MAT 367: Differential Geometry
Assignment #4
Due on Sunday July 11, 2021 by 11:59 pm

Note: This assignment covers material from lectures and sections 12, 13, 14.

Problem # 1

Fix a point p on a smooth manifold M. We will give a different definition of a point
derivation at p. We say D : C*°(M) — R is a point derivation at p if it’s R-linear (linear
with respect to the vector space structure of C*°(M)), and satisfies

D(fg) = f(p)D(g) + g(p)D(f)

for all f,g € C°°(M). Denote by Dy the space of all point derivations at p. We want to
show that Dy is an equivalent definition of the tangent space T, M .

(a) Show that for any D € D, and any f € C*°M, D(f) only depends on the behaviour
of f near p.

(b) Let ® : T,M — D; be the map defined by ®(v)(f) = v([f]) for v € T,M and
f € C*. Show that ® is an isomorphism.

(c) Let X € X(M) be a smooth vector field on M, and define D : C*°(M) — R by
D(f) = X(f)], for f € C>(M). Show that D € D, and ®(X,) = D.

Using this new definition of the tangent space, we can redefine the tangent bundle T'M* :=
UpenDj. This gives rise to a new definition of a vector field X* € I'*(M) as a smooth
section of TM*. As a consequence of (¢), there is a natural isomorphism between I'*(M)
and the space of derivations on the algebra C*°(M) denoted by Der(C*(M)), which in
turn is naturally isomorphic to I'(M). We identify the three definitions of vector fields
and we continue to denote the space of vector fields by X(M).

Problem +#2
Read section 14.5-14.6.
(a) Solve questions 14.13 and 14.14.

(b) Let FF: N — M be an injective smooth map, and let Y € X(M). Note there doesn’t
necessarily exist a unique vector field X € X(N) that is F-related to Y. Show that



(c)

(d)

(e)

(f)

(8)

e If F'is an immersion, then uniqueness holds.

e If F'is a submersion, then existence holds.

Remark: How does this fail when you remove the injectivity condition on F'? What
if F'is surjective? We say that X, if it exists, is a lift of Y. It follows that if F' is a
diffeomorphism, then every Y has a unique lift.

Let S be a submanifold of M. Recall that we say that X € X(M) is tangent to S if
forall p € S, X, € i, ,(7},5). Show that if X is tangent to S, there exists Y € X(5)
that is i-related to X. (We will sometime identify ¥ with X|g. )

Show that X is tangent to a submanifold S if and only if X(f) = 0 on S for all
f € C°°(M) that is constant on S.

Let f: R®> — R be the function defined by f(z,y,2) = 2? + y* — 1. This defines a
submanifold S := f~1(0) of R3. Consider the vector fields X,Y € X(R3) defined by

0 0

0 0 0 0
X=(@"—-1)—+ay=— +r2 Y=0—+y-— +az°—
(x )ax+xyay+xzaz, x8$+yay+:ﬂz 5

Are they tangent to S?7

Express the Lie bracket introduced in assignment 3 in local coordinates. (Solve
question 14.12).

Show that if X,Y € X(M) are tangent to a submanifold S, then so is [X,Y].
Conclude that if Xi,..., X}, € X(M) is a linearly independent k-tuple of smooth
vector fields that span 7'S, then [X;, X;] on S is a linear combination of the k-tuple
with coefficients in C*°(.5).

Remark: The vector fields span T'S means that X, ..., Xy, span i, ,(7),S5) for every
point p € S.

Problem #3

We will now study some applications of partition of unity.

(a)

Let f: A — R be a C function on a set A C M as defined in lecture. Show that
there exists f € C(U) such that f’A = f and U is a neighbourhood of A in M. If
A is closed, show that U can be chosen to be all M.



(b) Let X € X(S) where S is a submanifold of M. Show that there exists Y € X(U)
such that Y|4 = X and U is a nieghbourhood of S in M. If S is closed, show that
U can be chosen to be all M.

(c) Show that any compact smooth manifold can be embedded in RY for large enough
N. (The proof was outlined in lectures).

(d) Show that there exists a symmetric map a : X(M) x X(M) — C*°(M) that is
C°°-bilinear and satisfies a(X, X)(p) =0 = X, =0.

Hint: On a coordinate chart, define 8 : X(U)xX(U) = C=(U) by (> a' 2, > b' %) =
ST alht.

(e) Let A and B be disjoint closed sets in M. Show that there exists a function f €
C>°(M) that vanishes on A and is identically 1 on B.

Hint: {A°, B¢} is an open cover for M.

