map Φ is smooth everywhere, follows by the ‘flow property’ to be discussed
below. (We omit the details of this part of the proof.) ut

Note that the uniqueness part uses the Hausdorff property from the definition of
manifolds. Indeed, the uniqueness part may fail for non-Hausdorff manifolds.

Example 6.25. An example is the non-Hausdorff manifold from Example 2.15, M =
M̃/∼ where

M̃ = (R×{1})∪ (R×{−1})
is a disjoint union of two copies of the real line (thought of as embedded in R2), and
where ∼ glues the two copies along the strictly negative real axis. Let π : M̃→M
be the quotient map. The vector field X̃ on M̃ given as ∂

∂x on both copies descends to
a vector field X on M, i.e.,

X̃ ∼π X .

The solution curves of the initial value problem for X , with γ(0) = p on the negative
real axis, are not unique: The solution curves move from the left to the right, but may
continue on the ‘upper branch’ or on the ‘lower branch’ of M. Concretely, the curves
γ̃+, γ̃− : R→ M̃, given as

γ̃±(t) = (t−1,±1),

are each a solution curve of X̃ , hence their images under π are solution curves γ±
of X . (See Proposition 6.18.) These have the same initial condition, and coincide for
t < 1 but are different for t ≥ 1.

6.4.4 Flows

Given a vector field X , the map Φ : J →M is called the flow of X . For any given
p, the curve γ(t) = Φ(t, p) is a solution curve. But one can also fix t and consider
the time-t flow,

Φt(p) := Φ(t, p)

as a function of p. It is a smooth map Φt : Ut →M, defined on the open subset

Ut = {p ∈M| (t, p) ∈J }.

Note that Φ0 = idM .
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Example 6.26. In Example 6.23 we computed the set J and the flow for the vector
field X = x2 ∂

∂x on the real line R. We have found that J is described by the equation
tx < 1. Hence, the domain of definition of Φt(x) = x/(1− tx) is

Ut = {x ∈ R| tx < 1}.

Intuitively, Φt(p) is obtained from the initial point p ∈M by flowing for time t along
the vector field X . One expects that first flowing for time s, and then flowing for time
t, should be the same as flowing for time t + s. Indeed one has the following flow
property.

Theorem 6.27 (Flow property). Let X ∈X(M), with flow Φ : J →M. Let (s, p)∈
J , and t ∈ R. Then

(t,Φs(p)) ∈J ⇔ (t + s, p) ∈J ,

and in this case
Φt(Φs(p)) = Φt+s(p).

Proof. We claim that, for fixed s, both

t 7→Φt(Φs(p)), t 7→Φt+s(p)

are maximal solution curves of X , for the same initial condition q = Φs(p). This
is clear for the first curve, and follows for the second curve by the calculation, for
f ∈C∞(M),

d
dt

f
(
Φt+s(p)

)
=

d
dτ

∣∣∣
τ=t+s

f
(
Φτ(p)

)
= XΦτ (p)( f )

∣∣∣
τ=t+s

= XΦt+s(p)( f ).

Hence, by the uniqueness part of Theorem 6.24 the two curves must coincide. The
domain of definition of t 7→ Φt+s(p) is the interval Jp ⊆ R, shifted by s. That is,
t ∈ JΦ(s,p) if and only if t + s ∈ Jp. ut

Corollary 6.28. For all t ∈ R, the map Φt is a diffeomorphism from its domain Ut
onto its image Φt(Ut).

Proof. Let p,q∈M with Φt(p)= q. Thus, (t, p)∈J . Since we always have (0, p)∈
J , the theorem shows (−t,q)∈J ; furthermore, Φ−t(q) =Φ−t(Φt(p)) =Φ0(p) =
p. We conclude that Φt takes values in U−t , and Φ−t is an inverse map.

Example 6.29. Let us illustrate the flow property for various vector fields on R.

a) The flow property is evident for ∂

∂x with flow Φt(x) = x+ t, defined for all t.
b) The vector field x ∂

∂x has flow Φt(x) = et x, defined for all t. The flow property
holds:

Φt(Φs(x)) = et
Φs(x) = etesx = et+sx = Φt+s(x).

c) The vector field x2 ∂

∂x has flow Φt(x) = x/(1− tx), defined for 1− tx > 0. We can
explicitly verify the flow property:

Φt(Φs(x)) =
Φs(x)

1− tΦs(x)
=

x
1−sx

1− t x
1−sx

=
x

1− (t + s)x
= Φt+s(x).
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6.4.5 Complete vector fields

Let X be a vector field, and J = J X ⊆ R×M be the domain of definition for the
flow Φ = ΦX .

Definition 6.30. A vector field X ∈ X(M) is called complete if J X = R×M.

Thus X is complete if and only if all solution curves exist for all time.

Example 6.31. The vector field x ∂

∂x on M = R is complete, but x2 ∂

∂x is incomplete.

A vector field may fail to be complete if a solution curve escapes to infinity in finite
time. This suggests that a vector fields X that vanishes outside a compact set must be
complete, because the solution curves are ‘trapped’ and cannot escape to infinity.
Similarly to the definition of support of a function (see Definition 3.3), we define the
support of a vector field X to be the smallest closed subset

supp(X)⊆M

with the property that Xp = 0 for p 6∈ supp(X). We say that X has compact support if
supp(X) is compact.

Proposition 6.32. Every vector field with compact support is complete. In particular,
every vector field on a compact manifold is complete.

Proof. Note that if X vanishes at some point p ∈M, then the unique solution curve
through p is the constant curve γ(t) = p, defined for all t ∈ R. Thus, if a solution
curve lies in M \ supp(X) for some t, then it must be constant, and in particular lie
in M \ supp(X) for all t in its domain. Hence, if a solution curve lies in supp(X) for
some t, then it must lie in supp(X) for all t in its domain of definition.
Let Uε ⊆ M be the set of all p such that the solution curve γ with initial condition
γ(0) = p exists for |t| < ε (that is, (−ε,ε) ⊆ Jp). By smooth dependence on ini-
tial conditions (see Theorem 6.24), Uε is open. The collection of all Uε with ε > 0
covers supp(X), since every solution curve exists for sufficiently small time. Since
supp(X) is compact, there exists a finite subcover Uε1 , . . . ,Uεk . Let ε be the small-
est of ε1, . . . ,εk. Then Uεi ⊆Uε , for all i, and hence supp(X) ⊆Uε . Hence, for any
p ∈ supp(X) we have

(−ε,ε)⊆ Jp,

that is, any solution curve γ(t) starting in supp(X) exists for times |t| < ε . For so-
lution curves starting in M\supp(X), this is true as well. By 90 below (applied to
δ = ε/2, say), we are done. ut

90 (answer on page ??). Let X ∈X(M) be a vector field, and suppose
δ > 0 is such that every solution curve exists at least for times t with |t| ≤ δ .
Use the ‘flow property’ to argue that X is complete.
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Theorem 6.33. If X is a complete vector field, the flow Φt defines a 1-parameter
group of diffeomorphisms. That is, each Φt is a diffeomorphism and

Φ0 = idM, Φt ◦Φs = Φt+s.

Conversely, if Φt is a 1-parameter group of diffeomorphisms such that the map
(t, p) 7→Φt(p) is smooth, the equation

Xp( f ) =
d
dt

∣∣∣
t=0

f (Φt(p))

defines a complete vector field X on M, with flow Φt .

Proof. It remains to show the second statement. Given Φt , the linear map

C∞(M)→C∞(M), f 7→ d
dt

∣∣∣
t=0

f (Φt(p))

satisfies the product rule (6.2), hence it is a vector field X . Given p ∈ M the curve
Φt(p) is an integral curve of X since

d
dt

Φt(p) =
d
ds

∣∣∣
s=0

Φt+s(p) =
d
ds

∣∣∣
s=0

Φs(Φt(p)) = XΦt (p).

ut

Remark 6.34. In terms of pull-backs, the relation between the vector field and its flow
reads as

d
dt

Φ
∗
t ( f ) = Φ

∗
t

d
ds

∣∣∣
s=0

Φ
∗
s ( f ) = Φ

∗
t X( f ).

(To make sense of the derivative, you should think of both sides as evaluated at a
point of M.) This identity of linear operators on C∞(M)

d
dt

Φ
∗
t = Φ

∗
t ◦X

may be viewed as the definition of the flow. (To make sense of the derivative, you
should think of both sides as applied to a function, and evaluated at a point.)

Example 6.35. Given a square matrix A ∈MatR(m) let

Φt : Rm→ Rm, x 7→ etAx =
( ∞

∑
N=0

tN

N!
AN
)

x

(using the exponential map of matrices). Since e(t+s)A = etAesA, and since (t,x) 7→
etAx is a smooth map, Φt defines a flow. What is the corresponding vector field X?
For any function f ∈C∞(Rm) we calculate,
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X( f )(x) =
d
dt

∣∣∣
t=0

f (etAx)

= ∑
j

∂ f
∂x j (Ax) j

= ∑
i j

Ai
jxi ∂ f

∂x j .

This shows that

X = ∑
i j

Ai
jxi ∂

∂x j . (6.12)

As a special case, taking A to be the identity matrix, we get the Euler vector field
X = ∑i xi ∂

∂xi , with its corresponding flow Φt(x) = etx (cf. Problem ?? at the end of
this chapter).

To conclude this section, we characterize related vector fields in terms of their flows:

Proposition 6.36. Let F ∈ C∞(M,N), and let X ∈ X(M), Y ∈ X(N) be complete
vector fields, with flows ΦX

t , ΦY
t . Then

X ∼F Y ⇔ F ◦Φ
X
t = Φ

Y
t ◦F for all t.

In short, vector fields are F-related if and only if their flows are F-related.

Proof. Suppose F ◦ΦX
t = ΦY

t ◦ F for all t. For g ∈ C∞(N), and p ∈ M, taking a
t-derivative of

g(F(ΦX
t (p))) = g(ΦY

t (F(p)))

at t = 0 on both sides, we get(
TpF(Xp)

)
(g) = YF(p)(g)

i.e. TpF(Xp) = YF(p). Hence X ∼F Y . Conversely, suppose X ∼F Y . By Proposition
6.18, if γ : J→M is a solution curve for X , with initial condition γ(0) = p then F ◦γ :
J→ M is a solution curve for Y , with initial condition F(p). That is, F(ΦX

t (p)) =
ΦY

t (F(p)), or F ◦ΦX
t = ΦY

t ◦F . ut

Remark 6.37. The proposition generalizes to possibly incomplete vector fields: The
vector fields are related if and only if F ◦ΦX = ΦY ◦ (idR×F).

Remark 6.38. Flows of incomplete vector fields X can be cumbersome to deal with,
since one has to take into account the domain of definition of the flow, J ⊆ R×M.
However, if one is only interested in the short-time behavior of the flow, near a given
point p ∈M, one can make X complete by multiplying with a compactly supported
function χ ∈C∞(M) such that χ = 1 on a neighborhood U of p. Indeed,

X ′ = χX

is compactly supported and therefore complete, and since X ′|U = X |U its integral
curves with initial condition in U coincide with those of X for the time interval
where they stay inside U .
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6.5 Geometric interpretation of the Lie bracket

For any smooth map F ∈C∞(M,N) we defined the pull-back of smooth functions

F∗ : C∞(N)→C∞(M), g 7→ g◦F.

If F is a diffeomorphism, then every function in C∞(M) can be written as the pullback
of a function in C∞(N). Hence we can also pull back vector fields

F∗ : X(N)→ X(M), Y 7→ F∗Y,

by requiring the the following diagram commutes (cf. diagram (6.5)):

C∞(M)
F∗Y
// C∞(M)

C∞(N)

F∗

OO

Y
// C∞(N)

F∗

OO

i.e. by the condition (F∗Y )(F∗g) = F∗(Y (g)) for all functions g ∈ C∞(N). That is,
F∗Y ∼F Y , or in more detail

(F∗Y )p = (TpF)−1 YF(p)

for all p ∈M. By Theorem 6.16, we have F∗[X ,Y ] = [F∗X ,F∗Y ].
Now, any complete vector field X ∈ X(M) with flow Φt gives rise to pull-back maps

Φ
∗
t : C∞(M)→C∞(M), Φ

∗
t : X(M)→ X(M).

Definition 6.39. The Lie derivative of a function f with respect to X is the function

LX ( f ) =
d
dt

∣∣∣
t=0

Φ
∗
t f ∈C∞(M). (6.13)

The Lie derivative of a vector field Y with respect to X is the vector field

LX (Y ) =
d
dt

∣∣∣
t=0

Φ
∗
t Y ∈ X(M). (6.14)

Some explanations and comments:

a) In (6.13), the right hand side is interpreted in terms of evaluation at p ∈M:( d
dt

∣∣∣∣
t=0

Φ
∗
t f
)
(p) =

d
dt

∣∣∣∣
t=0

(
(Φ∗t f )(p)

)
=

d
dt

∣∣
t=0 f

(
Φt(p)

)
.

So, the Lie derivative of a function measures how the function changes along the
flow of the vector field. Since γ(t) = Φt(p) is just the solution curve of X with
initial condition γ(0) = p, we see that

LX ( f ) = X( f ).



6.5 Geometric interpretation of the Lie bracket 119

b) Similarly, to interpret the right hand side of (6.14) one evaluates at p ∈ M to
obtain a family of tangent vectors in TpM:

(
d
dt

∣∣∣∣
t=0

Φ
∗
t Y
)∣∣

p =
d
dt

∣∣∣∣
t=0

(Φ∗t Y )p.

Here
(Φ∗t Y )p = (TpΦ

−1
t ) YΦt (p);

that is, we use the inverse to the tangent map of the flow of X to move YΦt (p)
to p. If Y were invariant under the flow of X , this would agree with Yp; hence
(Φ∗t Y )p−Yp measures how Y fails to be Φt -invariant. LX (Y ) is the infinitesi-
mal version of this. That is, the Lie derivative measures infinitesimally how Y
changes along the flow of X . As we will see below, the infinitesimal version
actually implies the global version.

c) The definition of Lie derivative also works for incomplete vector fields, since it
only involves derivatives at t = 0.

d) In (6.13) and (6.14), it was taken for granted that the right hand side does in-
deed define a smooth function, or respectively a vector field. For functions, this
follows from LX f = X( f ), for vector fields from Theorem 6.40 below.

e) From now on, we will usually drop the parentheses when writing Lie derivatives;
e.g., LXY in place of LX (Y ).

Theorem 6.40. For any X ,Y ∈ X(M), the Lie derivative LXY is just the Lie bracket:

LX Y = [X ,Y ].

Proof. Let Φt = ΦX
t be the flow of X . For all f ∈ C∞(M) we obtain, by taking the

t-derivative at t = 0 of both sides of

Φ
∗
t (Y ( f )) = (Φ∗t Y )(Φ∗t f )

that

X(Y ( f )) =
( d

dt

∣∣∣
t=0

Φ
∗
t Y
)
( f )+Y

( d
dt

∣∣∣
t=0

Φ
∗
t f
)

= (LXY )( f )+Y (X( f )).

(Again, in this calculation you may take all the terms as evaluated at a point p ∈M,
so that the calculation really just involves derivatives of R-valued functions of t.)
That is, LXY = X ◦Y −Y ◦X = [X ,Y ]. ut

91 (answer on page ??). Justify the calculation above of the t-
derivative at t = 0.
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We see in particular that LXY is skew-symmetric in X and Y – this was not obvious
from the definition.
The result [X ,Y ] = LXY gives an interpretation of the Lie bracket, as measuring in-
finitesimally how Y changes along the flow of X . The following result strengthens
this interpretation of the Lie bracket.

Theorem 6.41. Let X ,Y be complete vector fields, with flows Φt ,Ψs. Then

[X ,Y ] = 0⇔ Φ
∗
t Y = Y for all t

⇔Ψ
∗

s X = X for all s

⇔ Φt ◦Ψs =Ψs ◦Φt for all s, t.

Proof. The calculation

d
dt
(Φt)

∗Y = (Φt)
∗LXY = (Φt)

∗[X ,Y ]

shows that Φ∗t Y is independent of t if and only if [X ,Y ] = 0. Since [Y,X ] =−[X ,Y ],
interchanging the roles of X ,Y this is also equivalent to Ψ ∗s X being independent of
s. The property Φ∗t Y = Y means that Y is Φt -related to itself, hence by Proposition
6.36 it takes the flow of Ψs to itself, that is

Φt ◦Ψs =Ψs ◦Φt .

Conversely, if this equation holds then Φ∗t (Ψ
∗

s f ) = Ψ ∗s (Φ
∗
t f ) for all f ∈ C∞(M).

Differentiating with respect to s at s = 0, we obtain

Φ
∗
t (LY ( f )) = LY (Φ

∗
t f ).

Differentiating with respect to t at t = 0, we get LX (LY ( f )) = LY (LX ( f )), that is,
L[X ,Y ] = [LX ,LY ] = 0 and therefore [X ,Y ] = 0. ut

Example 6.42. Let X = ∂

∂y ∈ X(R2). Then [X ,Y ] = 0 if and only if Y is invariant
under translation in the y-direction.

Example 6.43. The vector fields X = x ∂

∂y −y ∂

∂x and Y = x ∂

∂x +y ∂

∂y commute. This is
verified by direct calculation but can also be ‘seen’ in the following picture
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The flow of X is rotations around the origin, but Y is invariant under rotations. Like-
wise, the flow of Y is by dilations away from the origin, but X is invariant under
dilations.

Similar, but less elegant, statements hold when X ,Y are possibly incomplete. Let X
be a vector field, with flow Φ : J X →M. For t ∈ R let Ut ⊆M be the open subset
of all q ∈M such that (t,q) ∈J X (so that Φt restricts to a diffeomorphism from Ut
onto its image). Given another vector field Y , we have that [X ,Y ] = 0 if and only if

Y |Ut ∼Φt Y

for all t ∈ R.

92 (answer on page ??). Give an example of a manifold M and vector
fields X ,Y with [X ,Y ] = 0, such that there exist p ∈M and s, t ∈ R with

Φt(Ψs(p)) 6=Ψs(Φt(p))

even though both sides are defined (in the sense that (t,Φs(p)), (t, p) are
in the domain of X , and (s, p),(s,Φt(p)) are in the domain of Y .

What we can say for [X ,Y ] = 0 is that if U ⊆ M is an open subset and R ⊆ R2 an
open rectangle around (0,0) such that Φs(Ψt(p)), Φt(Ψs(p)) are both defined for all
(s, t) ∈ R and all p ∈U , then the two are equal.

