
MAT 367: Differential Geometry
Assignment #7

Due on Friday August 13, 2021 by 11:59 pm

Note: This assignment covers material from the lectures on Cartan Calculus, Integration
on manifolds.

Problem #1

Recall that we extended the definition of closed and exact to k-forms. ω ∈ Ωk(M) is closed
if dω = 0, and is exact if there η ∈ Ωk(M) such that ω = dη.

We say that a smooth manifold M is smoothly contractible to a point p0 ∈ M if there
exists a C∞ map H : M × [0, 1] → M satisfying H(p, 1) = p and H(p, 0) = p0 for all
p ∈ M . Any open star convex subset of Rn is an example of such a manifold. Poincaré
lemma asserts that if M is smoothly contractible to a point, then every closed form is
exact. 1

(a) Let ω =
1

2

∑
i,j

ωijdx
i ∧ dxj ∈ Ω2(Rn) be a 2-form where ωij = −ωji. State explicitly

under what condition on ωij is ω closed. If so, show that ω = dη where

η =
∑
i,j

(∫ 1

0

tωij(tx
1, ..., txn)dt

)
xidxj

(b) *(bonus)* Let ω ∈ Ωk(M) be a closed form where k > 0, and let p ∈ M . Show
there exists a closed form η ∈ Ωk(M) that vanishes near p such that ω − η is exact.

(c) * Is S1 contractible to a point? (check the form i∗ω from 4c in assignment 6)

(d) * Show that for any 1-form η ∈ Ω1(S1), there exists a unique a ∈ R such that
η− ai∗ω is exact, where ω is the 1-form defined in problem 4c in assignment 6. This
shows that every 1-form on S1 is of the form ai∗ω + (some exact 1-form).

(e) * Define a relation on Ω1(S1) as follows: η ∼ η′ if η−η′ is exact. Show that

∫
S1

η = 0

if and only if η is exact and conclude that

∫
S1

: Ω1(S1)/ ∼→ R is an isomorphism

of vector spaces.

1Check “A Comprehensive Introduction to Differential Geometry” by Spivak, page 221- 225



(f) Show that every closed 1-form ω ∈ Ω1(S2) is exact.

Hint: if Consider the stereographic atlas {UN , US} from assignment 2 problem 1.
Recall that both UN and US are diffiomorphic to R2.

(g) Use the 2-form defined in problem 20.10 to argue that S2 is not contractible to a
point. (Find a closed but not exact 2-form on S2).

Problem #2

In this problem, you will build an intuition for the exterior derivative and study some of
its applications and interpretations.

The exterior derivative allows for the generalizations of notions studied in vector calculus.
Let f ∈ C∞(Rn) and X ∈ X(Rn). Denote by ∇f,∇×X, and ∇·X the gradient of f , curl
of X (if n = 3) and divergence of X. If n = 3 and X = a1 ∂

∂x
+ a2 ∂

∂y
+ a3 ∂

∂z
, then define

the forms

ωX = a1dx+ a2dy + a3dz, ηX = a1dy ∧ dz + a2dz ∧ dx+ a3dx ∧ dy

(a) *Show that df = ω∇f , dωX = η∇×X and dηX = ∇ · Xdx ∧ dy ∧ dz. Conclude that
∇×∇f = 0 and ∇ · (∇×X) = 0.

(b) *Let X ∈ X(U) where U is a star convex open set in R3. Show that if ∇×X = 0,
then X = ∇f for some f ∈ C∞(U). Similarly, if ∇ · X = 0, then X = ∇ × Y for
some Y ∈ X(U).

Remark: This will stay true when we generalize the notion of divergence and curl in
Riemannian manifolds.

(c) Solve problem 19.13. You will apply this to the modern formulation of Maxwell’s
equations.

(d) Prove that the exterior derivative is the only collection of R linear maps from Ωk(M)
to Ωk+1(M) satisfying

• d : Ω0(M)→ Ω1(M) is the differential.

• d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη for ω ∈ Ωk(M), η ∈ Ωl(M).

