
MAT 367: Differential Geometry
Assignment #5

Due on Friday July 23, 2021 by 11:59 pm

Note: This assignment covers material from the lectures on Lie derivatives.

You only need to submit the questions marked with a *

Problem #1

In this problem, you will strengthen your understanding of the Lie derivative.
You are not allowed to use the fact that the Lie derivative is the Lie bracket
for questions 1a,b,c.

We extend the Lie derivative to smooth functions. Let X ∈ X(M) with flow F and define
LX : C∞(M)→ C∞(M) by

LXf(p) = lim
t→0

f ◦ Ft(p)− f(p)

t

for f ∈ C∞(M) and p ∈M .

(a) * Show that the limit always exists and that LXf = X(f). Then conclude that LX

is a derivation on the algebra C∞(M).

Remark: We can equivalently define LXf as the first order term in the Taylor
expansion of f ◦ Ft(p) around t = 0: f ◦ Ft(p) = f(p) + tLXf(p) + o(t).

(b) * Show that for any X, Y ∈ X(M) and f ∈ C∞(M), LX(fY ) = (LXf)Y + fLXY .

Recall that the Lie derivative on vector fields is defined by

LXY |p = lim
t→0

1

t
[F−t∗,Ft(p)

(Y |Ft(p)
)− Y |p]

Fix a coordinate chart (U, φ) near p ∈M . Then on U , X =
∑
ai ∂

∂xi
and Y =

∑
bi ∂

∂xi
for

some ai, bi ∈ C∞(U).

(c) * Use (b) to express LXY in local coordinates and conclude that the limit always
exists and LXY ∈ X(M).

Remark: Compare this with the expression of the Lie bracket in local coordinates
that you derived in problem 2d in assignment 4. Are they the same? (If not, you did
something wrong). This is another proof that the Lie derivative is the Lie bracket.



(d) * Justify why LXY |p depends on X and Y on a neighbourhood of p and not only
on Xp and Yp.

(e) * Suppose we know X ∈ X(M) and we only know Y on the integral curve of X
starting at p. Is this sufficient to know LXY |p?

Let X, Y ∈ X(M) with flows F and G. Let p ∈ M and fix a real number t0 close enough
to 0. Then the curve s 7→ Gs ◦ Ft0(p) is an integral curve of Y starting at Ft0(p). It gets
mapped by the flow of X to the curve γt0 : s 7→ F−t0 ◦Gs ◦Ft0(p), which passes through p.
Note that this might not necessarily coincide with the curve s 7→ Gs(p) (why not?). We
can then define the map A : (s, t) 7→ F−t ◦Gs ◦ Ft(p).

(f) * For fixed t0, compute ∂A
∂s

∣∣
(0,t0)

. Show that this agrees with the velocity vector of
γt0 at s = 0.

(g) * Note that we constructed A in this way so that t0 7→ ∂A
∂s

∣∣
(0,t0)

is a curve on TpM .

Compute the velocity vector of this curve at t0 = 0.

Remark: This is precisely ∂2A
∂t∂s

∣∣∣
(0,0)

This means that an integral curve of Y gets mapped by the flow of X, namely F−t0 , to a
curve with the velocity vector you got in (f), which changes in the direction of the vector
you got in (g) as you move t0 away from 0.

We now want to do the same thing but in the other order. We start with the curve
t 7→ Ft◦Gs0(p) for some fixed s0 close enough to 0, which is an integral curve of X starting
at Gs0(p). It gets mapped by the flow of Y to the curve βs0 : t 7→ G−s0 ◦ Ft ◦Gs0(p). This
defines the map B : (s, t) 7→ G−s ◦ Ft ◦Gs(p).

(h) In the same way as in (f) and (g), compute β′s0(0) and ∂2B
∂s∂t

∣∣∣
(0,0)

Remark: How does ∂2A
∂t∂s

∣∣∣
(0,0)

relate to ∂2B
∂s∂t

∣∣∣
(0,0)

? What can you say about A and B

if LXY ≡ 0? This problem should give some insight on the non-intuitive formula
LXY = −LYX.