Remark 6.44. Theorem 6.41 shows that the Lie bracket of vector fields X ,Y vanishes
if and only if the their flows commute. More precisely, the Lie bracket measures the
extent to which the flows fail to commute. Indeed, for a function f we have that

Φ
∗
t f = f + tX( f )+ . . . , Ψ

∗
s f = f + sY ( f )+ . . .

where the dots indicate higher order terms in the Taylor expansion. Using a short
calculation, we find

(Φ∗t Ψ
∗

s −Ψ
∗

s Φ
∗
t ) f = st [X ,Y ]( f )+ . . .

where the dots indicate terms cubic in s, t or higher.

The Jacobi identity (6.3) for vector fields

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0

also has interpretations in terms of Lie derivatives and flows. Bringing the last two
terms to the right hand side, and using skew-symmetry, the identity is equivalent to
[X , [Y,Z]] = [[X ,Y ],Z]+ [Y, [X ,Z]]. That is,

LX [Y,Z] = [LXY,Z]+ [Y,LX Z].
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This says (by definition) that LX is a derivation of the Lie bracket. The Jacobi identity
is now explained as the derivative at t = 0 of the identity

Φ
∗
t [Y,Z] = [Φ∗t Y,Φ∗t Z], (6.15)

where Φt is the flow of X (which we take to be complete, for simplicity).

93 (answer on page ??). Explain why the identity (6.15) holds.

6.6 Frobenius’ theorem

We saw that for any vector field X ∈ X(M), there are solution curves through any
given point p ∈M. The image of this curve is an (immersed) submanifold to which
X is everywhere tangent. One might similarly ask about ‘integral surfaces’ for pairs
of vector fields X ,Y , and more generally ‘integral submanifolds’ for collections of
vector fields. But the situation gets more complicated. To see what can go wrong
recall that by Proposition 6.11, if two vector fields are tangent to a submanifold then
so is their Lie bracket.

94 (answer on page ??). On R3, consider the vector fields

X =
∂

∂x
, Y =

∂

∂y
+ x

∂

∂ z
.

Show that there does not exist a surface S ⊆ R3 such that X ,Y are every-
where tangent to S.

95 (answer on page ??). On R3, consider the vector fields

X = y
∂

∂ z
− z

∂

∂y
, Y = z

∂

∂x
− x

∂

∂ z
, Z = x

∂

∂y
− y

∂

∂x
.

Show that for p 6= (0,0,0), the vector fields X ,Y,Z span a 2-dimensional
subspace of TpR3, and find a 2-dimensional surface S passing through p.

To formulate the ‘integrability problem’, we make the following definition.

Definition 6.45. Suppose X1, . . . ,Xr are vector fields on the manifold M, such that
the tangent vectors

X1|p, . . . ,Xr|p ∈ TpM

are linearly independent for all p ∈ M. An r-dimensional submanifold S ⊆ M is
called an integral submanifold if the vector fields X1, . . . ,Xr are all tangent to S.
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Remark 6.46. In practice, one is given these vector fields only locally, on an open
neighborhood U of a given point p ∈ M. (In such a case, simply replace M with
U in the definition.) For instance, in 95, once it is observed that X ,Y,Z span a
2-dimensional of TpR3, one would take X1,X2 to be two of the vector fields X ,Y,Z
which are linearly independent on a neighborhood U of p, and replace R3 with that
neighborhood.

Let us suppose that there we are given X1, . . . ,Xr as above, and there exists an r-
dimensional integral submanifold S through every given point p∈M. By Proposition
6.11, since the Xi are tangent to S, all [Xi,X j] are tangent to S at p, and are hence a
linear combination of X1|p, . . . ,Xr|p. It follows that

[Xi,X j] =
r

∑
k=1

ck
i jXk (6.16)

for certain functions ck
i j ∈C∞(M), where smoothness holds by 96 below. We refer

to (6.16) as the Frobenius condition, named after F. G. Frobenius (1849-1917).

96 (answer on page ??). Show that if X1, . . . ,Xr ∈X(M) are linearly
independent everywhere, and Y ∈ X(M) is such that

Y |p =
r

∑
k=1

ak(p)Xk|p

for all p ∈M, then the coefficients are smooth functions ak ∈C∞(M).

97 (answer on page ??). Suppose that both X ′1, . . . ,X
′
r and X1, . . . ,Xr

are linearly independent at all points p ∈ M, spanning the same subspace
of TpM everywhere. Show that the first set of vector fields satisfies the
Frobenius condition if and only if the second set does.

We shall see that the Frobenius condition is not only necessary but also sufficient for
the existence of integral submanifolds. Note that Lemma 6.48 below is a special case
of Frobenius’ theorem; we will reduce the general case to this special case. We first
prove a simpler version of Lemma 6.48, dealing with a single vector field.
The critical set of a vector field X ∈ X(M) is the set of points p ∈ M such that
Xp = 0. The following result gives a local normal form for vector fields, away from
their critical set.

Lemma 6.47 (Flow straightening lemma). Let X ∈ X(M) be a vector field, and
p ∈ M such that Xp 6= 0. Then there exists a coordinate chart (U,ϕ) about p, with
corresponding local coordinates x1, . . . ,xm, such that

X |U =
∂

∂x1 .
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In this Lemma, we are using the coordinate chart to identify U with the open subset
ϕ(U)⊆ Rm and thus think of ∂

∂x1 as a vector field on U . Avoiding the identification,
one should write X |U ∼ϕ

∂

∂x1 .

Proof. Choose a submanifold N of codimension 1, with p ∈ N, such that X is not
tangent to N at p. (See 98 below.) The idea is to use the time variable t of the flow
of X as the x1-coordinate, and complete to a coordinate system near p by choosing
coordinates x2, . . . ,xn on N. Let us first assume that X is complete, and denote its
flow by Φ : R×M→M. (We indicate at the end of the proof how to deal with the
incomplete case.)
Claim: The restriction of the flow,

Φ |R×N : R×N→M (6.17)

has maximal rank at (0, p).
Proof of claim: with the standard identification T0R = R, the tangent map to Φ at
(0, p) is

T(0,p)Φ : R×TpM→ TpM, (s,v) 7→ v+ sXp. (6.18)

Indeed, (T(0,p)Φ)(0,v) = v, since Φ |0×M is the identity map of M; on the other hand,
(T(0,p)Φ)(s,0) = sXp since Φ |R×{p} : R→M is the integral curve of X through p.
Hence (6.18) restricts to an isomorphism R×TpN→ TpM, proving the claim.
By the inverse function theorem, there exists a neighborhood of (0, p) in R×N on
which Φ |R×N restricts to a diffeomorphism. We may take this neighborhood to be
of the form (−ε,ε)×V , where V is the domain of a chart (V,ψ) around p in N. In
conclusion,

Φ |(−ε,ε)×V : (−ε,ε)×V →M (6.19)

is a diffeomorphism onto its image U ⊆M. This diffeomorphism takes ∂

∂ t to X |U , by
the property

∂

∂ t
∼Φ X , (6.20)

of the flow. On the other hand, the coordinate map

(−ε,ε)×V → Rm, (t,q) 7→ (t,ψ(q))

takes ∂

∂ t to the coordinate vector field ∂

∂x1 . Hence, its composition with the map
U→ (−ε,ε)×V inverse to (6.19) is the desired coordinate map ϕ : U→Rm, taking
X |U to ∂

∂x1 .
The case of possibly incomplete X is essentially the same, but working with the flow
domain J ⊆R×M in place of R×M. Choosing N as before, the intersection of the
flow domain with R×N is a codimension 1 submanifold of J ; as before we find
a neighborhood of the form (−ε,ε)×V ⊆J ∩R×N over which Φ restricts to a
diffeomorphism. The rest of the proof is unchanged. ut
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98 (answer on page ??). Suppose E ⊆ TpM is a subspace of dimen-
sion k. Show that there exists a codimension k submanifold N ⊆ M, with
TpM = TpN⊕E.

The flow straightening lemma generalizes to collections of commuting vector fields.
The proof uses the fact (Proposition 6.11) that if vector fields commute, their flow
commute. The idea is to use these flows to build a coordinate system.

Lemma 6.48. Let p ∈M, and let X1, . . . ,Xr ∈X(M) be vector fields, whose values at
p ∈M are linearly independent, and with

[Xi,X j] = 0

for all 1 ≤ i, j ≤ r. Then there exists a coordinate chart (U,ϕ) near p, with corre-
sponding local coordinates x1, . . . ,xm, such that

X1|U =
∂

∂x1 , . . . , Xr|U =
∂

∂xr .

Proof. Again, we will first make the (very strong) assumption that the vector fields
Xi are all complete. We will explain at the end how to deal with the general case.
Since the Xi commute, their flows Φi commute. Consider the map

Φ : Rk×M→M, (t1, . . . , tr,q) 7→
(
(Φ1)t1 ◦ · · · ◦ (Φr)tr

)
(q).

Using that the Φi commute, we obtain that

∂

∂ ti
∼Φ Xi (6.21)

for i = 1, . . . ,k. As a consequence, the tangent map to Φ at (0, . . . ,0, p) is

T(0,...,0,p)Φ(s1, . . . ,sr,v) = v+ s1X1|p + · · ·+ srXr|p.

Choose a codimension k submanifold N ⊆ M, with p ∈ N, such that TpN is the
complement to the subspace spanned by X1|p, . . . ,Xr|p. Then the restriction of Φ

to Rk×N has maximal rank at (0, . . . ,0, p), hence it is a diffeomorphism on some
neighborhood of this point in Rk×N. We may take this neighborhood of the form
(−ε,ε)k×V , with V the domain of a coordinate chart (V,ψ) around p in N. It then
follows that

Φ |(−ε,ε)k×V : (−ε,ε)k×V →M

is a diffeomorphism onto some open neighborhood U ⊆M of p. We take ϕ to be the
its inverse, followed by the map

(−ε,ε)k×V → Rm, (t1, . . . , tr,q) 7→ (t1, . . . , tr,ψ(q)).

In the incomplete case, we replace Rk×M with the open subset J ⊆ Rk×M on
which Φ is defined, in the sense that (tr,q) is in the flow domain of Xr, (tk−1,(Φr)tr)
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is in the flow domain of Xk−1, and so on. Since the (Φi)ti commute locally, for ti
sufficiently small, Equation (6.21) holds over a possibly smaller open neighborhood
J ′ of {0}×M inside Rk×M. Taking (−ε,ε)k×V to be contained in J ′, the rest
of the proof is as before. ut

We are now in a position to prove the following result of Frobenius.

Theorem 6.49 (Frobenius theorem). Let X1, . . . ,Xr ∈ X(M) be vector fields such
that X1|p, . . . ,Xr|p ∈ TpM are linearly independent for all p ∈M. The following are
equivalent:

a) There exists an integral submanifold through every p ∈M.
b) The Lie brackets [Xi,X j] satisfy the Frobenius condition (6.16), for suitable func-

tions ck
i j ∈C∞(M).

In fact, it is then possible to find a coordinate chart (U,ϕ) near any given point of M,
with coordinates denoted (x1, . . . ,xm), in such a way that the integral submanifolds
are given by xr+1 = const, . . . ,xm = const.

Proof. We have seen that the Frobenius condition (6.16) is necessary for the ex-
istence of integral submanifolds; it remains to show that it is also sufficient. Thus
suppose (6.16) holds true, and consider p ∈M.
By choosing a coordinate chart around p, we may assume that M is an open subset
U of Rm, with p the origin. Since X1|p, . . . ,Xr|p are linearly independent, they form
part of a basis of Rn, and by a linear change of coordinates we can assume that the
Xi|p coincide with the first r coordinate vectors at the origin. Thus

Xi =
r

∑
j=1

ai j(x)
∂

∂x j +
m

∑
j=r+1

bi j(x)
∂

∂x j .

where ai j(0,0) = δi j and bi j(0,0) = 0. Since the matrix with entries a j
i is invertible

at the origin, it remains invertible for points near the origin. Hence we may define
new vector fields X ′1, . . . ,X

′
r , on a possibly smaller neighborhood of the origin, such

that

Xi =
r

∑
j=1

ai jX ′j.

By 97, the X ′i again satisfy the Frobenius condition, and clearly S is an integral
submanifold for {X ′i } if and only if it is an integral submanifold for {Xi}. The Xi
have the form

X ′i =
∂

∂xi +
m

∑
j=r+1

b′i j(x)
∂

∂x j . (6.22)

where b′i j(0,0) = 0. We claim that the vector fields (6.22) commute. On the one hand,
the Frobenius condition says that

[X ′i ,X
′
j] =

r

∑
k=1

(c′)k
i jX
′
k
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for some functions (c′)k
i j. Compare the coefficients of ∂

∂xk , k = 1, . . . ,r in the point-
wise basis given by coordinate vectors. On the right hand side, the coefficient is
(c′)k

i j. On the left hand side, the coefficient is 0, since the Lie bracket between two
vector fields of the form (6.22) lies in the pointwise span of ∂

∂xr+1
, . . . , ∂

∂xm . This

means (c′)k
i j = 0, and establishes that [X ′i ,X

′
j] = 0, as claimed. By Lemma 6.48, we

may change the coordinates to arrange that X ′1, . . . ,X
′
r becomes the first r coordinate

vector fields. In such coordinates, it is evident that the level set for the remaining
coordinates are integral submanifolds. ut

Thus, if X1, . . . ,Xr are pointwise linearly independent and satisfy the Frobenius con-
dition, then any p ∈M has an open neighborhood with a ‘nice’ decomposition into
r-dimensional integral submanifolds.

It is an example of a foliation.
There is a more general (and also more elegant) version of Frobenius’ theorem. Sup-
pose r ≤ m is given, and

E ⊆ X(M)

is a subspace of the space of vector fields, with the following properties:

• For all p ∈M, the subspace Ep = {Xp| X ∈ E } is an r-dimensional subspace of
TpM.

• If X ∈X(M) is a vector field with the property Xp ∈Ep for all p∈M, then X ∈ E .

One calls E a rank r distribution. (Using the terminology of vector bundles, devel-
oped in Chapter ??, the definition says that E is the space of sections of a rank r
subbundle E ⊆ T M.) Note that if X1, . . . ,Xr are pointwise linearly independent vec-
tor fields, as in the statement of Theorem 6.49, then one obtains a rank r distribution
by letting E be the set of all ∑

r
i=1 fiXi with fi ∈C∞(M). However, the new setting is

more general, since it also allows for situations such as in 95.
A r-dimensional submanifold S ⊆M is called an integral submanifold of the rank r
distribution E if all vector fields from E are tangent to S, or equivalently

TpS = {Xp| X ∈ E }

for all p ∈ S. The distribution E is called integrable if there exists an integral sub-
manifold through every p ∈M.
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99 (answer on page ??). Let Φ : M → N be a submersion. Show
that

E = {X ∈ X(M)| X ∼Φ 0}
is a rank r distribution, where r = dimM−dimN. Show that this distribu-
tion is integrable.

Using this terminology, we have the following version of Frobenius theorem:

Theorem 6.50 (Frobenius). A rank r distribution E is integrable if and only if E is
a Lie subalgebra of X(M): That is, X ,Y ∈ E ⇒ [X ,Y ] ∈ E .

100 (answer on page ??). Explain how this version of Frobenius’
theorem follows from the earlier version, Theorem 6.49.
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Differential forms

In multivariable calculus, differential forms appear as a useful computational and
organizational tool – unifying, for example, the various div, grad, and curl opera-
tions, and providing an elegant reformulation of the classical integration formulas
of Green, Kelvin-Stokes, and Gauss. The full power of differential forms appears in
their coordinate-free formulation on manifolds, which is the topic of this chapter.

7.1 Review: Differential forms on Rm

A differential k-form on an open subset U ⊆ Rm is an expression of the form

ω = ∑
i1···ik

ωi1...ik dxi1 ∧·· ·∧dxik

where ωi1...ik ∈C∞(U) are functions, and the indices are numbers

1≤ i1 < · · ·< ik ≤ m.

Let Ω k(U) be the vector space consisting of such expressions, with the obvious ad-
dition and scalar multiplication. It is convenient to introduce a shorthand notation
I = {i1, . . . , ik} for the index set, and write ω = ∑I ωIdxI with

ωI = ωi1...ik , dxI = dxi1 ∧·· ·∧dxik .

Since a k-form is determined by these functions ωI , and since there are
(m

k

)
= m!

k!(m−k)!

ways of picking k-element subsets from {1, . . . ,m}, the space Ω k(U) can be identi-
fied with vector-valued smooth functions,

Ω
k(U) =C∞(U, R

m!
k!(m−k)! ).

The dxI are just formal expressions; at this stage they do not have any particular
significance or meaning. The motivation for writing the differentials is to suggest an
associative product operation
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Ω
k(U)×Ω

l(U)→Ω
k+l(U)

by the ‘rule of computation’

dxi∧dx j =−dx j ∧dxi

for all i, j; in particular dxi ∧ dxi = 0. In turn, using the product structure we may
define the exterior differential

d : Ω
k(U)→Ω

k+1(U), d
(
∑

I
ωIdxI

)
=

m

∑
i=1

∑
I

∂ωI

∂xi dxi∧dxI . (7.1)

The key property of the exterior differential is the following fact:

Proposition 7.1. The exterior differential satisfies

d◦d = 0,

i.e. ddω = 0 for all ω .

Proof. By definition,

ddω =
m

∑
j=1

m

∑
i=1

∑
I

∂ 2ωI

∂x j∂xi dx j ∧dxi∧dxI ,

which vanishes by equality of mixed partials ∂ωI
∂xi∂x j =

∂ωI
∂x j∂xi . (We have dxi ∧ dx j =

−dx j ∧dxi, but the coefficients in front of dxi∧dx j and dx j ∧dxi are the same.) ut

101 (answer on page ??). Let U ⊆ Rm be an open subset.
a) Show that Ω k(U) = 0 for k > m.
b) Write an expression for a general m-form ω ∈Ω m(U). What is dω?

102 (answer on page ??). Find the exterior differential of each of the
following forms on R3 (with coordinates (x,y,z)).

a) α = y2exdy+2yexdx.
b) β = y2exdx+2yexdy.
c) ρ = ex2y sinzdx∧dy+2cos(z3y)dx∧dz.

d) ω =
sinexy− cossinz3x

1+(x+ y+ z)4 +(7xy)6 dx∧dy∧dz.