• d ◦ F ∗ = F ∗ ◦ d for any smooth map F : M → N .

(e) *(bonus)* Let ω ∈ Ωk(Rn) and let v1, ..., vk+1 ∈ T0Rn. For simplicity, suppose that
vi ∈ span{ ∂

∂xi
: i = 1, .., k + 1}. For ε > 0, let Pε := {

∑k+1
i=1 tivi : t1, ..., tk+1 ∈

[0, ε]}. Show that the k + 1 coefficient in the Taylor expansion of F (ε) :=
∫
∂Pε

ω is
dω0(v1, ..., vk+1).



Problem #3

In this problem, you will prove some properties of the Lie derivative and practice using
Cartan calculus. Fix ω ∈ Ωk(M) and X ∈ X(M). Let F be the flow of X

(a) * Show that LXω = 0 if and only if for any X1, ..., Xk ∈ X(M) and any appropriate
t ∈ R, ω

(
(Ft)∗X1, ..., (Ft)∗Xk

)
= ω(X1, ..., Xk) ◦ F−t on M−t.

Remark: Note that (Ft)∗Xi is a vector field on M−t. Recall that M−t := {p ∈ M :
−t ∈ D(p)} = {p ∈M : F (−t, p) is defined}.

(b) * Suppose X is nowhere vanishing. Show that for every p ∈ M , there exists a
coordinate chart (U, φ) such that LXω =

∑
I
∂ωI
∂x1

dxI on U .

Hint: Argue that there exists a coordinate chart such that X = ∂
∂x1

on U .

(c) * Suppose ω is a no-where vanishing n-form. Show that there exists a unique function
g ∈ C∞(M) such that LXω = gω. Find a formula for g in local coodinates. Conclude
that g = ∇ ·X if M = Rn and ω = dx1 ∧ ... ∧ dxn.

Remark: For each choice of no-where vanishing n-form, the map X 7→ g gives
a candidate for the generalized definition of divergence. Note that this notion of
divergence is not intrisic to the manifold since it depends on the choice of a no-
where vanishing n-form. In a Riemannian manifold, there exists a unique choice of
no-where vanishing n-form that takes any orthonormal basis to 1; this gives rise to
a well defined notion of divergence on Riemannian manifolds.

(d) Solve problem 20.7. You will derive a formula for LfXω.

(e) Solve problem 20.9.

(f) Solve problem 20.10. (The 2-form should be xdy ∧ dz − ydx ∧ dz + zdx ∧ dy)

(g) Show that ιX(F ∗ω) = F ∗(ιF∗Xω) for X ∈ X(M), ω ∈ Ωk(M), and a diffeomorphism
F : M →M .

Problem #4

We will formulate the statement of Frobenius theorem in the language of differential forms.
We first start by 2 lemmas.

(a) *Show that the smooth 1-forms ω1, ..., ωk on a manifold M are linearly independent
at every point if and only if ω1 ∧ ... ∧ ωk is no-where vanishing.



(b) Suppose ω1, ..., ωk ∈ Ω1(M) are linearly independent 1-forms on a manifold such
that k < n. Show that for every p ∈ M , there exists ωk+1, ..., ωn ∈ Ω1(U) on an
open neighbourhood U of p such that ω1, ..., ωn is a smooth local coframe.

Remark: This means we can complete k linearly independent smooth 1-forms to a
smooth coframe near each point. Similarly, we can complete k linearly independent
smooth vector fields to a smooth frame near each point.

Let ∆ be a smooth distribution of codimension k. We say that an l-form ω annihilates ∆ if
ω(X1, ..., Xl) = 0 whenever X1, ..., Xl are local sections of ∆. Smooth linearly independent
1-forms ω1, ..., ωk are called local defining forms for ∆ if they annihilate ∆. If so, then
∆q = ∩iKer ωi|q for all q ∈ U .

(c) Let ∆ be a distribution of codimension k. Show that ∆ is a smooth distribution if
and only if there exists local defining forms for ∆ near every point.