We will prove the existence of a compact exhaustion. A compact exhaustion of a
manifold M is a sequence of compact sets K; satisfying K; C int(K;;;) and U2 K; = M.
Let {U;} be an open cover such that U; is compact (you should be able to show the
existence of such an open cover). Let {p;} be a partition of unity subordinate to {U;}.

(f) Define the function f : M — R by f(p) = > oo ipi(p). Show that f~'(—o0,(] is
compact for all ¢ € R.

(g) Use f to find a compact exhaustion.

We want to prove that continuous functions on manifolds are arbitrarily close to C'*°
functions. Let f € C(M) and let € > 0.

(h) Show there exists a function g € C°°(M) such that sup |f(p) — g(p)| < €.
peEM

Hint: For any p € M, there exists a neighbourhood U, of p such that | f(q)—f(p)| < e
for all ¢ € U, by the continuity of f.

(i) Suppose f is C* on a closed set A. Show that we can choose g so such that g = f
on A.



Problem #4

You will do some computational examples in this problem.

(a)

(b)

(c)

(d)

(e)

Show that
d¢(w,y) = e'(cos(t)x + sin(t)y, cos(t)y — sin(t)x)

is a flow some vector field X on R2. Find X expressed in the form

X = f(l“,y)g + g(iv,y)2

ox dy
Define the vector fields X and Y on R?
0 0 0 0
X =gp— — y— V=2 1,2
Tor y&y’ $8y+y8x

Compute the flows F' and G of X and Y and verify that the flows do not commute
by finding explicit open intervals J and K containing 0 such that F; oG, and G40 F;
are both defined for all (s,t) € J x K but they are unequal for some such (s, ).

Find the general expression for a vector field X € X(R?) satisfying [5%, X] =X and
5, X =X

Let ¢ : R x TM — TM defined by ¢(t, X) = ¢'X. Show that ¢ is a global flow.
This means that ¢ satisfies:

o &is O
o ¢(s+t,X)=¢(s,¢(t, X)) forall t,s € R and X € TM. Using the notation we
used in class, this means ¢¢.¢(X) = ¢ 0 ¢y (X).

Then find Y € X(T'M) that generates ¢.

Remark #1: From the post-lecture practice questions, we know that any map satis-
fying the above is the global flow generated by some vector field.

Remark #2: Note that ¢, : TM — TM is a diffeomorphism. Letting Diff(7T'M)
be the group of diffeomorphisms on T'M, we note that a global flow ¢ gives rise to
a group homomorphism from R to Diff(TM) defined by ® : t — ¢, (it’s a group
homomorphism since ®(s 4 t) = ®(s) o ®(t)). We refer to this as a one parameter
group of diffeomorphisms.

Solve problem 14.2.



Problem #5 (*bonus*)

We will prove the fundamental theorem of flows and study some of their properties. Let
X € X(M). We want to prove the existence of a maximal flow generated by X.

Let pe M and let v, : I — M and 5 : I — M be two integral curves of X starting at
p, where [ is open intervals containing 0. Let A = {t € I : v (t) = 1=(t)}.

(a) Show that A =1I.

Hint: Show that A is a non-empty clopen subset of the connected set [.

This shows that any two integral curves starting at p are equal. Let D® be the union
of all open intervals containing 0 on which an integral curve starting at p is defined. This
proves the existence and uniqueness of a maximal integral curve starting at p denoted by

v,(t) : DP — M. (How would 7,(t) be defined).
Define D = {(t,p) : p € M,t € DP} C R x M. Then the maximal flow F : D — M is
defined by F'(t,p) = 7,(t).

(b) Show that F' satisfies the properties of a flow: F'is C*>°, F'(0,p) = p, and F(s+t,p) =
F(s, F(t,p)) for appropriate s,t € R and p € M. Also, it satisfies DF'(5P) = DP) 5,

(c) Show that D is open and so is M; :={p € M : (t,p) € D}.

(d) Show that F; : M; — M_; defined by Fi(p) = F(t, p) is a diffeomorphism with inverse
F_y.

(e) The uniqueness of maximal integral curves uses the fact that M is Hausdorff. Explain
how Hausdorfness is used in the proof. Find a non-Hausdorff “manifold” and a vector
field that does not have a unique maximal integral curve.

Hint: Define a vector field on the real line with two origins using charts and find
two different integral curves of it.
(f) Show that if M is compact, then any vector field is complete.

Hint: Show first that there exists an € > 0 such that every integral curve is defined
on (—e¢,¢).