The exterior differential on forms on R3 is closely related to the operators div, grad,
and curl from multi-variable calculus; see Problem ?? at the end of this chapter.
We will proceed to define differential forms on manifolds, beginning with 1-forms.
In local charts (U,ϕ), 1-forms on U are identified with Rm-valued functions, just
as for vector fields. However, 1-forms on manifolds are quite different from vector
fields, since their transformation properties under coordinate changes are different;
in some sense they are ‘dual’ objects. We will therefore begin with a review of dual
spaces in general.
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7.2 Dual spaces

For any real vector space E, we denote by E∗ = L(E,R) its dual space, consisting of
all linear maps α : E → R. We will assume that E is finite-dimensional. Then the
dual space is also finite-dimensional, and dimE∗ = dimE.
It is common to write the value of α ∈ E∗ on v ∈ E as a pairing, using the bracket
〈·, ·〉 notation:

〈α,v〉 := α(v).

This pairing notation emphasizes the duality between α and v. In the notation α(v)
we think of α as a function acting on elements of E, and in particular on v. However,
one may just as well think of v as acting on elements of E∗ by evaluation: v(α) =
α(v) for all α ∈ E∗. This symmetry manifests notationally in the pairing notation.
Let e1, . . . ,er be a basis of E. Any element of E∗ is determined by its values on these
basis vectors. For i = 1, . . . ,r, let ei ∈ E∗ (with upper indices) be the linear functional
such that

〈ei, e j〉= δ
i
j =

{
0 if i 6= j,
1 if i = j.

The elements e1, . . . ,er are a basis of E∗; this is called the dual basis. The element
α ∈ E∗ is described in terms of the dual basis as

α =
r

∑
j=1

α j e j, α j = 〈α,e j〉.

Similarly, for vectors v ∈ E we have

v =
r

∑
i=1

viei, vi = 〈ei,v〉.

Notice the placement of indices: In a given summation over i, j, . . ., upper indices are
always paired with lower indices.

Remark 7.2. As a special case, for Rr with its standard basis, we have a canonical
identification (Rr)∗ = Rr. For more general E with dimE < ∞, there is no canon-
ical isomorphism between E and E∗ unless more structure is given. (For infinite-
dimensional vector spaces, the dual space E∗ is not in general isomorphic to E.)

103 (answer on page ??). Let V be a finite dimensional real vector
space equipped with a (positive definite) inner product (·, ·). Every vector
v ∈V determines a linear functional Av = (v, ·) ∈V ∗.

a) Let {e1, . . . ,en} be an orthonormal basis of V . Show that {Ae1 , . . . ,Aen}
is the corresponding dual basis of V ∗.

b) Show that the linear map V →V ∗, v 7→ Av is an isomorphism.
We see that the choice of an inner product determines a canonical isomor-
phism between V and V ∗.
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Given a linear map R : E→ F between vector spaces, one defines the dual map

R∗ : F∗→ E∗

(note the direction), by setting

〈R∗β , v〉= 〈β ,R(v)〉

for β ∈ F∗ and v ∈ E. This satisfies (R∗)∗ = R, and under the composition of linear
maps,

(R1 ◦R2)
∗ = R∗2 ◦R∗1.

In terms of basis e1, . . . ,er of E and f1, . . . , fs of F , and the corresponding dual bases
(with upper indices), a linear map R : E→ F is given by the matrix with entries

Ri
j = 〈 f j, R(ei)〉,

while R∗ is described by the transpose of this matrix (the roles of i and j are re-
versed). Namely,

R(ei) =
s

∑
j=1

Ri
j f j, R∗( f j) =

r

∑
i=1

Ri
j ei.

Thus,
(R∗) j

i = Ri
j.

Remark 7.3. In the physics literature, it is common and convenient to use Dirac’s
‘bra-ket’ notation. Elements of E are the ‘kets’ v = |v〉 (signified with the |·〉 nota-
tion), while elements of E∗ are the ‘bras’ α = 〈α| (signified with the 〈·| notation).
The pairing between elements of E∗ and E is then written as bra-kets (where we
write 〈·|·〉 instead of 〈·||·〉)

〈α| v〉= α(v).

Concatenating in the other direction |·〉 〈·|, a ket-bra |w〉〈α| with |w〉 ∈ F and 〈α| ∈
E∗ signifies the linear map

|w〉〈α| : E→ F, |v〉 7→ |w〉〈α|v〉.

Note that if e1, . . . ,en is a basis of E, with dual basis e1, . . . ,en, then the identity
operator of E may be written

IE = ∑
i
|ei〉〈ei|.

The coefficients of a general linear map R : E → F with respect to bases e1, . . . ,en
of E and f1, . . . , fm of F are Ri

j = 〈 f j |R |ei〉, and one has the suggestive formula

|Rei〉= R|ei〉= ∑
j
| f j〉〈 f j |R |ei〉.

Denote by 〈α|∗ = |α〉 the elements of E∗, but now playing the role of the ‘given’
vector space, and |v〉∗= 〈v| the elements of E but now viewed as elements of (E∗)∗∼=
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E (assuming dimE < ∞). Then 〈v|α〉= 〈α|v〉 , and the definition of dual map reads
as

〈α|R|v〉= 〈v|R∗|α〉.

(Note: Here we only considered real vector spaces. In quantum mechanics, one
mainly deals with complex vector spaces, and declares 〈v|α〉 = 〈α|v〉∗ (where the
star denotes complex conjugate). Accordingly, the conjugate transpose is defined by
〈α|R|v〉= 〈v|R∗|α〉∗.)

7.3 Cotangent spaces

After this general discussion of dual spaces, we now consider the duals of tangent
spaces.

Definition 7.4. The dual of the tangent space TpM of a manifold M is called the
cotangent space at p, denoted

T ∗p M = (TpM)∗.

Elements of T ∗p M are called cotangent vectors, or simply covectors. Given a smooth
map F ∈C∞(M,N), and any p ∈M we have the cotangent map

T ∗p F = (TpF)∗ : T ∗F(p)N→ T ∗p M

defined as the dual to the tangent map.

Thus, a covector at p is a linear functional on the tangent space, assigning to each
tangent vector a number. The very definition of the tangent space suggests one such
functional: Every function f ∈ C∞(M) defines a linear map, TpM → R taking the
tangent vector v to v( f ). This linear functional is denoted (d f )p ∈ T ∗p M.

Definition 7.5. Let f ∈C∞(M) and p ∈M. The covector

(d f )p ∈ T ∗p M, 〈(d f )p,v〉= v( f ).

is called the differential of f at p.

104 (answer on page ??). Show that under the identification of tan-
gent spaces TaR∼= R for a ∈ R, the differential of f at p is the same as the
tangent map

Tp f : TpM→ Tf (p)R= R.

Lemma 7.6. For F ∈C∞(M,N) and g ∈C∞(N),

d(F∗g)p = T ∗p F((dg)F(p)).
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Proof. Every element of the dual space is completely determined by its action on
vectors; so it suffices to show that the pairing with any v ∈ TpM is the same. This is
done by unpacking the definitions:

〈d(F∗g)p,v〉= v(F∗g) by definition of the differential
= v(g◦F) by definition of the pullback of functions
= (TpF(v))(g) by definition of the tangent map
= 〈(dg)F(p),TpF(v)〉 by definition of the differential

= 〈T ∗p F((dg)F(p)),v〉 by definition of the dual map.ut

Consider an open subset U ⊆Rm, with coordinates x1, . . . ,xm. Here TpU ∼=Rm, with
basis

∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xm

∣∣∣
p
∈ TpU (7.2)

The basis of the dual space T ∗p U , dual to the basis (7.2), is given by the differentials
of the coordinate functions:

(dx1)p, . . . , (dxm)p ∈ T ∗p U.

Indeed, 〈
(dxi)p,

∂

∂x j

∣∣∣
p

〉
=

∂

∂x j

∣∣∣
p
(xi) = δ

i
j

as required. For f ∈ C∞(M), the coefficients of (d f )p = ∑i〈(d f )p, ei〉ei are deter-
mined as 〈

(d f )p,
∂

∂xi

∣∣∣
p

〉
=

∂

∂xi

∣∣∣
p
( f ) =

∂ f
∂xi

∣∣∣
p
.

Thus,

(d f )p =
m

∑
i=1

∂ f
∂xi

∣∣∣
p
(dxi)p.

Let U ⊆ Rm and V ⊆ Rn be open, with coordinates x1, . . . ,xm and y1, . . . ,yn. For
F ∈C∞(U,V ), the tangent map is described by the Jacobian matrix, with entries

(DpF)i
j =

∂F j

∂xi (p)

for i = 1, . . . ,m, j = 1, . . . ,n. We have:

(TpF)(
∂

∂xi

∣∣∣
p
) =

n

∑
j=1

(DpF)i
j ∂

∂y j

∣∣∣
F(p)

,

hence dually

(TpF)∗(dy j)F(p) =
m

∑
i=1

(DpF)i
j (dxi)p. (7.3)

We see that, as matrices in the given bases, the coefficients of the cotangent map are
the transpose of the coefficients of the tangent map.
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105 (answer on page ??). Consider R3 with standard coordinates de-
noted x,y,z, and R2 with standard coordinates denoted u,v. Let F : R3→
R2 be given by

(x,y,z) 7→ (x2y+ ez,yz− x).

Find TpF
(

∂

∂x

∣∣∣
p

)
, and similarly (T ∗p F)

(
(du)F(p)

)
, for p = (1,1,1)

7.4 1-forms

Similarly to the definition of vector fields, one can define covector fields, more com-
monly known as 1-forms: Collections of covectors αp ∈ T ∗p M depending smoothly
on the base point. One approach of making precise the smooth dependence on the
base point is to observe that in local coordinates, 1-forms are given by expressions
∑i fidxi, and smoothness should mean that the coefficient functions are smooth.
We will use the following (equivalent) approach. (Compare to the definition of a
vector field and to Proposition 6.4.)

Definition 7.7. A 1-form on M is a linear map

α : X(M)→C∞(M), X 7→ α(X) = 〈α, X〉,

which is C∞(M)-linear in the sense that

α(X +Y ) = α(X)+α(Y ),

α( f X) = f α(X)

for all X ,Y ∈X(M) and f ∈C∞(M). The vector space of 1-forms is denoted Ω 1(M).

A 1-form can be regarded as a collection of covectors:

Lemma 7.8. Let α ∈Ω 1(M) be a 1-form, and p∈M. Then there is a unique covector
αp ∈ T ∗p M such that

α(X)p = αp(Xp)

for all X ∈ X(M). In particular, α(X)p = 0 when Xp = 0.

(We indicate the value of the function α(X) at p by a subscript, just like we did for
vector fields.)

Proof. We have to show that α(X)p depends only on the value of X at p. By consid-
ering the difference of vector fields having the same value at p, it is enough to show
that if Xp = 0, then α(X)p = 0. But any vector field vanishing at p can be written as
a finite sum X = ∑i fiYi where fi ∈C∞(M) vanish at p. (For example, using local co-
ordinates, we can take the Yi to correspond to ∂

∂xi near p, and the fi to the coefficient
functions.) By C∞-linearity, this implies that
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α(X) = α(∑
i

fiYi) = ∑
i

fiα(Yi)

vanishes at p. ut

The first example of a 1-form is described in the following definition.

Definition 7.9. The exterior differential of a function f ∈C∞(M) is the 1-form

d f ∈Ω
1(M),

defined in terms of its pairings with vector fields X ∈ X(M) as 〈d f , X〉= X( f ).

(The reader should verify that this definition conforms to Definition 7.7.) Clearly, d f
is the 1-form defined by the family of covectors (d f )p, as in Definition 7.5. Note that
critical points of f may be described as the zero set of this 1-form: p ∈M is a critical
point of f if and only if (d f )p = 0.
Similarly to vector fields, 1-forms can be multiplied by functions. (This makes
Ω 1(M) into a module over C∞(M).) Hence one has more general examples of 1-
forms as finite sums,

α = ∑
i

fi dgi

where fi,gi ∈C∞(M).
Also similarly to vector fields, 1-forms can be restricted to open subsets U ⊆M:

Lemma 7.10. Given an open subsets U ⊆M and any α ∈Ω 1(M), there is a unique
1-form α|U ∈Ω 1(U) such that

(α|U )p = αp

for all p ∈U.

106 (answer on page ??). Prove this Lemma. (You will need to de-
fine α|U (Y ) for all Y ∈ X(U); here Y need not be a restriction of a vector
field on M. Use bump functions to resolve this issue.)

Let us describe the space of 1-forms on open subsets U ⊆ Rm. Given α ∈ Ω 1(U),
we have

α =
m

∑
i=1

αi dxi

with coefficient functions αi =
〈
α, ∂

∂xi

〉
∈C∞(U): the right hand side takes on the

correct values at any p ∈ U , and is uniquely determined by those values. General
vector fields on U may be written

X =
m

∑
i=1

X i ∂

∂xi
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(to match the notation for 1-forms, we write the coefficients as X i rather than ai, as
we did in the past), where the coefficient functions are recovered as X i = 〈dxi, X〉.
The pairing of the 1-form α with the vector field X is then

〈α, X〉=
m

∑
i=1

αiX i.

Lemma 7.11. Let α : p 7→ αp ∈ T ∗p M be a collection of covectors. Then α defines a
1-form, with

α(X)p = αp(Xp)

for p ∈ M, if and only if for all charts (U,ϕ), the coefficient functions for α in the
chart are smooth.

107 (answer on page ??). Prove Lemma 7.11. (You may want to use
Lemma 7.10.)

7.5 Pull-backs of function and 1-forms

Recall again that for any manifold M, the vector space C∞(M) of smooth func-
tions is an algebra, with product the pointwise multiplication. Any smooth map
F ∈C∞(M,N) between manifolds defines an algebra homomorphism, called the pull-
back

F∗ : C∞(N)→C∞(M), f 7→ F∗( f ) := f ◦F.

108 (answer on page ??). Show that the pull-back is indeed an alge-
bra homomorphism by showing that it preserves sums and products:

F∗( f )+F∗(g) = F∗( f +g) ; F∗( f )F∗(g) = F∗( f g).

Next, show that if F : M → N and G : N → M are two smooth maps
between manifolds, then

(G◦F)∗ = F∗ ◦G∗.

(Note the order.)

Recall that for vector fields, there are no general ‘push-forward’ or ‘pull-back’ oper-
ations under smooth maps F ∈C∞(M,N), unless F is a diffeomorphism. For 1-forms
the situation is better. Indeed, for any p ∈M one has the dual to the tangent map

T ∗p F = (TpF)∗ : T ∗F(p)N→ T ∗p M.
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For a 1-form β ∈Ω 1(N), we can therefore define

(F∗β )p := (T ∗p F)(βF(p)). (7.4)

The following Lemma shows that this collection of covectors on M defines a 1-form.

Lemma 7.12. There is a unique 1-form F∗β ∈ Ω 1(M) such that the covectors
(F∗β )p ∈ T ∗p M are given by (7.4).

Proof. We shall use Lemma 7.11. To check smoothness near a given p ∈M, choose
coordinate charts (V,ψ) around F(p) and (U,ϕ) around p, with F(U) ⊆ V . Using
these charts, we may in fact assume that M = U is an open subset of Rm (with
coordinates xi) and N =V is an open subset of Rn (with coordinates y j). Write

β =
n

∑
j=1

β j(y)dy j.

By (7.3), the pull-back of β is given by

F∗β =
m

∑
i=1

( n

∑
j=1

β j(F(x))
∂F j

∂xi

)
dxi. (7.5)

In particular, the coefficients are smooth. ut

Lemma 7.12 shows that we have a well-defined pull-back map

F∗ : Ω
1(N)→Ω

1(M), β 7→ F∗β .

Under composition of two smooth maps F1,F2, this pullback operation on 1-forms
satisfies (F1◦F2)

∗=F∗2 ◦F∗1 . Also, if g∈C∞(N) is a smooth function and F∗g= g◦F
its pullback to M,

F∗(gβ ) = F∗gF∗β .

Another important relation with the pullback of functions is the formula

F∗(dg) = d(F∗g)

which follows from Lemma 7.6. (Note that on the left we are pulling-back a form,
and on the right a function.)
The formula (7.5) (itself a consequence of (7.3)) shows how to compute the pullback
of forms in local coordinates. In fact, suppose F : U →V is a smooth map between
open subsets U ⊆ Rm, V ⊆ Rn with coordinates xi and y j, respectively. Given β =

∑ j β j(y)dy j, one computes F∗β by replacing y with F(x):

F∗β = ∑
j

β j(F(x)))d(F(x)) j = ∑
i j

β j(F(x)))
∂F j

∂xi dxi.
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109 (answer on page ??). Consider the map

F : R3→ R2, (x,y,z) 7→ (x3eyz,sinx).

Let u,v be the coordinates on the target space R2.
a) Compute the pullback under F of the 1-forms

du, vcos(u)dv

b) Let g ∈ C∞(R2) be the function g(u,v) = uv. Verify Lemma 7.6 by
computing dg, F∗(dg), as well as F∗g and d(F∗g).

In the case of vector fields, one has neither pullback nor push-forward in general, but
instead works with the notion of related vector fields, X ∼F Y . This fits nicely with
the pullback of 1-forms:

Proposition 7.13. Let F ∈C∞(M,N), and let β ∈Ω 1(N). If X ∈X(M) and Y ∈X(N)
are F-related, i.e. X ∼F Y , then

〈F∗β ,X〉= F∗〈β ,Y 〉.

Proof. We verify this identity pointwise, at any p ∈M:

〈F∗β ,X〉p = 〈(F∗β )p, Xp〉
= 〈T ∗p F(βF(p)),Xp〉
= 〈βF(p),TpF(Xp)〉
= 〈βF(p),YF(p)〉
= 〈β ,Y 〉F(p)

= (F∗〈β ,Y 〉)put

110 (answer on page ??). One may verify that γ : R→ R2, t 7→
(cos t,sin t) is a solution curve of the vector field

X = x
∂

∂y
− y

∂

∂x
.

That is, ∂

∂ t ∼γ X . (Cf. Equation (6.7).) Let β = dx− dy ∈ Ω 1(R2). Verify
the conclusion of Proposition 7.13 by computing each of

〈β , X〉, γ
∗
β , 〈γ∗β , ∂

∂ t
〉, γ

∗〈β ,X〉.