(d) * Let ∆ be a smooth distribution. Show that ∆ is involutive if and only if dω
annihilates ∆ on an open set U whenever ω ∈ Ω1(U) annihilates ∆ on U .

Denote by `l(∆) ⊆ Ωk(M) the space of all smooth l-forms that annihilate ∆. Define
`(∆) := `0(∆) ⊕ ... ⊕ `n(∆) ⊆ Ω∗(M). It is easy to see that `(∆) is a subalgebra as it’s
closed under addition, wedge product and scalar multiplication with C∞(M). A subalgebra
of Ω∗(M) is called an ideal if it is also closed under wedge products of arbitrary elements
of Ω∗(M). It is easy to see that `(∆) is an ideal as η ∧ ω ∈ `(∆) for any η ∈ Ω∗(M) and
ω ∈ `(∆).

(e) Show that `(∆) is indeed a sublagebra and an ideal of Ω∗(M).

(f) Let ω1, ..., ωk be local defining forms for ∆ on an open set U . Show that an l-form
η annihilates ∆ on U if and only if η ∧ ω1 ∧ ... ∧ ωk = 0.

Remark: This implies that if η annihilates ∆ on U , then η =
∑k

i=1 ω
i ∧ βi for some

l − 1 forms β1, ..., βk on U .

(g) * Use part (f) to show that ∆ is involutive if and only if d(`(∆)) ⊆ `(∆). (This
means that if η ∈ `(∆), then dη ∈ `(∆); if so, we say `(∆) is a differential ideal. )

We now can state Frobenius theorem in the language of differential forms:
A smooth distribution ∆ is completely integrable if and only if d(`(∆)) ⊆ `(∆).



(h) Consider the following vector fields on R3.

X = z
∂

∂x
+

∂

∂z
, Y =

∂

∂y
+

∂

∂z

Let ∆ be the distribution spanned by X and Y . Find a 1-form that globally defines
∆. Is `(∆) a differential ideal? Is ∆ involutive?

(i) * Show that the 1-form ω = (1 + y2)(xdy + ydx), defined on R2 \ {0} is associated
to a smooth rank 1 distribution ∆ (defined by ∆p = Ker(ωp) ). Show that `(∆) is a
differential ideal and find the integral submanifolds.

(j) Let ω ∈ Ω1(M) be a 1-form on a 3 dimensional manifold such that η := dα ∧ α ∈
Ω3(M) is no where vanishing. Show that the smooth rank 2 distribution ∆ associated
to ω is not involutive. Conclude that η(X, Y, [X, Y ]) is non-vanishing for any smooth
local basis X, Y of ∆.

Problem #5

(a) * Let M be a manifold that admits an atlas with only two charts (U, φ) and (V, ψ)
such that U ∩ V is connected. Show that M is orientable. That particularly proves
that Sn is orientable.

(b) Study the orientability of the cylinder, mobius strip, and RP n.

(c) *(bonus)* Show that RP 2 cannot be embedded in R3.

Hint: You can use without proof that every closed n dimensional submanifold of R3

is the regular level set of a function f ∈ C∞(R3).

Let M and N be oriented compact manifolds and let ω ∈ Ωm(M) and η ∈ Ωn(N) be
top-forms. We can define an orientation on M ×N by agreeing that {v1, ..., vm, w1, ..., wn}
is positively oriented whenever {v1, ..., vm} and {w1, ..., wn} are positively oriented on M
and N respectively. Let πM : M ×N →M and πN : M ×N → N be the projection maps.

(d) * Show that

∫
M×N

π∗Mω ∧ π∗Nη =

∫
M

ω ·
∫
N

η

(e) Let h ∈ C∞(M ×N). Show that

∫
M×N

hπ∗Mω ∧ π∗Nη =

∫
M

gω,

where g(p) :=

∫
N

h(p, ·)η.

(f) Show that every m+ n form is of the form hπ∗Mω ∧ π∗Nη for some h ∈ C∞(M ×N),
ω ∈ Ωm(M), and η ∈ Ωn(N).