Problem # 2

In this problem, you will improve your intuition of the Lie derivative by considering specif-
ically manifolds in Rn.



Let X, Y ∈ X(Rn). Since the tangent space at every point of Rn is the same, we can
compare vectors in different tangent spaces directly. This gives rise to the following notion
of the rate of change of Y in the direction of X: define

∇XY |p := lim
t→0

Y |Ft(p)
− Y |p
t

where p ∈ Rn and F is the flow of X. Think about what this measures and compare it
with the Lie derivative.

(a) Show that ∇ : X(Rn) × X(Rn) → X(Rn) is C∞-linear with respect to the first
argument (X) and only R-linear with respect to the second argument (Y).

Remark: This shows that ∇XY only depends on X at the point p but depends on
Y on a neighbourhood of p. It can’t be the same as the Lie derivative.

(b) Show that LXY = ∇XY −∇YX for all X, Y ∈ X(Rn). Give a necessary and sufficient
condition on X such that LX ≡ ∇X on X(Rn).

Remark: The operator ∇ will be generalized once we define a Riemannian manifold.
One needs a geometric structure on the manifold to generalize what ∇ measures. It’s
called the covariant derivative and satisfies that same relation with the Lie derivative.
Try to see how ∇ implicitly uses the Euclidean geometry of Rn.

Now suppose that M is a submanifold of Rn. Notice quickly that the definition of ∇XY
carries over directly for X, Y ∈ X(M) (why?). However, for X, Y ∈ X(M), ∇XY might
not be tangent to M . For example, take a vector field on S2 that is tangent to a great
circle. Then ∇XX points to the centre of the sphere and so is not tangent to it. So what
∇ measures is not intrinsic and depends on the ambient space. Nevertheless, ∇XY −∇YX
will always be tangent to M since that’s just the Lie derivative, as you will show in the
following problem.

(c) Repeat (b) for X, Y ∈ X(M).

Hint: Let X̃, Ỹ be extensions of X and Y on a neighbourhood of p in Rn. What can
you say about ∇X̃ Ỹ and ∇XY ? What about LX̃ Ỹ and LXY ?

Let F and G be the flows of the vector fields X, Y ∈ X(M) respectively. Define the map

A : (s, t) 7→ Gs ◦ Ft(p)− Ft ◦Gs(p)

for (s, t) in a neighbourhood of (0, 0) in R2. For fixed t0 and s0, consider the curves
s 7→ A(s, t0) and t 7→ A(s0, t). These curves measure the extent to which the flows fail to
commute. Try to understand using pictures what these two curves are. (Assume that the
origin is far from the M to help you draw the picture).



(d) * Show that ∂2A
∂t∂s

∣∣∣
(0,0)

= LXY |p.

Hint: First, compute the velocity vector of this curve s → A(s, t0) at s = 0 to get
∂A
∂s

∣∣
(0,t0)

. Then compute the velocity vector of this curve t 7→ ∂A
∂s

∣∣
(0,t)

at t = 0.

(e) (*bonus*) Compute ∂2A
∂t∂s

∣∣∣
(s,t)

.

Let F and G be the flows of the vector fields X, Y ∈ X(M) respectively. Consider the
curve

γ(t) = Gt ◦ Ft ◦G−t ◦ F−t(p)

for p ∈M and for t in an open interval containing 0. Draw a picture to understand what
the curve is.

(f) * Show that γ′(0) = 0 and γ′′(0) = 2 LXY |p

Let’s study an example. For any A ∈ MATn(R), define the vector field

XA :=
∑
i,j

Aijx
i ∂

∂xj

on Rn.

(g) * Compute the Lie bracket [XA, XB] for A,B ∈ MATn(R) and express as XC for
some C ∈ MATn(R). Derive a coordinate independent relation between A,B, and
C.

(h) * Compute the first nonzero term after the 0th order term in the Taylor expansion
of the curve t 7→ Ft ◦ Gt ◦ F−t ◦ G−t(p) around t = 0, where F and G are the flows
of XA and XB.