140 7 Differential forms

7.6 Integration of 1-forms

Given a curve γ : J→M in a manifold, and any 1-form α ∈Ω 1(M), we can consider
the pull-back γ∗α ∈Ω 1(J). By the description of 1-forms on R, this is of the form

γ
∗
α = f (t)dt (7.6)

for a smooth function f ∈C∞(J).
To discuss integration, it is convenient to work with closed intervals rather than open
intervals. Let [a,b] ⊆ R be a closed interval. A map γ : [a,b]→M into a manifold
will be called smooth if it extends to a smooth map from an open interval containing
[a,b]. We will call such a map a smooth path.

Definition 7.14. Given a smooth path γ : [a,b]→ M, we define the integral of a
1-form α ∈Ω 1(M) along γ as ∫

γ

α =
∫ b

a
f (t)dt

where f is the function defined by γ∗α = f (t)dt.

The fundamental theorem of calculus has the following consequence for manifolds.
It is a special case of Stokes’ theorem (Theorem 8.7).

Proposition 7.15. Let γ : [a,b] → M be a smooth path, with end points γ(a) =
p, γ(b) = q. For any f ∈C∞(M), we have∫

γ

d f = f (q)− f (p).

In particular, the integral of d f depends only on the end points, rather than the path
itself.

Proof. We have

γ
∗d f = dγ

∗ f = d( f ◦ γ) =
∂ ( f ◦ γ)

∂ t
dt.

Integrating from a to b, we obtain, by the fundamental theorem of calculus, f (γ(b)) − f (γ(a)).
ut

111 (answer on page ??). Let γ : [a,b]→ R be a smooth path in
M = R, and let f ∈C∞(R) be a smooth function, so that f dx is a 1-form.
Let F ∈C∞(R) be a primitive, i.e. F ′(x) = f (x).

a) Verify that ∫
γ

f dx =
∫

γ(b)

γ(a)
f (s)ds

where the right hand side is a Riemann integral. (Hint: f dx = dF .)
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b) Use part a to prove the “integration by substitution” formula:∫
γ(b)

γ(a)
f (x)dx =

∫ b

a
f (γ(t)) · γ ′(t)dt.

where both sides are Riemann integrals.

Let M be a manifold, and γ : [a,b]→M a smooth path. A reparametrization of the
path is a path γ ◦κ : [c,d]→ M, where κ : [c,d]→ [a,b] is a diffeomorphism (in
the sense that it extends to a diffeomorphism on slightly larger open intervals). The
reparametrization is called orientation preserving if κ(c) = a, κ(d) = b, orientation
reversing if κ(c) = b, κ(d) = a.

Proposition 7.16 (Reparametrization invariance of the integral). Given a repara-
metrization γ ◦κ of the path γ as above, and any α ∈Ω 1(M),∫

γ

α =±
∫

γ◦κ
α,

with the plus sign if κ preserves orientation and minus sign of it reverses orientation.

Proof. Since (γ ◦κ)∗ = κ∗ ◦ γ∗ we have∫
γ◦κ

α =
∫ d

c
(γ ◦κ)∗α =

∫ d

c
κ
∗(γ∗α) =

∫
κ(d)

κ(c)
γ
∗
α

where the last equality follows from integration by substitution, as in 111. If κ is
orientation preserving, we therefore have∫

γ◦κ
α =

∫
κ(d)

κ(c)
γ
∗
α =

∫ b

a
γ
∗
α =

∫
γ

α.

If κ is orientation reversing, we have∫
γ◦κ

α =
∫

κ(d)

κ(c)
γ
∗
α =

∫ a

b
γ
∗
α =−

∫ b

a
γ
∗
α =−

∫
γ

α.

Remark 7.17. We did not fully use the fact that κ is a diffeomorphism. The conclu-
sion holds for any smooth path κ : [c,d]→ R taking values in [a,b], so that γ ◦κ is
defined.

112 (answer on page ??). Consider the 1-form on R2

α = y2exdx+2yexdy.

Find the integral of α along the path

γ : [0,1]→M, t 7→ (sin(πt/2), t3).
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A 1-form α ∈Ω 1(M) such that α = d f for some function f ∈C∞(M) is called exact.
Proposition 7.15 gives a necessary condition for exactness: The integral of α along
paths should depend only on the end points.

Remark 7.18. This condition is also sufficient: define f on the connected components
of M, by fixing a base point p0 on each such component, and putting f (p) =

∫
γ

α for
any path from p0 to p. With a little work (using charts), one verifies that f defined in
this way is smooth.

If M is an open subset U ⊆Rm, so that α =∑i αidxi, then α = d f means that αi =
∂ f
∂xi .

A necessary condition is the equality of the mixed partial derivatives,

∂αi

∂x j =
∂α j

∂xi , (7.7)

In multivariable calculus one learns that this condition is also sufficient, provided U
is simply connected (e.g., convex). Using the exterior differential of forms in Ω 1(U),
this condition becomes dα = 0. Since α is a 1-form, dα is a 2-form. Thus, to obtain
a coordinate-free version of the condition, we need higher order forms.

7.7 k-forms

To get a feeling for higher degree forms, and constructions with higher forms, we
first discuss 2-forms.

7.7.1 2-forms.

Skew-symmetry

Definition 7.19. A 2-form on M is a C∞(M)-bilinear skew-symmetric map

α : X(M)×X(M)→C∞(M), (X ,Y ) 7→ α(X ,Y ).

The space of 2-forms is denoted Ω 2(M).

Here skew-symmetry means that α(X ,Y )=−α(Y,X) for all vector fields X ,Y , while
C∞(M)-bilinearity means that for any fixed Y , the map X 7→α(X ,Y ) is C∞(M)-linear,
and for any fixed X , the map Y 7→ α(X ,Y ) is C∞(M)-linear. (Actually, by skew-
symmetry it suffices to require C∞(M)-linearity in the first argument.)
By the same argument as for 1-forms, the value α(X ,Y )p depends only on the values
Xp,Yp. Also, if α is a 2-form then so is f α for any smooth function f .
Our first examples of 2-forms are obtained from 1-forms: Let α,β ∈ Ω 1(M). Then
we define a wedge product α ∧β ∈Ω 2(M), as follows:

(α ∧β )(X ,Y ) = α(X)β (Y )−α(Y )β (X). (7.8)
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113 (answer on page ??). Show that Equation (7.8) indeed defines a
2-form.

Another example of a 2-form is the exterior differential of a 1-form. We will soon
give a general definition of the differential of any k-form; the following will be a
special case:

114 (answer on page ??). Show that for any 1-form α ∈Ω 1(M), the
following formula defines a 2-form dα ∈Ω 2(M):

(dα)(X ,Y ) = LX (α(Y ))−LY (α(X))−α([X ,Y ]).

Show furthermore that if α = d f for a function f ∈C∞(M), then dα = 0.

For an open subset U ⊆ Rm, a 2-form ω ∈Ω 2(U) is by C∞(U)-bilinearity, uniquely
determined by its values on coordinate vector fields. By skew-symmetry the func-
tions

ωi j = ω

(
∂

∂xi ,
∂

∂x j

)
satisfy ωi j = −ω ji; hence it suffices to know these functions for i < j. As a conse-
quence, we see that the most general 2-form on U is

ω = ∑
i< j

ωi jdxi∧dx j.

115 (answer on page ??). Using 114 as the definition of exterior
differential of a 2-form, show that the differential of α = ∑i αidxi ∈Ω 1(U)
is

dα = ∑
i< j

(
∂α j

∂xi −
∂α i

∂x j

)
dxi∧dx j.

Review the discussion around Equation (7.7) from this perspective.

7.7.2 k-forms

We now generalize to forms of arbitrary degree.

Definition 7.20. Let k be a non-negative integer. A k-form on M is a C∞(M)-
multilinear, skew-symmetric map

α : X(M)×·· ·×X(M)︸ ︷︷ ︸
k times

→C∞(M).

The space of k-forms is denoted Ω k(M); in particular Ω 0(M) =C∞(M).
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Here, skew-symmetry means that α(X1, . . . ,Xk) changes sign under exchange of any
two of its arguments. For example,

α(X1,X2,X3, . . .) =−α(X2,X1,X3, . . .).

More generally, denoting by Sk the group of permutations of {1, . . . ,k}, and by
sign(s) = ±1 the sign of a permutation s ∈ Sk (+1 for an even permutation, −1 for
an odd permutation) then

α(Xs(1), . . . ,Xs(k)) = sign(s)α(X1, . . . ,Xk). (7.9)

(See Appendix A.2 for more on permutations.) The C∞(M)-multilinearity means that
for any index i, and any given vector fields X1, . . . ,Xi−1,Xi+1, . . . ,Xk ∈X(M), the map

X(M)→C∞(M), X 7→ α(X1, . . . ,Xi−1,X ,Xi+1, . . . ,Xk)

is C∞(M)-linear, that is a 1-form. (Given the skew-symmetry, it suffices to check
C∞(M)-linearity in any one of the arguments, for instance for i = 1.)
The C∞(M)-multilinearity implies, in particular, that α is local in the sense that the
value of α(X1, . . . ,Xk) at any given p∈M depends only on the values X1|p, . . . ,Xk|p ∈
TpM. (This is an application of Lemma 7.8 to any of the arguments.) One thus obtains
a skew-symmetric multilinear form

αp : TpM×·· ·×TpM→ R,

for all p ∈M. For any open subset U ⊆M, one has a restriction map

Ω
k(M)→Ω

k(U), α 7→ α|U

such that (α|U )p = αp for all p ∈M. The argument for this is essentially the same as
for 1-forms, see Lemma 7.10.
Given a C∞(M)-multilinear map η : X(M)× ·· · ×X(M)→ C∞(M) (with k argu-
ments), not necessarily skew-symmetric, one obtains a k-form α = Skη ∈ Ω k(M)
through the process of skew-symmetrization:

(Skη)(X1 . . . ,Xk) = ∑
s∈Sk

sign(s)η(Xs(1), . . . ,Xs(k)).

116 (answer on page ??). Confirm that Skη does indeed define a k-
form. Also show that if α ∈Ω k(M) (so that α is already skew-symmetric)
then Skα = k!α .

This may be applied, for example, to define the wedge product of 1-forms α1, . . . ,αk ∈
Ω 1(M), as the skew-symmetrization of the multilinear form

(X1, . . . ,Xk) 7→ 〈α1,X1〉 · · · 〈αk,Xk〉.
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That is, α1∧·· ·∧αk ∈Ω k(M) is given by the formula

(α1∧·· ·∧αk)(X1, . . . ,Xk) = ∑
s∈Sk

sign(s)α1(Xs(1)) · · ·αk(Xs(k))

(More general wedge products will be discussed below.)
Let us describe the space of k-forms on open subsets U ⊆Rm. Using C∞-multilinearity,
a k-form α ∈Ω k(U) is uniquely determined by its values on coordinate vector fields

∂

∂x1 , . . . ,
∂

∂xm , i.e. by the functions

αi1...ik = α

(
∂

∂xi1
, . . . ,

∂

∂xik

)
.

By skew-symmetry we only need to consider ordered index sets I = {i1, . . . , ik} ⊆
{1, . . . ,m}, that is, i1 < · · ·< ik. Using the wedge product notation, we obtain

α = ∑
i1<···<ik

αi1...ik dxi1 ∧·· ·∧dxik . (7.10)

For k-forms ω on general manifolds M, this gives a description of ω|U in coordinate
charts (U,ϕ). Let us also note the following useful consequence:

Lemma 7.21. Every differential form α ∈ Ω k(M) is locally, near a given point p ∈
M, a linear combination of k-forms of the type

f0 d f1∧·· ·∧d fk ∈Ω
k(M), (7.11)

where f0, . . . , fk ∈C∞(M).

Proof. Given p∈M, choose a coordinate chart (U,ϕ) around p. In these coordinates,
α|U has the form (7.10). This is not quite the desired form since the coordinate
functions and coefficient functions are only defined on U . But this is easily fixed:
Choose h1, . . . ,hm ∈ C∞(M) so that hi ◦ϕ−1 agrees with the coordinate function xi

near ϕ(p), and choose gi1,...,ik ∈ C∞(M) such that gi1,...,ik ◦ϕ−1 agrees with αi1...ik
near p. Then

∑
i1<···<ik

gi1,...,ik dhi1 ∧·· ·∧dhik

agrees with α near p.

7.7.3 Wedge product

We next turn to the definition of a wedge product of forms of arbitrary degree.

Definition 7.22. The wedge product of α ∈Ω k(M), β ∈Ω l(M) is the element

α ∧β ∈Ω
k+l(M)

given by the formula

(α ∧β )(X1, . . . ,Xk+l) =
1

k!l! ∑
s∈Sk+l

sign(s)α(Xs(1), . . . ,Xs(k)) β (Xs(k+1), . . . ,Xs(k+l))

(7.12)
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117 (answer on page ??). Show that Definition 7.22 is consistent
with our previous definition of the wedge product of two 1-forms (Equation
(7.8)).

Thus, up to a factor 1/k! l!, the wedge product of α and β is the skew-symmetrization
of the map

(X1, . . . ,Xk+l) 7→ α(X1, . . . ,Xk)β (Xk+1, . . . ,Xk+l);

in particular, it is indeed a k+ l-form. Note that many of the (k+ l)! terms in the sum
over Sk+l coincide, since α is skew-symmetric in its arguments to begin with, and
likewise for β . Indeed, one can get a simpler expression involving only permutations
where

s(1)< · · ·< s(k), s(k+1)< · · ·< s(k+ l).

A permutation s ∈ Sk+l having this property is called a (k, l)-shuffle. Denote by Sk,l
the set of (k, l)-shuffles. Every (k, l)-shuffle is uniquely determined by a k-element
subset of {1, . . . ,k+ l} (by taking this subset to be s(1), . . . ,s(k)). In particular, there
are (

k+ l
k

)
=

(k+ l)!
k!l!

different (k, l)-shuffles.

Example 7.23. The permutation

(1 4 2 3 5) ∈ S5

(meaning: s(1) = 1, s(2) = 4, s(3) = 2, s(4) = 3, s(5) = 5) is a (3,2)-shuffle, since
the first three elements are in order, and likewise the last two elements.

118 (answer on page ??). List all (3,2)-shuffles in S5. How many
elements does S3,2 have?

Using the notion of k, l-shuffle, the wedge product is also given by the formula

(α ∧β )(X1, . . . ,Xk+l) = ∑
s∈Sk,l

sign(s)α(Xs(1), . . . ,Xs(k)) β (Xs(k+1), . . . ,Xs(k+l))

(7.13)
We tend to prefer this version since it has fewer terms.

119 (answer on page ??). For α,β ∈ Ω 2(M), and X1,X2,X3,X4 ∈
X(M), write all the terms of

(α ∧β )(X1,X2,X3,X4).

It will be better to use Formula (7.13) with only 6 terms, rather than (7.12)
with 4! = 24 terms (which coincide in groups of 4).
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120 (answer on page ??). Identify Sk× Sl as the subgroup of Sk+l
preserving {1, . . . ,k} and (hence) also {k+ 1, . . . ,k+ l}. Show that every
s ∈ Sk+l is uniquely a product

s = s′s′′,

where s′ ∈ Sk,l and s′′ ∈ Sk×Sl . Use this to prove the second formula (7.13)
for the wedge product, as a sum over k, l-shuffles.

It is clear that the wedge product α ∧β is C∞(M)-bilinear in α and in β : that is, for
fixed β , the map

Ω
k(M)→Ω

k+l(M), α 7→ α ∧β

is C∞(M)-linear, and for fixed α the map β 7→ α ∧β is C∞(M)-linear. In addition,
the wedge product has the following properties:

Proposition 7.24. a) The wedge product is graded commutative: If α ∈Ω k(M) and
β ∈Ω l(M) then

α ∧β = (−1)kl
β ∧α.

b) The wedge product is associative: Given αi ∈Ω ki(M) we have

(α1∧α2)∧α3 = α1∧ (α2∧α3).

The associativity allows us to drop parentheses when writing wedge products.

Proof. a) There is a canonical bijection between (k, l)-shuffles and (l,k)-shuffles,
obtained by switching the interchanging the first k components and last l com-
ponents. For example,

(1 2 4 3 5) ∈ S3,2 ↔ (3 5 1 2 4) ∈ S2,3.

In more detail, let σ ∈ Sk+l be the permutation

σ(1) = k+1, . . . , σ(k) = k+ l, σ(k+1) = 1, . . . ,σ(k+ l) = l.

This has sign
sign(σ) = (−1)kl . (7.14)

and we have that
s ∈ Sk,l ⇔ s′ = s◦σ ∈ Sl,k. (7.15)

Therefore, for any X1, . . . ,Xk+l ∈ X(M),

(β ∧α)(X1, . . . ,Xk+l)

= ∑
s′∈Sl,k

sign(s′)β (Xs′(1), . . . ,Xs′(l))α(Xs′(l+1), . . . ,Xs′(k+l))

= ∑
s∈Sk,l

sign(s◦σ)β (X(s◦σ)(1), . . . ,X(s◦σ)(l))α(X(s◦σ)(l+1), . . . ,X(s◦σ)(k+l))

= sign(σ) ∑
s∈Sk,l

sign(s)β (Xs(k+1), . . . ,Xs(k+l))α(Xs(1), . . . ,Xs(k))

= (−1)kl(α ∧β )(Xσ(1), . . . ,Xσ(k+l))
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b) Define a (k, l,m)-shuffle to be a permutation s in Sk+l+m such that

s(1)< · · ·< s(k), s(k+1)< · · ·< s(k+ l), s(k+ l +1)< · · ·s(k+ l +m).

By careful bookkeeping, one finds that both

((α1∧α2)∧α3)(X1, . . . ,Xk1+k2+k3), (α1∧ (α2∧α3))(X1, . . . ,Xk1+k2+k3)

are given by

∑
s∈Sk1 ,k2 ,k3

sign(s)α1(Xs(1), . . . ,Xs(k1))α2(Xs(k1+1), . . . ,Xs(k1+k2))α3(Xs(k1+k2+1), . . . ,Xs(k1+k2+k3)).

ut

121 (answer on page ??). Give some details of the ‘careful book-
keeping’ in the proof of part (b).

7.7.4 Exterior differential

Recall that we have defined the exterior differential on functions by the formula

(d f )(X) = X( f ). (7.16)

(In 114, we also indicated a possible definition of d on 1-forms.) We will now
extend this definition to all forms.

