MAT 367: Differential Geometry Assignment \#5
 Due on Friday July 23, 2021 by 11:59 pm

Note: This assignment covers material from the lectures on Lie derivatives.
You only need to submit the questions marked with a *

Problem \#1

In this problem, you will strengthen your understanding of the Lie derivative.
You are not allowed to use the fact that the Lie derivative is the Lie bracket for questions $1 \mathrm{a}, \mathrm{b}, \mathrm{c}$.

We extend the Lie derivative to smooth functions. Let $X \in \mathfrak{X}(M)$ with flow F and define $\mathcal{L}_{X}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ by

$$
\mathcal{L}_{X} f(p)=\lim _{t \rightarrow 0} \frac{f \circ F_{t}(p)-f(p)}{t}
$$

for $f \in C^{\infty}(M)$ and $p \in M$.
(a) * Show that the limit always exists and that $\mathcal{L}_{X} f=X(f)$. Then conclude that \mathcal{L}_{X} is a derivation on the algebra $C^{\infty}(M)$.
Remark: We can equivalently define $\mathcal{L}_{X} f$ as the first order term in the Taylor expansion of $f \circ F_{t}(p)$ around $t=0: f \circ F_{t}(p)=f(p)+t \mathcal{L}_{X} f(p)+o(t)$.
(b) * Show that for any $X, Y \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M), \mathcal{L}_{X}(f Y)=\left(\mathcal{L}_{X} f\right) Y+f \mathcal{L}_{X} Y$.

Recall that the Lie derivative on vector fields is defined by

$$
\left.\mathcal{L}_{X} Y\right|_{p}=\lim _{t \rightarrow 0} \frac{1}{t}\left[F_{-t_{t}, F_{t}(p)}\left(\left.Y\right|_{F_{t}(p)}\right)-\left.Y\right|_{p}\right]
$$

Fix a coordinate chart (U, ϕ) near $p \in M$. Then on $U, X=\sum a^{i} \frac{\partial}{\partial x_{i}}$ and $Y=\sum b^{i} \frac{\partial}{\partial x_{i}}$ for some $a^{i}, b^{i} \in C^{\infty}(U)$.
(c) * Use (b) to express $\mathcal{L}_{X} Y$ in local coordinates and conclude that the limit always exists and $\mathcal{L}_{X} Y \in \mathfrak{X}(M)$.
Remark: Compare this with the expression of the Lie bracket in local coordinates that you derived in problem 2 d in assignment 4. Are they the same? (If not, you did something wrong). This is another proof that the Lie derivative is the Lie bracket.
(d) * Justify why $\left.\mathcal{L}_{X} Y\right|_{p}$ depends on X and Y on a neighbourhood of p and not only on X_{p} and Y_{p}.
(e) * Suppose we know $X \in \mathfrak{X}(M)$ and we only know Y on the integral curve of X starting at p. Is this sufficient to know $\left.\mathcal{L}_{X} Y\right|_{p}$?

Let $X, Y \in \mathfrak{X}(M)$ with flows F and G. Let $p \in M$ and fix a real number t_{0} close enough to 0 . Then the curve $s \mapsto G_{s} \circ F_{t_{0}}(p)$ is an integral curve of Y starting at $F_{t_{0}}(p)$. It gets mapped by the flow of X to the curve $\gamma_{t_{0}}: s \mapsto F_{-t_{0}} \circ G_{s} \circ F_{t_{0}}(p)$, which passes through p. Note that this might not necessarily coincide with the curve $s \mapsto G_{s}(p)$ (why not?). We can then define the map $A:(s, t) \mapsto F_{-t} \circ G_{s} \circ F_{t}(p)$.
(f) $*$ For fixed t_{0}, compute $\left.\frac{\partial A}{\partial s}\right|_{\left(0, t_{0}\right)}$. Show that this agrees with the velocity vector of $\gamma_{t_{0}}$ at $s=0$.
(g) * Note that we constructed A in this way so that $\left.t_{0} \mapsto \frac{\partial A}{\partial s}\right|_{\left(0, t_{0}\right)}$ is a curve on $T_{p} M$. Compute the velocity vector of this curve at $t_{0}=0$.
Remark: This is precisely $\left.\frac{\partial^{2} A}{\partial t \partial s}\right|_{(0,0)}$
This means that an integral curve of Y gets mapped by the flow of X , namely $F_{-t_{0}}$, to a curve with the velocity vector you got in (f), which changes in the direction of the vector you got in (g) as you move t_{0} away from 0 .

We now want to do the same thing but in the other order. We start with the curve $t \mapsto F_{t} \circ G_{s_{0}}(p)$ for some fixed s_{0} close enough to 0 , which is an integral curve of X starting at $G_{s_{0}}(p)$. It gets mapped by the flow of Y to the curve $\beta_{s_{0}}: t \mapsto G_{-s_{0}} \circ F_{t} \circ G_{s_{0}}(p)$. This defines the map $B:(s, t) \mapsto G_{-s} \circ F_{t} \circ G_{s}(p)$.
(h) In the same way as in (f) and (g), compute $\beta_{s_{0}}^{\prime}(0)$ and $\left.\frac{\partial^{2} B}{\partial s \partial t}\right|_{(0,0)}$

Remark: How does $\left.\frac{\partial^{2} A}{\partial t \partial s}\right|_{(0,0)}$ relate to $\left.\frac{\partial^{2} B}{\partial s \partial t}\right|_{(0,0)}$? What can you say about A and B if $\mathcal{L}_{X} Y \equiv 0$? This problem should give some insight on the non-intuitive formula $\mathcal{L}_{X} Y=-\mathcal{L}_{Y} X$.