Theorem 7.25. There is a unique collection of linear maps d : Ω k(M)→Ω k+1(M),
extending the map (7.16) for k = 0, such that d(d f ) = 0 for f ∈ C∞(M), and such
that the graded product rule

d(α ∧β ) = dα ∧β +(−1)k
α ∧dβ (7.17)

holds, for α ∈Ω k(M) and β ∈Ω l(M). This exterior differential has the property

d(dα) = 0

for all α ∈Ω k(M).

Proof. Let us first assume that such an exterior differential exists. We will establish
uniqueness, and along the way give a formula.
Observe first that d is necessarily local, in the sense that for any open subset U ⊆M
the restriction (dα)|U depends only on α|U . Equivalently, α|U = 0⇒ (dα)|U = 0.
Indeed, if α|U = 0, and given any p ∈U , we may choose f ∈C∞(M) = Ω 0(M) such
that supp( f )⊆U and f |p = 1. Then f α = 0, hence the product rule (7.17) gives
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0 = d( f α) = d f ∧α + f dα.

Evaluating at p we obtain (dα)p = 0, as claimed.
But locally, a k-form is a linear combination of expressions f0d f1 ∧ ·· · ∧ d fk (see
Lemma 7.21). The graded product rule and the property dd f = 0 force us to define

d( f0d f1∧·· ·∧d fk) = d f0∧d f1∧·· ·∧d fk;

this specifies d uniquely. We also see that d◦ d = 0 on k-forms of any degree, since
this holds true on f0d f1∧·· ·∧d fk.
For open subsets of U ⊆ Rm, we are forced to define the differential of

α = ∑
i1<···<ik

αi1···ik dxi1 ∧·· ·∧dxik ∈Ω
k(U).

as
dα = ∑

i1<···<ik

dαi1···ik ∧dxi1 ∧·· ·∧dxik ∈Ω
k+1(U).

Conversely, we may use this explicit formula to define (dα)|U = d(α|U ) for a coor-
dinate chart domain U ; by uniqueness the local definitions agree on overlaps of any
two coordinate chart domains. ut

Definition 7.26. A k-form ω ∈ Ω k(M) is called exact if ω = dα for some α ∈
Ω k−1(M). It is called closed if dω = 0.

Since d◦d = 0, the exact k-forms are a subspace of the space of closed k-forms. For
the case of 1-forms, we have seen that the integral

∫
γ

α of an exact 1-form α = d f
along a smooth path γ : [a,b]→M is given by the difference of the values at the end
points p = γ(a) and q = γ(b); in particular, for an exact 1-form the integral does not
depend on the choice of path from p to q. In particular, if γ is a loop (that is, p = q)
the integral is zero. A necessary condition for α to be exact is that it is closed. An
example of a 1-form that is closed but not exact is

α =
xdy− ydx

x2 + y2 ∈Ω
1(R2\{0}).

122 (answer on page ??). Prove that the 1-form α above is closed
but not exact.

The quotient space (closed k-forms modulo exact k-forms) is a vector space called
the k-th (de Rham) cohomology

Hk(M) =
{α ∈Ω k(M)| α is closed }
{α ∈Ω k(M)| α is exact }

. (7.18)

(See Appendix A.4 for generalities about quotient spaces.) Note that when M is
connected, then H0(M) =R: A closed 0-form is a function f that is locally constant;
hence for connected M it is globally constant; on the other hand there is no nonzero
exact 0-form.
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123 (answer on page ??). Explain why there are no exact 0-forms
other than 0.

It turns out that whenever M is compact (and often also if M is non-compact), Hk(M)
is a finite-dimensional vector space. The dimension of this vector space

bk(M) = dimHk(M)

is called the k-th Betti number of M; these numbers are important invariants of M
which one can use to distinguish non-diffeomorphic manifolds. For example, if M =
CPn one can show that

bk(CPn) = 1 for k = 0,2, . . . ,2n

and bk(CPn) = 0 otherwise. For M = Sn the Betti numbers are (see Problem ?? at
the end of this chapter, and Problem ?? in the next chapter)

bk(Sn) = 1 for k = 0,n

while bk(Sn) = 0 for all other k. Hence CPn cannot be diffeomorphic to S2n unless
n = 1. For an example when M is not compact we have

bk(Rn) = 1 for k = 0,

while bk(Rn) = 0 for all other k. Put differently, for k > 0, every closed k-form on Rn

is exact. This fact is known as the Poincaré Lemma, and you will prove it in Problems
?? and ?? at the end of this chapter.

7.8 Lie derivatives and contractions

A given vector field X ∈ X(M) determines a C∞(M)-linear map

ιX : Ω
k(M)→Ω

k−1(M)

called contraction by X . Thinking of α ∈ Ω k(M) as a C∞(M)-multilinear form, one
simply puts X into the first slot:

(ιX α)(X1, . . . ,Xk−1) = α(X ,X1, . . . ,Xk−1).

(If k = 0 so that α is a function, one puts ιX α = 0.)
Given two vector fields X ,Y , we have that

ιX ◦ ιY + ιY ◦ ιX = 0 (7.19)
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as operators on forms, due to α(X ,Y,X1, . . . ,Xk−2) = −α(Y,X ,X1, . . . ,Xk−2). Con-
tractions have the following compatibility with the wedge product, similar to that for
the exterior differential:

ιX (α ∧β ) = ιX α ∧β +(−1)k
α ∧ ιX β , (7.20)

for all α ∈Ω k(M), and β ∈Ω l(M).

124 (answer on page ??). Prove Equation (7.20).

125 (answer on page ??). Compute ιZα for

α = sin(x)dx∧dy, Z = ex ∂

∂x
− ∂

∂y
.

The exterior differential d and the contraction operators ιX are both examples of odd
superderivations, where ‘super’ refers to the signs appearing in the product rule. In
the ‘super’ world, a sign change appears whenever two odd objects move past each
other: For example, in (7.20) there is a minus in the second term whenever α is odd,
since the ‘odd’ operator ιX appears to the right of α in the second term.
More formally, a collection of linear maps

D : Ω
k(M)→Ω

k+r(M)

is called a degree r superderivation if it has the property

D(α ∧β ) = D(α)∧β +(−1)rk
α ∧Dβ

for α ∈ Ω k(M), β ∈ Ω l(M). Thus, d is a superderivation of degree 1, while ιX is a
superderivation of degree −1.

126 (answer on page ??). Show that if D1,D2 are degree r1,r2 su-
perderivations on differential forms, then their supercommutator (using the
[·, ·] notation)

[D1,D2] = D1 ◦D2− (−1)r1r2 D2 ◦D1

is a degree r1 + r2 superderivation.
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Note that the identity d◦d = 0 may be written using supercommutators, as [d,d] = 0,
while the identity ιX ◦ ιY + ιY ◦ ιX = 0 now reads as [ιX , ιY ] = 0. From the contractions
and differential, we obtain a superderivation [d, ιX ] of degree 1+(−1) = 0. We shall
temporarily take this to be the definition of the Lie derivative LX : Ω k(M)→Ω k(M),

LX = d◦ ιX + ιX ◦d. (7.21)

Thus, LX = [d, ιX ] in supercommutator notation. A ‘better’ definition will be given
in the next section, where the simple formula (7.21) will be realized as the result of
a theorem. Note that (7.21) is consistent with the earlier notion of the Lie derivative
of functions f ∈C∞(M) = Ω 0(M):

LX ( f ) = (d◦ ιX )( f )+(ιX ◦d)( f ) = ιX (d f ) = X( f ).

By the general result from 126, LX satisfies the product rule

LX (α ∧β ) = LX α ∧β +α ∧LX β (7.22)

for α ∈Ω k(M) and β ∈Ω l(M), as a consequence of the product rules for ιX and d.
The product rule is frequently used for computations:

127 (answer on page ??). For each of the following vector-fields
X ∈ X(R3) and differential forms α ∈ Ω k(R3) on R3, compute the Lie
derivative LX α:

a) X = y ∂

∂x + x ∂

∂y + z ∂

∂ z and α =−ydx− xdy− zdz.

b) X = sinx ∂

∂y − y2 ∂

∂x and α = x2− sin(y).

c) X = sinx ∂

∂y − y2 ∂

∂x and α = (x2 + y2)dx∧dz.

To summarize, we have introduced three operators

d : Ω
k(M)→Ω

k+1(M), LX : Ω
k(M)→Ω

k(M), ιX : Ω
k(M)→Ω

k−1(M)

respectively called the exterior differential, the Lie derivative with respect to X ∈
X(M), and the contraction by X ∈ X(M). These are superderivations of degree
1,0,−1 respectively. One might expect getting other superderivations by taking fur-
ther supercommutators, but nothing new is obtained:

Theorem 7.27 (Cartan calculus). The operators exterior differentiation, Lie deriva-
tion, and contraction satisfy the supercommutator relations

[d,d] = 0, (7.23)
[LX ,LY ] = L[X ,Y ], (7.24)

[ιX , ιY ] = 0, (7.25)
[d,LX ] = 0, (7.26)
[LX , ιY ] = ι[X ,Y ], (7.27)

[d, ιX ] = LX . (7.28)
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This collection of identities is referred to as the Cartan calculus, after Élie Cartan
(1861-1951), and in particular the last identity is called the Cartan formula [2]. Basic
contributions to the theory of differential forms were made by his son Henri Cartan
(1906-1980), who also wrote a textbook [3] on the subject.

Proof. The identities (7.23), (7.25), (7.28) have already been discussed. The identity
(7.26) is proved from the definitions, and using d◦d = 0:

[d,LX ] = d◦LX −LX ◦d
= d◦ (ιX ◦d+d◦ ιX )− (ιX ◦d+d◦ ιX )◦d
= 0.

Consider the identity (7.27). Both D = [LX , ιY ] and D′ = ι[X ,Y ] are superderivations
of degree −1. The identity D = D′ is true for functions f ∈C∞(M) = Ω 0(M) since
both sides act as zero on functions for degree reasons. The identity also holds for
differentials of functions, since

[LX , ιY ]d f = (LX ◦ ιY )d f − (ιY ◦LX )d f

= LX LY f − ιY dLX f using (7.28), (7.26)
= LX LY f −LY LX f using (7.28)
= L[X ,Y ] f

Here the last line uses [LX ,LY ] = L[X ,Y ] on functions, by definition of the Lie bracket.
By 128 below, the equality of D,D′ on functions and differentials of functions
shows D = D′. The remaining identity (7.24) is left to the reader (see 129). ut

128 (answer on page ??).
a) Show that if D is a degree r superderivation on differential forms, and

U ⊆M is open, then (Dα)|U depends only on α|U .
b) Show that if two degree r superderivations D,D′, satisfy D f = D′ f

and D(d f ) = D′(d f ) for all functions f ∈C∞(M), then D = D′.

129 (answer on page ??). Complete the proof of Theorem 7.27 by
proving (7.24).

130 (answer on page ??). Show ιX ◦ ιX = 0 as a consequence of the
Cartan calculus.
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131 (answer on page ??).
a) Use the Cartan calculus to prove the following formula for the exterior

differential of a 1-form α ∈Ω 1(M) given in 114

(dα)(X ,Y ) = LX
(
α(Y )

)
−LY

(
α(X)

)
−α([X ,Y ]).

b) Prove a similar formula for the exterior differential of a 2-form.

The formulas for the differentials of 1-forms and 2-forms generalize to arbitrary k-
forms α ∈Ω k(M). For X1, . . . ,Xk+1 ∈ X(M) we have that

(dα)(X1, . . . ,Xk+1) =
k+1

∑
i=1

(−1)i+1LXi(α(X1, . . . , X̂i, . . .Xk+1)

+∑
i< j

(−1)i+ j
α([Xi,X j],X1, . . . , X̂i, . . . , X̂ j, . . . ,Xk+1),

where the hat notation X̂i indicates that the entry Xi is absent. We leave this general
formula as a homework problem (see Problem ?? at the end of this chapter).

7.9 Pull-backs

Let F ∈C∞(M,N) be a smooth map between manifolds. Similarly to the pull-back
of functions (0-forms) and 1-forms, we have a pull-back operation for k-forms.

Proposition 7.28. There is a well-defined linear map

F∗ : Ω
k(N)→Ω

k(M)

such that for all β ∈Ω k(N) and all p ∈M,

(F∗β )p(v1, . . . ,vk) = βF(p)
(
TpF(v1), . . . ,TpF(vk)

)
. (7.29)

The pullback operation satisfies

F∗(β1∧β2) = F∗β1∧F∗β2 (7.30)

as well as
F∗ ◦d = d◦F∗. (7.31)

Proof. We have to check that the collection of multilinear forms on TpM given
by (7.29) does indeed define a smooth k-form F∗β ∈ Ω k(M). Observe that the
pullback operation is local: If U ⊆ M, V ⊆ N are open subsets with F(U) ⊆ V ,
then (F∗β )p for p ∈ U depends only on β |V . Note also that for wedge products,
F∗(β1∧β2)p = (F∗β1)p∧ (F∗β2)p. Locally, near a given point F(p) ∈ N, every β is
a linear combination of forms
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g0 dg1∧·· ·∧dgk ∈Ω
k(N) (7.32)

with gi ∈C∞(N). (See Lemma 7.21.) Hence, it is enough to show that F∗β is smooth
when β is a function g or the differential of such a function. But F∗g = g ◦F is
the usual pullback of functions, hence is smooth. We claim F∗(dg) = dF∗g. which
shows that F∗(dg) is smooth as well. Given p ∈M and v ∈ TpM we calculate

(F∗(dg))p(v) = (dg)F(p)(TpF(v)) = (TpF(v))(g) = v(F∗g) = d(F∗g)p(v),

proving the claim. This shows that the pullback operation is well-defined. Equation
(7.30) follows from the pointwise property, and (7.31) is proved by applying both
sides to expressions (7.32), using that (7.31) holds true on function g and differentials
of functions dg. ut

Equation (7.31) shows how F∗ interacts with the differential. As for contractions
and Lie derivatives with respect to vector fields, we have the following statement:
Let X ∈ X(M), Y ∈ X(N), with X ∼F Y . Then

ιX ◦F∗ = F∗ ◦ ιY , LX ◦F∗ = F∗ ◦LY .

We leave the proof as Problem ?? at the end of this chapter.
In local coordinates, if F : U →V is a smooth map between open subsets of Rm and
Rn, with coordinates x1, . . . ,xm and y1, . . . ,yn, the pull-back just amounts to ‘putting
y = F(x)’.

132 (answer on page ??). Denote the coordinates on R3 by x,y,z and
those on R2 by u,v. Let F : R3→ R2, (x,y,z) 7→ (y2z, x). Compute

F∗(du∧dv).

The following proposition is the ‘key fact’ toward the definition of an integral of
differential forms.

Proposition 7.29. Let U ⊆Rm with coordinates xi, and V ⊆Rn with coordinates y j,
and let F ∈C∞(U,V ). Suppose m = n. Then

F∗(dy1∧·· ·∧dyn) = J dx1∧·· ·∧dxn

where J is the Jacobian determinant,

J(x) = det
(

∂F i

∂x j

)n

i, j=1
.

Proof.
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F∗β = dF1∧·· ·∧dFn

= ∑
i1...in

∂F1

∂xi1
· · · ∂Fn

∂xin
dxi1 ∧·· ·∧dxin

= ∑
s∈Sn

∂F1

∂xs(1) · · ·
∂Fn

∂xs(n)
dxs(1)∧·· ·∧dxs(n)

= ∑
s∈Sn

sign(s)
∂F1

∂xs(1) · · ·
∂Fn

∂xs(n)
dx1∧·· ·∧dxn

= J dx1∧·· ·∧dxn.

(Where we have used the characterization of the determinant in terms of the group of
permutations.) In this calculation, we noted that the wedge product dxi1 ∧ ·· · ∧ dxin

is zero unless the indices i1, . . . , in are obtained from 1, . . . ,n by a permutation s, in
which case it is given by sign(s)dx1∧·· ·∧dxn. ut

One may regard this result as giving a new (and in some sense, better) definition of
the Jacobian determinant.
Having the notion of pullback of forms, we may reconsider the Lie derivative LX α of
a differential form with respect to a vector field X . Let us assume for simplicity that
X is complete, so that the flow Φt is globally defined. The following formula shows
that LX measures (infinitesimally) the extent to which α is invariant under the flow
of X .

Theorem 7.30. For X a complete vector field, and α ∈Ω k(M),

LX α =
d
dt

∣∣∣
t=0

Φ
∗
t α. (7.33)

Here the derivative on the right hand side is to be understood pointwise, at any p∈M,
as the derivative of (Φ∗t α)p (a function of t with values in the finite-dimensional
vector space of multilinear forms on TpM). The theorem also holds for incomplete
vector fields; indeed, to define the right hand side at a given p ∈M one only needs
Φt near p, and for small |t|.

Proof. To prove this identity, it suffices to check that the right hand side satisfies a
product rule with respect to the wedge product of forms, and that it has the correct
values on functions and on differentials of functions. In detail, let Dα := d

dt

∣∣
t=0Φ∗t α .

Then

D(α1∧α2) =
d
dt

∣∣∣∣
t=0

(Φ∗t α1∧Φ
∗
t α2)

=
d
dt

∣∣∣∣
t=0

(Φ∗t α1)∧α2 +α1∧
d
dt

∣∣∣∣
t=0

(Φ∗t α2)

= Dα1∧α2 +α1∧Dα2

(pointwise, at any p ∈ M). By the usual argument, this implies that Dα|U depends
only on α|U . Next, on functions f ∈C∞(M) we find
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D f =
d
dt

∣∣∣
t=0

Φ
∗
t f = LX f

by definition of the flow of a vector field, and of differentials of functions we have

D(d f ) =
d
dt

∣∣∣
t=0

Φ
∗
t d f = d

d
dt

∣∣∣
t=0

Φ
∗
t f = dLX f = LX d f .

This verifies LX =D on functions and on differential of functions, and since any form
is locally a sum of expressions f0d f1∧·· ·∧d fk it shows LX = D on k-forms. ut





8

Integration

Differential forms of top degree and of compact support can be integrated over ori-
ented manifolds, and more generally over domains (with boundary) in such mani-
folds. A key result concerning integration is Stokes’ theorem, a far-reaching gener-
alization of the fundamental theorem of calculus. The Stokes theorem has numerous
important applications, such as to winding numbers and linking numbers, mapping
degrees, de Rham cohomology, and many more. We begin with a quick review of
integration on open subsets of Euclidean spaces.

8.1 Integration of differential forms

Suppose U ⊆ Rm is open, and ω ∈ Ω m(U) is a form of top degree k = m. Such a
differential form is an expression

ω = f dx1∧·· ·∧dxm

where f ∈C∞(U) (see 101). If supp( f ) is compact, one defines the integral of ω

to be the usual Riemann integral:∫
U

ω =
∫
Rm

f (x1, . . . ,xm) dx1 · · ·dxm. (8.1)

Note that we can regard f as a function on all of Rm, due to the compact support
condition. Let us now generalize this to manifolds.

8.1.1 Integration of differential forms on manifolds

The support of a differential form ω ∈Ω k(M) is the smallest closed subset supp(ω)⊆
M with the property that ω is zero outside of supp(ω) (cf. Definition 3.3). Let M be
an oriented manifold of dimension m, and ω ∈ Ω m(M). If supp(ω) is contained in
an oriented coordinate chart (U,ϕ), then one defines
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M

ω =
∫
Rm

f (x)dx1 · · ·dxm

where f ∈C∞(Rm) is the function, with supp( f )⊆ ϕ(U), determined from

(ϕ−1)∗ω = f dx1∧·· ·∧dxm.

This definition does not depend on the choice of oriented coordinate chart. Indeed,
suppose (V,ψ) is another oriented chart with supp(ω)⊆V , and write

(ψ−1)∗ω = g dy1∧·· ·∧dym,

where y1, . . . ,ym are the coordinates on V . Letting F = ψ ◦ϕ−1 be the change of
coordinates y = F(x), Proposition 7.29 shows

F∗(gdy1∧·· ·∧dym) = (g◦F)J dx1∧·· ·∧dxm,

where J(x) = det(DF(x)) is the determinant of the Jacobian matrix of F at x. Hence,
f (x) = g(F(x))J(x), and we obtain∫

ψ(U)
g(y)dy1 · · ·ym =

∫
ϕ(U)

g(F(x))J(x)dx1 · · ·dxm =
∫

ϕ(U)
f (x)dx1 · · ·dxm,

as required.

Remark 8.1. Here we used the change-of-variables formula from multivariable cal-
culus. It was important to work with oriented charts, guaranteeing that J > 0 ev-
erywhere. Indeed, for general changes of variables, the change-of-variables formula
involves |J| rather than J itself.

More generally, if the support of ω is compact but not necessarily contained in a
single oriented chart, we proceed as follows. Let (Ui,ϕi), i = 1, . . . ,r be a finite
collection of oriented charts covering supp(ω). Together with U0 = M\supp(ω) this
is an open cover of M. For any such open cover, there exists a partition of unity
subordinate to the cover, i.e., functions χi ∈C∞(M) with

supp(χi)⊆Ui,
r

∑
i=0

χi = 1.

A proof for the existence of such partitions of unity (for any open cover, not only
finite ones) is given in in Appendix B. The partition of unity allows us to write ω as
a sum

ω = (
r

∑
i=0

χi)ω =
r

∑
i=0

(χiω)

where each χiω has compact support in a coordinate chart. (We may drop the term
for i = 0, since χ0ω = 0.) Accordingly, we define∫

M
ω =

r

∑
i=0

∫
M

χiω
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We have to check that this is well-defined, independent of the various choices we
have made. To that end, let (Vj,ψ j) for j = 0, . . . ,s be another collection of oriented
coordinate charts covering supp(ω), put V0 = M− supp(ω), and let σ0, . . . ,σs be a
corresponding partition of unity subordinate to the cover by the Vi’s.
Then {Ui ∩Vj : i = 0, . . . ,r, j = 0, . . . ,s} is an open cover, with the collection of
products χiσ j a partition of unity subordinate to this cover. We obtain

s

∑
j=0

∫
M

σ jω =
s

∑
j=0

∫
M
(

r

∑
i=0

χi)σ jω =
s

∑
j=0

r

∑
i=0

∫
M

σ jχiω =
r

∑
i=0

s

∑
j=0

∫
M

σ jχiω =
r

∑
i=0

∫
M

χiω.

8.1.2 Integration over oriented submanifolds

Let M be a manifold (not necessarily oriented), and S a k-dimensional oriented sub-
manifold, with inclusion i : S→ M. We define the integral over S, of any k-form
ω ∈Ω k(M) such that S∩ supp(ω) is compact, as follows:∫

S
ω =

∫
S

i∗ω.

Of course, this definition works equally well for any smooth map from S into M,
it does not have to be an embedding as a submanifold. For example, the integral of
compactly supported 1-forms along arbitrary curves γ : R→M is defined. (Compare
with the definition of integrals of 1-forms along paths in Section 7.6; where γ was
defined on closed intervals.)

8.2 Stokes’ theorem

Let M be an m-dimensional oriented manifold.

Definition 8.2. A region with (smooth) boundary in M is a closed subset D ⊆M of
the form

D = {p ∈M| f (p)≤ 0},
where f ∈C∞(M,R) is a smooth function having 0 as a regular value.

We do not consider f itself as part of the definition of D, only the existence of f
is required. The interior of a region with boundary, given as the largest open subset
contained in D, is

int(D) = {p ∈M| f (p)< 0},
and the boundary is

∂D = {p ∈M| f (p) = 0},
a codimension 1 submanifold (i.e., hypersurface) in M.

Example 8.3. The unit disk

D = {(x,y) ∈ R2| x2 + y2 ≤ 1}

is a region with boundary, with defining function f (x,y) = x2 + y2−1.
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Example 8.4. Recall that for 0 < r < R, the function f ∈C∞(R3) given by

f (x,y,z) = z2 +(
√

x2 + y2−R)2− r2

has zero as a regular value, with f−1(0) a 2-torus. The corresponding region with
boundary D⊆ R3 is the solid torus.

Recall that we are considering D inside an oriented manifold M. The boundary ∂D
may be covered by oriented submanifold charts (U,ϕ), in such a way that ∂D is
given in the chart by the condition x1 = 0, and D by the condition x1 ≤ 0:

ϕ(U ∩D) = ϕ(U)∩{x ∈ Rm| x1 ≤ 0}.

(Indeed, given an oriented submanifold chart for which D lies on the side where
x1 ≥ 0, one obtains a suitable chart by composing with the orientation-preserving
coordinate change (x1, . . . ,xm) 7→ (−x1,−x2,x3 . . . ,xm).) We shall call oriented sub-
manifold charts of this kind ‘region charts’ (this is not a standard name).

Remark 8.5. We originally defined submanifold charts in such a way that the last
m− k coordinates are zero on S, here we require that the first coordinate be zero. It
doesn’t matter, since one can simply reorder coordinates, but works better for our
description of the ‘induced orientation’.

Lemma 8.6. The restriction of the region charts to ∂D form an oriented atlas for
∂D.

Proof. Let (U,ϕ) and (V,ψ) be two region charts, defining coordinates x1, . . . ,xm

and y1, . . . ,ym, and let F = ψ ◦ ϕ−1 : ϕ(U ∩V )→ ψ(U ∩V ), x 7→ y = F(x). It
restricts to a map

F ′ : {x ∈ ϕ(U ∩V )| x1 = 0}→ {y ∈ ψ(U ∩V )|y1 = 0}.

Since y1 > 0 if and only if x1 > 0, the change of coordinates satisfies

∂y1

∂x1

∣∣∣
x1=0

> 0,
∂y1

∂x j

∣∣∣
x1=0

= 0, for j > 0.

Hence, the Jacobian matrix DF(x)|x1=0 has a positive (1,1) entry, and all other en-
tries in the first row equal to zero. Using expansion of the determinant across the first
row, it follows that

det
(
DF(0,x2, . . . ,xm)

)
=

∂y1

∂x1

∣∣∣
x1=0

det
(
DF ′(x2, . . . ,xm)

)
.

which shows that det(DF ′)> 0. ut

In particular, ∂D is again an oriented manifold. To repeat: If x1, . . . ,xm are local
coordinates near p ∈ ∂D, compatible with the orientation and such that D lies on the
side x1 ≤ 0, then x2, . . . ,xm are local coordinates on ∂D. This convention of ‘induced
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orientation’ is arranged in such a way that Stokes’ theorem holds without an extra
sign.
For a top degree form ω ∈Ω m(M) such that supp(ω)∩D is compact, the integral∫

D
ω

is defined similarly to the case of D = M: One covers D∩ supp(ω) by finitely many
submanifold charts (Ui,ϕi) with respect to ∂D (this includes charts that are entirely
in the interior of D), and puts ∫

D
ω = ∑

∫
D∩Ui

χiω

where the χi are supported in Ui and satisfy ∑i χi = 1 over D∩supp(ω). By the same
argument as for D = M, this definition of the integral is independent of the choices
made.

Theorem 8.7 (Stokes’ theorem). Let M be an oriented manifold of dimension m,
and D ⊆ M a region with smooth boundary ∂D. Let α ∈ Ω m−1(M) be a form of
degree m−1, such that supp(α)∩D is compact. Then∫

D
dα =

∫
∂D

α.

As in Section 8.1.2, the right hand side means
∫

∂D i∗α , where i : ∂D ↪→ M is the
inclusion map.

Proof. We shall see that Stokes’ theorem is just a coordinate-free version of the
fundamental theorem of calculus. Let (Ui,ϕi) for i = 1, . . . ,r be a finite collection of
region charts covering supp(α)∩D. Let χ1, . . . ,χr ∈C∞(M) be functions with χi≥ 0,
supp(χi)⊆Ui, and such that χ1+ · · ·+χr is equal to 1 on supp(α)∩D. (For instance,
we may take U1, . . . ,Ur together with U0 =M\supp(α) as an open covering, and take
the χ0, . . . ,χr ∈C∞(M) to be a partition of unity subordinate to this cover.) Since∫

D
dα =

r

∑
i=1

∫
D

d(χiα),
∫

∂D
α =

r

∑
i=1

∫
∂D

χiα,

it suffices to consider the case that α is supported in a region chart.
Using the corresponding coordinates, it hence suffices to prove Stokes’ theorem for
the case that α ∈Ω m−1(Rm) is a compactly supported form in Rm:

D = {x ∈ Rm| x1 ≤ 0}.

That is, α has the form

α =
m

∑
i=1

fi dx1∧·· · d̂xi∧·· ·∧dxm,
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with compactly supported fi ∈C∞(Rm), where the hat means that the corresponding
factor is to be omitted. Only the i = 1 term contributes to the integral over ∂D =
Rm−1, and ∫

Rm−1
α =

∫
f1(0,x2, . . . ,xm) dx2 · · ·dxm.

On the other hand,

dα =
( m

∑
i=1

(−1)i+1 ∂ fi

∂xi

)
dx1∧·· ·∧dxm

Let us integrate each summand over the region D given by x1 ≤ 0. For i > 1, we have∫
∞

∞

· · ·
∫

∞

−∞

∫ 0

−∞

∂ fi

∂xi
(x1, . . . ,xm)dx1 · · ·dxm = 0

where we used Fubini’s theorem to carry out the xi-integration first, and applied the
fundamental theorem of calculus to the xi-integration (keeping the other variables
fixed). Since the integrand is the derivative of a compactly supported function, the
xi-integral is zero. It remains to consider the case i = 1. Here we have, again by
applying the fundamental theorem of calculus,∫

D
dα =

∫
∞

∞

· · ·
∫

∞

−∞

∫ 0

−∞

∂ f1

∂x1
(x1, . . . ,xm)dx1 · · ·dxm

=
∫

∞

∞

· · ·
∫

∞

−∞

f1(0,x2, . . . ,xm)dx2 · · ·dxm

=
∫

∂D
α. ut

As a special case (where D = M with ∂D = /0) we have:

Corollary 8.8. Let α ∈ Ω m−1(M) be a compactly supported form on the oriented
manifold M. Then ∫

M
dα = 0.

Note that it does not suffice that dα has compact support. For example, if f (t) is a
function with f (t) = 0 for t < 0 and f (t) = 1 for t > 1, then d f has compact support,
but

∫
R\{0} d f = 1.

A typical application of Stokes’ theorem shows that for a closed form ω ∈ Ω k(M),
the integral of ω over an oriented compact submanifold does not change with smooth
deformations of the submanifold.

Theorem 8.9. Let ω ∈Ω k(M) be a closed form on a manifold M, and S a compact,
oriented manifold of dimension k. Let F ∈C∞(R×S,M) be a smooth map, thought
of as a smooth family of maps

Ft = F(t, ·) : S→M.
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Then the integrals ∫
S

F∗t ω

do not depend on t.

Proof. Let a < b, and consider the domain D = [a,b]×S⊆R×S. The boundary ∂D
has two components, both diffeomorphic to S. At t = b the orientation is the given
orientation on S, while at t = a we get the opposite orientation. Hence,

0 =
∫

D
F∗dω =

∫
D

dF∗ω =
∫

∂D
F∗ω =

∫
S

F∗b ω−
∫

S
F∗a ω.

Hence
∫

S F∗b ω =
∫

S F∗a ω . ut

Remark 8.10. If the Ft ’s are embeddings, then
∫

S F∗t ω can be regarded as the integrals
of ω over the time dependent family of submanifolds Ft(S)⊆M.

Remark 8.11. Suppose that one member of this family of maps, say the map F1, takes
values in a k−1-dimensional submanifold. Then F∗1 ω = 0. (Indeed, the assumption
means that F1 = j ◦F ′1, where j is the inclusion of a k−1-submanifold and F ′1 takes
values in that submanifold. But j∗ω = 0 for degree reasons.) It then follows that∫

S F∗t ω = 0 for all t. A special case of this situation is when one member of the
family is the constant map to a point.

Given a smooth map ϕ : S → M, one refers to a smooth map F : R× S → M
with F0 = ϕ as an ‘smooth deformation’ (or ‘isotopy’) of ϕ . We say that ϕ can be
smoothly deformed into ϕ ′ if there exists a smooth isotopy F with ϕ = F0 and ϕ ′ =
F1. The theorem shows that if S is oriented, and if there is a closed form ω ∈Ω k(M)
with ∫

S
ϕ
∗
ω 6=

∫
S
(ϕ ′)∗ω

then ϕ cannot be smoothly deformed into ϕ ′. This observation has many applica-
tions; here are some of them.

Example 8.12. Suppose ϕ : S→ M is a smooth map, where S is an oriented mani-
fold of dimension k. Suppose ω ∈ Ω k(M) is closed, dω = 0. If

∫
S ϕ∗ω 6= 0, then ϕ

cannot be ‘deformed’ into a map taking values in a lower-dimensional submanifold;
in particular it cannot be deformed into a constant map. Indeed, Remark 8.11 shows
that if such a deformation existed, the integral would have to be zero.

Example 8.13 (Winding number). Let ω ∈Ω 2(R2 \{0}) be the 1-form

ω =
1

2π(x2 + y2)
(xdy− ydx)

In polar coordinates x = r cosθ , y = r sinθ , one has that ω = 1
2π

dθ . Using this fact
one sees that ω is closed (but not exact, since θ is not a globally defined function on
R2 \{0}.) Hence, if
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γ : S1→ R2 \{0}
is any smooth map (a ‘loop’), then the integral

w(γ) =
∫

S1
γ
∗
ω

does not change under deformations (isotopies) of the loop. In particular, γ cannot
be deformed into a constant map, unless the integral is zero. The number w(γ) is the
winding number of γ . (One can show that this is always an integer, and that two loops
can be deformed into each other if and only if they have the same winding number.)

133 (answer on page ??). Consider S1 as the quotient R/ ∼ under
the equivalence relation t ∼ t ′⇔ t ′− t ∈Z. Find the winding number of the
loop

γ : S1→ R2 \{0}, γ([t]) =
(

cos(2πnt),sin(2πnt)
)
.

Let M be a compact, connected, oriented manifold. There exists a top degree differ-
ential form ω ∈Ω m(M) such that

∫
M ω = 1. The form ω is closed for degree reasons

(the space of m+1-forms on an m-dimensional manifold is trivial).

134 (answer on page ??). Show that ω is not exact.

In terms of de Rham cohomology, the theorem tells us that for a compact, oriented
manifold M of dimension m = dim(M), the m-th cohomology group Hm(M) must be
nontrivial. In fact, more is true:

Theorem 8.14. Let M be a compact, connected, and oriented manifold of dimension
m. Then the integration map

∫
M : Ω m(M)→R induces an isomorphism in cohomol-

ogy,
Hm(M)∼= R. (8.2)

That is, an m-form on M is exact if and only if its integral vanishes.

Thus, any top degree form ω with
∫

M ω = 1 gives the basis element [ω] correspond-
ing to 1 under this isomorphism. The proof of this theorem will be left as a homework
problem at the end of this chapter.

Example 8.15. Let M,N be two compact, connected, oriented manifolds of the same
dimension m = n, and let ω ∈ Ω m(N) with

∫
N ω = 1. Given a smooth map F ∈

C∞(M,N), we can define the degree of F

deg(F) =
∫

M
F∗ω.

By Theorem 8.9, the degree is invariant under smooth deformations of F . It is also
independent of the choice of ω: adding an exact form dα changes F∗ω by an exact
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form F∗dα = dF∗α , which does not affect the integral. It turns out that deg(F)
is always an integer. We can prove this under the assumption that F has at least
one regular value q. (It is a non-trivial result from differential topology that regular
values always exist). The pre-image F−1(q) ⊆ M is a finite set (by compactness),
say {p1, . . . , pr}, and for all pi the map F restricts to a local diffeomorphism Ui →
F(Ui). Letting V =

⋂r
i=1 F(Ui), we may take ω , with

∫
N ω = 1, to be supported in

V . Then F∗ω is supported in the disjoint union of the Ui’s. We have that
∫

Ui
F∗ω =

εpi

∫
V ω = εpi , where the sign εpi =±1 comes from a possible change of orientation.

Consequently,

deg(F) =
∫

M
F∗ω =

r

∑
i=1

∫
Ui

F∗ω =
r

∑
i=1

εpi = degq(F) ∈ Z,

the local mapping degree of F defined in 4.23. Note that this argument finally con-
firms the independence of degq(F) of the choice of regular value q.

135 (answer on page ??). The winding number of a path in R2 \{0}
can also be regarded as a degree of a map. Explain how.