Problem \# 2

In this problem, you will improve your intuition of the Lie derivative by considering specifically manifolds in \mathbb{R}^{n}.

Let $X, Y \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$. Since the tangent space at every point of \mathbb{R}^{n} is the same, we can compare vectors in different tangent spaces directly. This gives rise to the following notion of the rate of change of Y in the direction of X : define

$$
\left.\nabla_{X} Y\right|_{p}:=\lim _{t \rightarrow 0} \frac{\left.Y\right|_{F_{t}(p)}-\left.Y\right|_{p}}{t}
$$

where $p \in \mathbb{R}^{n}$ and F is the flow of X. Think about what this measures and compare it with the Lie derivative.
(a) Show that $\nabla: \mathfrak{X}\left(\mathbb{R}^{n}\right) \times \mathfrak{X}\left(\mathbb{R}^{n}\right) \rightarrow \mathfrak{X}\left(\mathbb{R}^{n}\right)$ is C^{∞}-linear with respect to the first argument (X) and only \mathbb{R}-linear with respect to the second argument (Y).
Remark: This shows that $\nabla_{X} Y$ only depends on X at the point p but depends on Y on a neighbourhood of p. It can't be the same as the Lie derivative.
(b) Show that $\mathcal{L}_{X} Y=\nabla_{X} Y-\nabla_{Y} X$ for all $X, Y \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$. Give a necessary and sufficient condition on X such that $\mathcal{L}_{X} \equiv \nabla_{X}$ on $\mathfrak{X}\left(\mathbb{R}^{n}\right)$.
Remark: The operator ∇ will be generalized once we define a Riemannian manifold. One needs a geometric structure on the manifold to generalize what ∇ measures. It's called the covariant derivative and satisfies that same relation with the Lie derivative. Try to see how ∇ implicitly uses the Euclidean geometry of \mathbb{R}^{n}.
Now suppose that M is a submanifold of \mathbb{R}^{n}. Notice quickly that the definition of $\nabla_{X} Y$ carries over directly for $X, Y \in \mathfrak{X}(M)$ (why?). However, for $X, Y \in \mathfrak{X}(M), \nabla_{X} Y$ might not be tangent to M. For example, take a vector field on S^{2} that is tangent to a great circle. Then $\nabla_{X} X$ points to the centre of the sphere and so is not tangent to it. So what ∇ measures is not intrinsic and depends on the ambient space. Nevertheless, $\nabla_{X} Y-\nabla_{Y} X$ will always be tangent to M since that's just the Lie derivative, as you will show in the following problem.
(c) Repeat (b) for $X, Y \in \mathfrak{X}(M)$.

Hint: Let \tilde{X}, \tilde{Y} be extensions of X and Y on a neighbourhood of p in \mathbb{R}^{n}. What can you say about $\nabla_{\tilde{X}} \tilde{Y}$ and $\nabla_{X} Y$? What about $\mathcal{L}_{\tilde{X}} \tilde{Y}$ and $\mathcal{L}_{X} Y$?

Let F and G be the flows of the vector fields $X, Y \in \mathfrak{X}(M)$ respectively. Define the map

$$
A:(s, t) \mapsto G_{s} \circ F_{t}(p)-F_{t} \circ G_{s}(p)
$$

for (s, t) in a neighbourhood of $(0,0)$ in \mathbb{R}^{2}. For fixed t_{0} and s_{0}, consider the curves $s \mapsto A\left(s, t_{0}\right)$ and $t \mapsto A\left(s_{0}, t\right)$. These curves measure the extent to which the flows fail to commute. Try to understand using pictures what these two curves are. (Assume that the origin is far from the M to help you draw the picture).
(d) $*$ Show that $\left.\frac{\partial^{2} A}{\partial t \partial s}\right|_{(0,0)}=\left.\mathcal{L}_{X} Y\right|_{p}$.

Hint: First, compute the velocity vector of this curve $s \rightarrow A\left(s, t_{0}\right)$ at $s=0$ to get $\left.\frac{\partial A}{\partial s}\right|_{\left(0, t_{0}\right)}$. Then compute the velocity vector of this curve $\left.t \mapsto \frac{\partial A}{\partial s}\right|_{(0, t)}$ at $t=0$.
(e) (*bonus*) Compute $\left.\frac{\partial^{2} A}{\partial t \partial s}\right|_{(s, t)}$.

Let F and G be the flows of the vector fields $X, Y \in \mathfrak{X}(M)$ respectively. Consider the curve

$$
\gamma(t)=G_{t} \circ F_{t} \circ G_{-t} \circ F_{-t}(p)
$$

for $p \in M$ and for t in an open interval containing 0 . Draw a picture to understand what the curve is.
(f) ${ }^{*}$ Show that $\gamma^{\prime}(0)=0$ and $\gamma^{\prime \prime}(0)=\left.2 \mathcal{L}_{X} Y\right|_{p}$

Let's study an example. For any $A \in \operatorname{MAT}_{n}(\mathbb{R})$, define the vector field

$$
X_{A}:=\sum_{i, j} A_{i j} x^{i} \frac{\partial}{\partial x^{j}}
$$

on \mathbb{R}^{n}.
(g) * Compute the Lie bracket $\left[X_{A}, X_{B}\right]$ for $A, B \in \operatorname{MAT}_{n}(\mathbb{R})$ and express as X_{C} for some $C \in \operatorname{MAT}_{n}(\mathbb{R})$. Derive a coordinate independent relation between A, B, and C.
(h) * Compute the first nonzero term after the $0^{t h}$ order term in the Taylor expansion of the curve $t \mapsto F_{t} \circ G_{t} \circ F_{-t} \circ G_{-t}(p)$ around $t=0$, where F and G are the flows of X_{A} and X_{B}.