Example 8.16 (Linking number). Let f ,g : S1 → R3 be two smooth maps whose
images don’t intersect, that is, with f (z) 6= g(w) for all z,w ∈ S1 (we regard S1 as the
unit circle in C). Define a new map

F : S1×S1→ S2, (z,w) 7→ f (z)−g(w)
|| f (z)−g(w)||

.

On S2, we have a 2-form ω of total integral 1. It is the pullback of

1
4π

(
xdy∧dz− ydx∧dz+ zdx∧dy

)
∈Ω

2(R3)

to the 2-sphere. The integral

L( f ,g) =
∫

S1×S1
F∗ω

is called the linking number of f and g. Note that it is the degree of the map S1×S1→
S2 obtained from f ,g. Note that if it is possible to deform one of the loops, say f ,
into a constant loop through loops that are always disjoint from g, then the linking
number is zero. In his case, we consider f ,g as ‘unlinked’.

8.3 Volume forms

A top degree differential form Γ ∈ Ω m(M) is called a volume form if it is non-
vanishing everywhere: Γp 6= 0 for all p ∈M. In a local coordinate chart (U,ϕ), this
means that
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(ϕ−1)∗Γ = f dx1∧·· ·∧dxm

where f (x) 6= 0 for all x ∈ ϕ(U).
Suppose S ⊆M is a submanifold of codimension 1 (a hypersurface), and X ∈ X(M)
a vector field that is nowhere tangent to S. Let i : S→M be the inclusion. Given a
volume form on M, the form

i∗
(
ιXΓ

)
∈Ω

m−1(S)

is a volume form on S.

136 (answer on page ??). Verify the claim that i∗
(
ιXΓ

)
is a volume

form on S.

Example 8.17. The Euclidean space Rm has a standard volume form

Γ = dx1∧·· ·∧dxm.

If S is a hypersurface given as a level set f−1(0), where 0 is a regular value of f , then
the gradient vector field

X =
m

∑
i=1

∂ f
∂xi

∂

∂xi

has the property that X is nowhere tangent to S. By the above, it follows that S inherits
a volume form i∗(ιXΓ ).

Example 8.18. As a special case, let i : Sn→ Rn+1 be the inclusion of the standard
n-sphere. Let X = ∑

n
i=0 xi ∂

∂xi . Then

ιX (dx0∧·· ·∧dxn) =
n

∑
i=0

(−1)ixidx1∧·· ·∧dxi−1∧dxi+1∧·· ·∧dxn

pulls back to a volume form on Sn.

Proposition 8.19. A volume form Γ ∈ Ω m(M) determines an orientation on M, by
taking as the oriented charts those charts (U,ϕ) such that

(ϕ−1)∗Γ = f dx1∧·· ·∧dxm

with f > 0 everywhere on Φ(U).

Proof. It is clear that we can cover M with such charts (as f locally has the same
sign, and we may multiply ϕ by −1 if necessary). We have to check that the con-
dition is consistent. Suppose (U,ϕ) and (V,ψ) are two charts, where (ϕ−1)∗Γ =
f dx1∧·· ·∧dxm and (ψ−1)∗Γ = g dy1∧·· ·∧dym with f > 0 and g > 0. If U ∩V is
non-empty, let F = ψ ◦ϕ−1 : ϕ(U)→ ψ(V ) be the transition function. Then
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F∗(ψ−1)∗Γ |U∩V = (ϕ−1)∗Γ |U∩V ,

hence
g(F(x)) J(x) dx1∧·· ·∧dxm = f (x) dx1∧·· ·∧dxm.

where J is the Jacobian determinant of the transition map F = ψ ◦ϕ−1. Hence f =
J (g◦F) on ϕ(U ∩V ). Since f > 0 and g > 0, it follows that J > 0. Hence the two
charts are oriented compatible. ut

Theorem 8.20. A manifold M is orientable if and only if it admits a volume form. In
this case, any two volume forms compatible with the orientation differ by an every-
where positive smooth function:

Γ
′ = fΓ , f > 0.

Proof. As we saw above, any volume form determines an orientation. Conversely, if
M is an oriented manifold, there exists a volume form compatible with the orienta-
tion: Let {(Uα ,ϕα)} be an oriented atlas on M. Then each

Γα = ϕ
∗
α(dx1∧·· ·∧dxm) ∈Ω

m(Uα)

is a volume form on Uα ; on overlaps Uα ∩Uβ these are related by the Jacobian deter-
minants of the transition functions, which are strictly positive functions. Let {χα} be
a locally finite partition of unity subordinate to the cover {Uα}, see Appendix B.4.
The forms χαΓα have compact support in Uα , hence they extend by zero to global
forms on M (somewhat imprecisely, we use the same notation for this extension).
The sum

Γ = ∑
α

χαΓα ∈Ω
m(M)

is a well-defined volume form. Indeed, near any point p at least one of the summands
is non-zero; and if other summands in this sum are non-zero, they differ by a positive
function. ut

For a compact manifold M with a given volume form Γ ∈ Ω m(M), one can define
the volume of M,

vol(M) =
∫

M
Γ .

Here the orientation used in the definition of the integral is taken to be the orientation
given by Γ . Thus vol(M) > 0. By the discussion around Theorem 8.14, this means
that Γ cannot be exact, and so represents a non-trivial cohomology class. The com-
pactness of M is essential here: For instance, dx is an exact volume form on the real
line R.
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Background material

A.1 Notions from set theory

A.1.1 Countability

A set X is countable if it is either finite (possibly empty), or there exists a bijective
map f : N→ X . We list some basic facts about countable sets:

• N, Z, Q are countable, R is not countable.
• If X1,X2 are countable, then the cartesian product X1×X2 is countable.
• If X is countable, then any subset of X is countable.
• If X is countable, and f : X → Y is surjective, then Y is countable.
• If (Xi)i∈I are countable sets, indexed by a countable set I, then the (disjoint)

union
⊔

i∈I Xi is countable.

A.1.2 Equivalence relations

A relation from a set X to a set Y is simply a subset

R⊆ Y ×X .

We write x ∼R y if and only if (y,x) ∈ R. When R is understood, we write x ∼ y. If
Y = X we speak of a relation on X .

Example A.1. Any map f : X → Y defines a relation, given by its graph

graph( f ) = {( f (x),x)|x ∈ X}.

In this sense relations are generalizations of maps; for example, they are often used
to describe ‘multi-valued’ maps.

Remark A.2. Given another relation S ⊆ Z×Y , one defines a composition S ◦R ⊆
Z×X , where

S◦R = {(z,x)| ∃y ∈ Y : (z,y) ∈ S, (y,x) ∈ R}.
Our conventions are set up in such a way that if f : X → Y and g : Y → Z are two
maps, then graph(g◦ f ) = graph(g)◦graph( f ).
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Example A.3. On the set X = R we have relations ≥,>,<, ≤,=. But there is also
the relation defined by the condition x∼ x′⇔ x′− x ∈ Z, and many others.

A relation ∼ on a set X is called an equivalence relation if it has the following
properties,

1. Reflexivity: x∼ x for all x ∈ X ,
2. Symmetry: x∼ y⇒ y∼ x,
3. Transitivity: x∼ y, y∼ z⇒ x∼ z.

Given an equivalence relation, we define the equivalence class of x ∈ X (using the
notation [·]) to be the subset

[x] = {y ∈ X | x∼ y}.

Note that X is a disjoint union of its equivalence classes. We denote by X/ ∼ the
set of equivalence classes. That is, all the elements of a given equivalence class are
lumped together and represent a single element of X/ ∼. One defines the quotient
map

q : X → X/∼, x 7→ [x].

By definition, the quotient map is surjective.

Remark A.4. There are two other useful ways to think of equivalence relations:

• An equivalence relation R on X amounts to a decomposition X =
⊔

i∈I Xi as a
disjoint union of subsets. Given R, one takes Xi to be the equivalence classes;
given the decomposition, one defines R = {(y,x) ∈ X×X |∃i ∈ I : x,y ∈ Xi}.
• An equivalence relation amounts to a surjective map q : X → Y . Indeed, given

R one takes Y := X/∼ with q the quotient map; conversely, given q one defines
R = {(y,x) ∈ X×X | q(x) = q(y)}.

Remark A.5. Often, we will not write out the entire equivalence relation. For exam-
ple, if we say “the equivalence relation on S2 given by x∼−x”, then it is understood
that we also have x∼ x, since reflexivity holds for any equivalence relation. Similarly,
when we say “the equivalence relation on R generated by x∼ x+1”, it is understood
that we also have x ∼ x+ 2 (by transitivity: x ∼ x+ 1 ∼ x+ 2) as well as x ∼ x− 1
(by symmetry), hence x ∼ x+ k for all k ∈ Z. (Any relation R0 ⊆ X ×X extends to
a unique smallest equivalence relation R; one says that R is the equivalence relation
generated by R0.)

Example A.6. Consider the equivalence relation on S2 given by

(x,y,z)∼ (−x,−y,−z).

The equivalence classes are pairs of antipodal points; they are in 1-1 correspondence
with lines in R3. That is, the quotient space S2/∼ is naturally identified with RP2.
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Example A.7. The quotient space R/ ∼ for the equivalence relation x ∼ x+ 1 on R
is naturally identified with S1. If we think of S1 as a subset of R, the quotient map is
given by t 7→ (cos(2πt),sin(2πt)).

Example A.8. Similarly, the quotient space for the equivalence relation on R2 given
by (x,y)∼ (x+ k,y+ l) for k, l ∈ Z is the 2-torus T 2.

Example A.9. Let E be a k-dimensional real vector space. Given two ordered bases
(e1, . . . ,ek) and (e′1, . . . ,e

′
k), there is a unique invertible linear transformation A : E→

E with A(ei) = e′i. The two ordered bases are called equivalent if det(A) > 0. One
checks that equivalence of bases is an equivalence relation. There are exactly two
equivalence classes; the choice of an equivalence class is called an orientation on E.
For example, Rn has a standard orientation defined by the standard basis (e1, . . . ,en).
The opposite orientation is defined, for example, by (−e1,e2, . . . ,en). A permuta-
tion of the standard basis vectors defines the standard orientation if and only if the
permutation is even (see below).

A.2 Permutations

Let X be a set with n < ∞ elements. A permutation of X is the same as an invertible
map s : X → X . The set of permutations form a group, with product the composition
of permutations, and with identity element the trivial permutation. A permutation
interchanging two elements of X , while fixing all other elements, is called a transpo-
sition.

By choosing an enumeration of the elements of X , we may assume

X = {1, . . . ,n};

the corresponding group is denoted Sn. For i < j, we denote by ti j the transposition
of the indices i, j (leaving all others fixed).
It is standard practice to denote a permutation s(1) = i1, . . . ,s(n) = in by a symbol∗

(i1, i2, · · · , in).

Alternatively, one can simply list where the elements map to, e.g.

1→ i1, 2→ i2, . . . , n→ in.

Example A.10. The notation

(2,4,1,3)→ (3,2,4,1)

∗ Overloading the parenthesis (·, ·) notation. One uses context to distinguish between a per-
mutation, an ordered tuple, and an open interval.
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signifies the permutation s(2) = 3, s(4) = 2, s(3) = 1, s(1) = 4. After listing the el-
ements in the proper order s(1) = 4, s(2) = 3, s(3) = 1, s(4) = 2, it is thus described
by the symbol

(4,3,1,2).

By induction, one may prove that every permutation is a product of transpositions.
In fact, it is enough to consider transpositions of adjacent elements, i.e., those of the
form ti i+1.

Example A.11. For s = (4,3,1,2), use the following transpositions to put s back to
the original position:

(4,3,1,2)→ (4,1,3,2)→ (1,4,3,2)→ (1,4,2,3)→ (1,2,4,3)→ (1,2,3,4).

Reversing arrows, this shows how to write s as a product of five transpositions of
adjacent elements: s = t13 t14 t23 t24 t34.

A permutation s∈ Sn of {1, . . . ,n} is called even if the number of pairs (i, j) such that
i < j but s(i) > s( j) is even, and is called odd if the number of such ‘wrong order’
pairs is odd. In particular, every transposition is odd.

Example A.12. Let s ∈ S4 be the permutation s = (4,3,1,2) has five pairs of indices
in the wrong order,

(4,3),(4,1),(4,2),(3,1),(3,2).

Hence, s is odd.

Of course, computing the sign by listing all pairs in the wrong order can be cum-
bersome. Fortunately, there are much simpler ways of funding the parity. Define a
map

sign : Sn→{1,−1}

by setting sign(s) = 1 if the permutation is even, sign(s) =−1 if the permutation is
odd. View {1,−1} as a group, with product the multiplication.

Theorem A.13. The map sign : Sn → {1,−1} is a group homomorphism. That is,
sign(s′s) = sign(s′)sign(s′) for all s,s′ ∈ Sn.

Proof (Sketch). This may be proved by examining the effect of precomposing a given
permutation s with a transposition ti,i+1 of two adjacent elements. If i, i+ 1 were a
‘right order’ pair for s, then they will be a ‘wrong order’ pair for s̃; the relative order
for all other pairs remains unchanged. Consequently, the signs of s̃ and s are opposite.
It follows by induction that if s can be written as a product of N transpositions of
adjacent elements, then sign(s) = (−1)N . A similar reasoning applies to s′, so that
sign(s′) = (−1)N′ . The expressions for s,s′ as products of transpositions of adjacent
elements gives another such expression for s′s, involving N +N′ transpositions.

A simple consequence is that sign(s) = (−1)N whenever s is a product of N transpo-
sitions (not necessarily adjacent ones).
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Example A.14. We saw that s = (4,3,1,2) is a product of five transpositions of ad-
jacent elements, hence sign(s) = (−1)5 = −1. But if we use general transpositions,
we only need three steps to put (4,3,1,2) in the initial position:

(4,3,1,2)→ (1,3,4,2)→ (1,2,4,3)→ (1,2,3,4)

We once again see that sign(s) = (−1)3 =−1.

The permutation group, and the sign function, appear in the formula for the determi-
nant of an n×n-matrix A with entries Ai j:

det(A) = ∑
s∈Sn

sign(s)As(1)1 · · ·As(n)n

A.3 Algebras

A.3.1 Definition and examples

An algebra (over the field R of real numbers) is a vector space A , together with a
multiplication (product) A ×A →A , (a,b) 7→ ab such that

1. The multiplication is associative: That is, for all a,b,c ∈A

(ab)c = a(bc).

2. The multiplication map is linear in both arguments: That is,

(λ1a1 +λ2a2)b = λ1(a1b)+λ2(a2b),

a(µ1b1 +µ2b2) = µ1(ab1)+µ2(ab2),

for all a,a1,a2,b,b1,b2 ∈A and all scalars λ1,λ2,µ1,µ2 ∈ R.

The algebra is called commutative if ab = ba for all a,b ∈A . A unital algebra is an
algebra A with a distinguished element 1A ∈A (called the unit), with

1A a = a = a1A

for all a ∈A .

Remark A.15. One can also consider non-associative product operations on vector
spaces, most importantly one has the class of Lie algebras. If there is risk of confu-
sion with these or other concepts, we may refer to associative algebras.

Remark A.16. One can also consider algebras over other fields.

Example A.17. The space C of complex numbers (regarded as a real vector space
R2) is a unital, commutative algebra, containing R⊆ C as a subalgebra.
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Example A.18. A more sophisticated example is the algebra H∼= R4 of quaternions,
which is a unital non-commutative algebra. Elements of H are written as

x = a+ ib+ jc+ kd

with a,b,c,d ∈ R; here i, j,k are just formal symbols. The multiplication of quater-
nions is specified by the rules

i2 = j2 = k2 =−1, i j = k =− ji, jk = i =−k j, ki = j =−ik.

Elements of the form z= a+ ib form a subalgebra of H isomorphic to C. The norm of
a quaternion is defined by |x|=

√
a2 +b2 + c2 +d2; it has the properties |x1 + x2| ≤

|x1 + x2| and |x1x2| = |x1||x2|. The algebra of quaternions may also be described as
an algebra of complex 2×2-matrices of the form(

z w
−w z

)
with z,w∈C, with the algebra multiplication given by the multiplication of matrices.

Example A.19. For any n, the space MatR(n) of n× n matrices, with product the
matrix multiplication, is a non-commutative unital algebra. One can also consider
matrices with coefficients in C, denoted MatC(n), or in fact with coefficients in any
given algebra.

Example A.20. For any set X , the space of functions f : X → R is a unital com-
mutative algebra, where the product is given by pointwise multiplication. Given a
topological space X , one has the unital algebra C(X) of continuous R-valued func-
tions. IF X is non-compact, this has a (non-unital) subalgebra C0(X) of continuous
functions vanishing outside a compact set.

A.3.2 Homomorphisms of algebras

A homomorphism of algebras Φ : A →A ′ is a linear map preserving products:

Φ(ab) = Φ(a)Φ(b).

(For a homomorphism of unital algebras, one asks in addition that Φ(1A ) = 1A ′ .) It
is called an isomorphism of algebras if Φ is invertible. For the special case A ′ =A ,
these are also called algebra automorphisms of A . Note that the algebra automor-
phisms form a group under composition.

Example A.21. Consider R2 as an algebra, with product coming from the identifica-
tion R2 =C. The complex conjugation z 7→ z defines an automorphism Φ : R2→R2

of this algebra.

Example A.22. The algebra H of quaternions has an automorphism given by cyclic
permutation of the three imaginary units:

Φ(x+ iu+ jv+ kw) = x+ ju+ kv+ iw.
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Example A.23. Let A = MatR(n) the algebra of n×n-matrices. If U ∈A is invert-
ible, then X 7→Φ(X) =UXU−1 is an algebra automorphism.

Example A.24. Suppose A is a unital algebra. Let A × be the set of invertible ele-
ments, that is, elements u ∈ A for which there exists v ∈ A with uv = vu = 1A .
Given u, such v is necessarily unique (write v = u−1), and the map A → A , a 7→
uau−1 is an algebra automorphism. Such automorphisms are called inner.

A.3.3 Derivations of algebras

Definition A.25. A derivation of an algebra A is a linear map D : A →A satisfy-
ing the product rule

D(a1a2) = D(a1)a2 +a1D(a2).

If dimA < ∞, then a derivation may be regarded as an infinitesimal automorphism
of an algebra. Indeed, let U : R→ End(A ), t 7→Ut be a smooth curve with U0 = I,
such that each Ut is an algebra automorphism. Consider the Taylor expansion,

Ut = I + tD+ . . .

here
D =

d
dt

∣∣∣
t=0

Ut

is the velocity vector at t = 0. By taking the derivative of the condition

Ut(a1a2) =Ut(a1)Ut(a2)

at t = 0, we get the derivation property for D. Conversely, if D is a derivation, then

Ut = exp(tD) =
∞

∑
n=0

tn

n!
Dn

(using the exponential of a matrix) is a well-defined curve of algebra automorphisms.
We leave it as an exercise to check the automorphism property; it involves proving
the property

Dn(a1a2) = ∑
k

(
n
k

)
Dk(a1) Dn−k(a2)

for all a1,a2 ∈A .
If A has infinite dimensions, one may still want to think of derivations D as in-
finitesimal automorphisms, even though the discussion will run into technical prob-
lems. (For instance, the exponential map of infinite rank endomorphisms is not well-
defined in general.)
A collection of facts about derivations of algebras A :
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1. Any given x ∈A defines a derivation

D(a) = [x,a] := xa−ax.

(Exercise: Verify that this is a derivation.) These are called inner derivations. If
A is commutative (for example A =C∞(M)) the inner derivations are all trivial.
At the other extreme, for the matrix algebra A = MatR(n), one may show that
every derivation is inner.

2. If A is a unital algebra, with unit 1A , then D(1A ) = 0 for all derivations D.
(This follows by applying the defining property of derivations to 1A = 1A 1A .)

3. Given two derivations D1,D2 of an algebra A , their commutator (using the [·, ·]
notation)

[D1,D2] = D1D2−D2D1

is again a derivation. Indeed, if a,b ∈A then

D1D2(ab) = D1
(
D2(a)b+aD2(b)

)
= (D1D2)(a)b+a(D1D2)(b)+D1(a)D2(b)+D2(a)D1(b).

Subtracting a similar expression with indices 1 and 2 interchanged, one obtains
the derivation property of [D1,D2].

A.3.4 Modules over algebras

Definition A.26. A (left) module over an algebra A is a vector space E together
with a map (module action) A ×E → E , (a,x) 7→ ax such that

1. For a,b ∈A and x ∈ E ,
(ab)x = a(bx).

2. The module action is linear in both arguments: That is,

(λ1a1 +λ2a2)x = λ1(a1x)+λ2(a2x),

a(µ1x1 +µ2x2) = µ1(ax1)+µ2(ax2),

for all a,a1,a2 ∈A , x,x1,x2 ∈ E , and all scalars λ1,λ2,µ1,µ2 ∈ R.

1. Every algebra A is a module over itself, with the module action given by algebra
multplication from the left.

2. If the algebra A is commutative, then the space of derivations is a module over
A : if D is a derivation and x ∈A then a 7→ (xD)(a) := xD(a) is again a deriva-
tion:

(xD)(ab) = x(D(ab)) = x(D(a)b+a(D(b)) = (xD)(a)b+a(xD)(b),

where we used xa = ax.
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A.4 Dual spaces and quotient spaces

Let E be a vector space over a field F. (We mostly have in mind the cases F = R or
C.) The dual space is the space of linear functionals ϕ : E→ F,

E∗ = L(E,F),

it is again a vector space over F. If n = dimE < ∞, and v1, . . . ,vn is a basis of E,
then the dual space E∗ has a basis ϕ1, . . . ,ϕn such that ϕ i(v j) = δ i

j for all i, j. In
particular, dimE∗ = dimE, and in particular E and E∗ are isomorphic, for example
by the map taking vi to ϕ i. Note however that there is no canonical isomorphism:
the isomorphism just described depends on the choice of a basis, and for a general E
it is not possible to describe an isomorphism E→ E∗ without making extra choices.
Furthermore, if dimE = ∞ is then E and E∗ are in fact not isomorphic; intuitively,
E∗ is ‘more’ infinite-dimensional than E. For instance, if E has a countable (infinite)
basis then E∗ does not admit a countable basis.
For any vector space E, any v ∈ E defines a linear functional on the dual space E∗,
given by evaluation:

evv : E∗→ F, ϕ 7→ ϕ(v).

This defines a canonical linear map

E→ E∗∗ = (E∗)∗, v 7→ evv.

This map is injective; hence, if dimE < ∞ it is an isomorphism.
Suppose that E ′ ⊆ E is a subspace. Define an equivalence relation on E, where
v1 ∼ v2⇔ v1− v2 ∈ E ′. The set of equivalence classes is called the quotient space,
and is denoted by

E/E ′ = {[v] ∈ E}.

It has a unique vector space structure in such a way that the quotient map E→ E/E ′

is linear; specifically, [v1]+ [v2] = [v1 + v2] for v1,v2 ∈ E and λ [v] = [λv] for v ∈ E
and λ ∈ F. Note that the quotient map E → E/E ′ is surjective, with kernel (null
space) equal to E ′; conversely, if E→ E ′′ is any surjective linear map with kernel E ′,
then E ′′ is canonically isomorphic to E/E ′.
The subspace E ′ ⊆ E also determines a subspace of the dual space, namely its anni-
hilator

ann(E ′) = {ϕ ∈ E∗| ϕ(v) = 0 for all v ∈ E ′}.

(Also common are notations such as (E ′)0, or also annE∗(E ′) to indicate the ambient
space.) For ϕ ∈ ann(E ′), one obtains a linear functional on E/E ′, by

E/E ′→ F, [v] 7→ ϕ(v).

This is well-defined exactly because ϕ vanishes on E ′. Conversely, given a linear
functional on E/E ′, its composition with the quotient map E → E/E ′ is a linear
functional on E vanishing on E ′. This defines an isomorphism
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(E/E ′)∗
∼=−→ ann(E ′).

Note that E,E ′ may be infinite-dimensional here; if they are finite-dimensional then
we obtain, in particular,

dimann(E ′) = dim(E/E ′) = dimE−dimE ′.

Furthermore, in this case, ann(ann(E ′)) = E ′ under the identification of E∗∗ with E.

Consider next the situation that E comes equipped with a symmetric bilinear form
β : E ×E → F. That is, β is linear in each argument, leaving the other fixed, and
β (v1,v2) = β (v2,v1) for all v1,v2. Let us assume for the remainder of this subsection
that dimE < ∞. Then β is called non-degenerate if it has the property that for all
v ∈ V , one has β (v,w) = 0 for all w ∈ E only if v = 0. Equivalently, the linear map
β [ : E→ E∗, v 7→ β (v, ·) is an isomorphism. Hence, a non-degenerate bilinear form
gives a concrete isomorphism between E and E∗. For a subspace E ′ we define the
orthogonal subspace as

(E ′)⊥ = {v ∈ E| β (v,w) = 0 for all w ∈ E ′}.

The isomorphism β [ : E → E∗ restricts to an isomorphism (E ′)⊥ → ann(E ′); in
particular, dim(E ′)⊥ = dimE−dimE ′ and (E ′)⊥⊥ = E ′.
If F = R and if the bilinear form β is positive definite (i.e. β (v,v) > 0 for v 6= 0)
then (E ′)⊥∩E ′ = {0}, and one often refers to (E ′)⊥ as the orthogonal complement.
However, in more general situations the space (E ′)⊥ need not be a complement to
E ′.
As a final remark, note that a similar discussion goes through for nondegenerate
skew-symmetric bilinear forms ω , i.e. such that ω(v1,v2) =−ω(v2,v1) and the map
ω[ : E → E∗ is an isomorphism. In particular, for E ′ ⊆ E one can define the ω-
orthogonal space (E ′)ω , and one has (E ′)ωω = E ′.
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Topology of manifolds

B.1 Topological notions

A topological space is a set X together with a collection of subsets U ⊆ X called
open subsets , with the following properties:

• /0,X are open.
• If U,U ′ are open then U ∩U ′ is open.
• For any collection {Uα} of open subsets, the union

⋃
α Uα is open.

The collection of open subsets is called the topology of X . In the third condition, the
index set need not be finite, or even countable.
The space Rn has a standard topology given by the usual open subsets. Likewise, the
open subsets of a manifold M define a topology on M. For any set X , one has the
trivial topology where the only open subsets are /0 and X , and the discrete topology
where every subset is considered open. An open neighborhood of a point p is an
open subset containing it. A topological space is called Hausdorff of any two distinct
points have disjoint open neighborhoods.
Let X be a topological space. Then any subset A⊆ X has a subspace topology, with
open sets the collection of all intersections U ∩A such that U ⊆ X is open. Given a
surjective map q : X → Y , the space Y inherits a quotient topology, whose open sets
are all V ⊆ Y such that the pre-image q−1(V ) = {x ∈ X | q(x) ∈V} is open.
A subset A is closed if its complement X\A is open. Dual to the statements for open
sets, one has

• /0,X are closed.
• If A,A′ are closed then A∪A′ is closed.
• For any collection {Aα} of closed subsets, the intersection

⋂
α Aα is closed.

For any subset A, denote by A its closure, given as the smallest closed subset con-
taining A.
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B.2 Manifolds are second countable

A basis for the topology on X is a collection B = {Uα} of open subsets of X such
that every U is a union from sets from B. (Equivalently, for all open U and all p ∈U
there exists α such that p ∈Uα ⊆U .) In contrast to the notion of basis of a vector
space, this collection does not have to be minimal in any sense; for instance, the
collection of all open subsets of a topological space is a basis.

Example B.1. Let X = Rn. Then the collection of all open balls Bε(x), with ε > 0
and x ∈ Rn, is a basis for the topology on Rn.

A topological space is said to be second countable if its topology has a countable
basis.

Proposition B.2. Rn is second countable.

Proof. A countable basis is given by the collection of all rational balls (cf. 47), by
which we mean ε-balls Bε(x) such that x ∈ Qm and ε ∈ Q>0. To check that it is a
basis, let U ⊆Rm be open, and p ∈U . Choose ε ∈Q>0 such that B2ε(p)⊆U . There
exists a rational point x ∈ Qn with ||x− p|| < ε . This then satisfies p ∈ Bε(x) ⊆U .
Since p was arbitrary, this proves the claim.

The same reasoning shows that for any open subset U ⊆Rm, the rational ε-balls that
are contained in U form a basis of the topology of U .

Proposition B.3. Manifolds are second countable.

Proof. Given a manifold M, let A = {(Uα ,ϕα)} be a countable atlas. Then the set
of all ϕ−1

α (Bε(x)), where Bε(x) is a rational ball contained in ϕα(Uα), is a countable
basis for the topology of M. Indeed, any open subset U is a countable union over
all U ∩Uα , and each of these intersections is a countable union over all ϕ−1

α (Bε(x))
such that Bε(x) is a rational ε-ball contained in U ∩Uα . ut

B.3 Manifolds are paracompact

A collection {Uα} of open subsets of X is called an open covering of A ⊆ X if
A ⊆

⋃
α Uα . Consider the case A = X . A refinement of an open cover {Uα} of X is

an open cover {Vβ} of X such that each Vβ is contained in some Uα . It is a subcover
if each Vβ ’s is equal to some Uα .
A topological space X is called compact if every open cover of X has a finite sub-
cover. A topological space is called paracompact if every open cover {Uα} has a
locally finite refinement {Vβ}: that is, every point has an open neighborhood meet-
ing only finitely many Vβ ’s.

Proposition B.4. Manifolds are paracompact.

We will need the following auxiliary result.
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Lemma B.5. For any manifold M, there exists a sequence of open subsets W1,W2, . . .
of M such that ⋃

Wi = M,

and such that each Wi has compact closure with Wi ⊆Wi+1.

Proof. Start with a a countable open cover O1,O2, . . . of M such that each Oi has
compact closure Oi. (We saw in the proof of Proposition B.3 how to construct such
a cover, by taking pre-images of ε-balls in coordinate charts.) Replacing Oi with
O1∪·· ·∪Oi we may assume O1 ⊆O2 ⊆ ·· · . For each i, the covering of the compact
set Oi by the collection of all O j’s admits a finite subcover. Since the sequence of
O j’s is nested, this just means Oi is contained in O j for j sufficiently large. We
can thus define W1,W2, . . . as a subsequence Wi = O j(i), starting with W1 = O1, and
inductively letting j(i) for i > 1 be the smallest index j(i) such that W i−1 ⊆ O j(i).

Proof (of Proposition B.4). Let {Uα} be an open cover of M. Let Wi be a sequence
of open sets as in Lemma B.5. For every i, the compact subset W i+1\Wi is contained
in the open set Wi+2\W i−1, hence it is covered by the collection of open sets

(Wi+2\W i−1)∩Uα . (B.1)

By compactness, W i+1\Wi is already covered by finitely many of the subsets (B.1).
Let V (i) be this finite collection, and V =

⋃
∞
i=1 V (i) the union. Then

V = {Vβ}

is the desired countable open cover of M. Indeed, if Vβ ∈ V (i), then Vβ ∩Wi−1 = /0.
That is, a given Wi meets only Vβ ’s from V (k) with k ≤ i. Since these are finitely
many Vβ ’s, it follows that the cover V = {Vβ} is locally finite. ut

Remark B.6. (See Lang [11], page 35.) One can strengthen the result a bit, as follows:
Given a cover {Uα}, we can find a refinement to a cover {Vβ} such that each Vβ is
the domain of a coordinate chart (Vβ ,ψβ ), with the following extra properties, for
some 0 < r < R:

(i) ψβ (Vβ ) = BR(0), and
(ii) M is already covered by the smaller subsets V ′

β
= ψ

−1
β

(Br(0)).

To prove this, we modify the second half of the proof as follows: For each p ∈
W i+1\Wi choose a coordinate chart (Vp,ψp) such that ψp(p) = 0, ψp(Vp) = BR(0),
and Vp ⊆ (Wi+2\W i−1)∩Uα . Let V ′p ⊆ Vp be the pre-image of Br(0). The V ′p cover
W i+1\Wi; let V (i) be a finite subcover and proceed as before. This remark is useful
for the construction of partitions of unity.
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B.4 Partitions of unity

Let M be a manifold. The support supp( f ) of a function f : M→ R is the smallest
closed subset such that f vanishes on M\supp( f ). Equivalently, p ∈ M\supp( f ) if
and only if f vanishes on some open neighborhood of p.

Definition B.7. A partition of unity subordinate to an open cover {Uα} of a mani-
fold M is a collection of smooth functions χα ∈C∞(M), with 0 ≤ χα ≤ 1, such that
supp(χα)⊆Uα , and

∑
α

χα = 1.

Proposition B.9 below states that every open cover admits a partition of unity. To
prove it, we will need the following result from multivariable calculus.

Lemma B.8 (Bump functions). For all 0 < r < R, there exists a function f ∈
C∞(Rm), with supp( f )⊆ BR(0), such that f (x) = 1 for ||x|| ≤ r.

[PICTURE]

Proof. Recall that the function

h(t) =

{
0 if t ≤ 0,
exp(−1/t) if t > 0

is smooth even at t = 0. Choose R1 ∈ R with r < R1 < R. We claim that

f (x) = 1− h(||x||− r)
h(||x||− r)+h(R1−||x||)

is well-defined, and has the desired properties. Indeed, for ||x|| ≤ r we have that
h(R1− ||x||) > 0 while h(||x|| − r) = 0, hence f (x) = 1. For ||x|| > r we have that
h(||x|| − r) > 0, hence the denominator is > 0 and the expression is well-defined.
Finally, if ||x|| ≥ R1 we have that h(R1−||x||) = 0, hence the enumerator becomes
equal to the denominator and hence f (x) = 0. ut

Proposition B.9. For any open cover {Uα} of a manifold, there exists a partition of
unity {χα} subordinate to that cover. One can take this partition of unity to be locally
finite: That is, for any p ∈M there is an open neighborhood U meeting the support
of only finitely many χα ’s.

Proof. Let Vβ be a locally finite refinement of the cover Uα , given as domains of
coordinate charts (Vβ ,ψβ ) of the kind described in Remark B.6, and let V ′

β
⊆ Vβ

be as described there. Since the images of V ′
β
⊆ Vβ are Br(0) ⊆ BR(0), we can use

Lemma B.8 to define a function fβ ∈C∞(M) with supp( fβ )⊆Vβ , and equal to 1 on
the closure V ′

β
. Since the collection of sets Vβ is a locally finite cover, the sum ∑β fβ

is well-defined (near any given point, only finitely many terms are non-zero). Since
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already the smaller sets V ′
β

are a cover of M, and the fβ are > 0 on these sets, the
sum is strictly positive everywhere.
For each index β , pick an index α such that Vβ ⊆Uα . This defines a map d : β 7→
d(β ) between the indexing sets. The functions

χα =
∑β∈d−1(α) fβ

∑γ fγ

.

give the desired partition of unity: The support is in Uα (since each fβ in the enu-
merator is supported in Uα ), and the sum over all χα ’s is equal to 1. Furthermore,
the partition of unity is locally finite, since near any given point p only finitely many
fβ ’s are nonzero. ut

An important application of partitions of unity is the following result, a weak version
of the Whitney embedding theorem.

Theorem B.10. Let M be a manifold admitting a finite atlas with r charts. Then there
is an embedding of M as a submanifold of Rr(m+1).

Proof. Let {(Ui,ϕi), i = 1, . . . ,r} be a finite atlas for M, and χ1, . . . ,χr a partition of
unity subordinate to the cover by coordinate charts. Then the products χiϕi : Ui→
Rm extend by zero to smooth functions ψi : M→ Rm. The map

F : M→ Rr(m+1), p 7→ (ψ1(p), . . . ,ψr(p),χ1(p) . . . ,χr(p))

is the desired embedding. Indeed, F is injective: if F(p) = F(q), choose i with
χi(p)> 0. Then χi(q) = χi(p)> 0, hence both p,q ∈Ui, and the condition ψi(p) =
ψi(q) gives ϕi(p) = ϕi(q), hence p = q. Similarly TpF is injective: For v ∈ TpM in
the kernel of TpF , choose i such that χi(p) > 0, thus v ∈ TpUi. Then v being in the
kernel of Tpψi and of Tpχi implies that it is in the kernel of Tpϕi, hence v = 0 since ϕi
is a diffeomorphism. This shows that we get an injective immersion, we leave it as an
exercise to verify that the image is a submanifold (e.g., by constructing submanifold
charts).

The theorem applies in particular to all compact manifolds. Actually, one can show
that all manifolds admit a finite atlas; for a proof see, e.g., the book [8]. Hence, every
manifold can be realized as a submanifold of Euclidean space.
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