
MAT 367: Differential Geometry
Assignment #4

Due on Sunday July 11, 2021 by 11:59 pm

Note: This assignment covers material from lectures and sections 12, 13, 14.

Problem # 1

Fix a point p on a smooth manifold M . We will give a different definition of a point
derivation at p. We say D : C∞(M)→ R is a point derivation at p if it’s R-linear (linear
with respect to the vector space structure of C∞(M)), and satisfies

D(fg) = f(p)D(g) + g(p)D(f)

for all f, g ∈ C∞(M). Denote by D∗p the space of all point derivations at p. We want to
show that D∗p is an equivalent definition of the tangent space TpM .

(a) Show that for any D ∈ D∗p and any f ∈ C∞M , D(f) only depends on the behaviour
of f near p.

(b) Let Φ : TpM → D∗p be the map defined by Φ(v)(f) = v([f ]) for v ∈ TpM and
f ∈ C∞. Show that Φ is an isomorphism.

(c) Let X ∈ X(M) be a smooth vector field on M , and define D : C∞(M) → R by
D(f) = X(f)|p for f ∈ C∞(M). Show that D ∈ D∗p and Φ(Xp) = D.

Using this new definition of the tangent space, we can redefine the tangent bundle TM∗ :=
∪p∈MD∗p. This gives rise to a new definition of a vector field X∗ ∈ Γ∗(M) as a smooth
section of TM∗. As a consequence of (c), there is a natural isomorphism between Γ∗(M)
and the space of derivations on the algebra C∞(M) denoted by Der(C∞(M)), which in
turn is naturally isomorphic to Γ(M). We identify the three definitions of vector fields
and we continue to denote the space of vector fields by X(M).

Problem #2

Read section 14.5-14.6.

(a) Solve questions 14.13 and 14.14.

(b) Let F : N →M be an injective smooth map, and let Y ∈ X(M). Note there doesn’t
necessarily exist a unique vector field X ∈ X(N) that is F -related to Y . Show that



• If F is an immersion, then uniqueness holds.

• If F is a submersion, then existence holds.

Remark: How does this fail when you remove the injectivity condition on F? What
if F is surjective? We say that X, if it exists, is a lift of Y . It follows that if F is a
diffeomorphism, then every Y has a unique lift.

(c) Let S be a submanifold of M . Recall that we say that X ∈ X(M) is tangent to S if
for all p ∈ S, Xp ∈ i∗,p(TpS). Show that if X is tangent to S, there exists Y ∈ X(S)
that is i-related to X. (We will sometime identify Y with X|S. )

(d) Show that X is tangent to a submanifold S if and only if X(f) = 0 on S for all
f ∈ C∞(M) that is constant on S.

(e) Let f : R3 → R be the function defined by f(x, y, z) = x2 + y2 − 1. This defines a
submanifold S := f−1(0) of R3. Consider the vector fields X, Y ∈ X(R3) defined by

X = (x2 − 1)
∂

∂x
+ xy

∂

∂y
+ xz

∂

∂z
, Y = x

∂

∂x
+ y

∂

∂y
+ xz2

∂

∂z

Are they tangent to S?

(f) Express the Lie bracket introduced in assignment 3 in local coordinates. (Solve
question 14.12).

(g) Show that if X, Y ∈ X(M) are tangent to a submanifold S, then so is [X, Y ].
Conclude that if X1, ..., Xk ∈ X(M) is a linearly independent k-tuple of smooth
vector fields that span TS, then [Xi, Xj] on S is a linear combination of the k-tuple
with coefficients in C∞(S).

Remark: The vector fields span TS means that X1p, ..., Xkp span i∗,p(TpS) for every
point p ∈ S.

Problem #3

We will now study some applications of partition of unity.

(a) Let f : A → R be a C∞ function on a set A ⊆ M as defined in lecture. Show that

there exists f̃ ∈ C∞(U) such that f̃
∣∣∣
A

= f and U is a neighbourhood of A in M . If

A is closed, show that U can be chosen to be all M .



(b) Let X ∈ X(S) where S is a submanifold of M . Show that there exists Y ∈ X(U)
such that Y |S = X and U is a nieghbourhood of S in M . If S is closed, show that
U can be chosen to be all M .

(c) Show that any compact smooth manifold can be embedded in RN for large enough
N . (The proof was outlined in lectures).

(d) Show that there exists a symmetric map α : X(M) × X(M) → C∞(M) that is
C∞-bilinear and satisfies α(X,X)(p) = 0 =⇒ Xp = 0.

Hint: On a coordinate chart, define β : X(U)×X(U)→ C∞(U) by β(
∑
ai ∂

∂xi ,
∑
bi ∂

∂xi ) =∑
aibi.

(e) Let A and B be disjoint closed sets in M . Show that there exists a function f ∈
C∞(M) that vanishes on A and is identically 1 on B.

Hint: {Ac, Bc} is an open cover for M .

We will prove the existence of a compact exhaustion. A compact exhaustion of a
manifold M is a sequence of compact sets Ki satisfying Ki ⊆ int(Ki+1) and ∪∞i=1Ki = M .
Let {Ui} be an open cover such that U i is compact (you should be able to show the
existence of such an open cover). Let {ρi} be a partition of unity subordinate to {Ui}.

(f) Define the function f : M → R by f(p) =
∑∞

i=1 iρi(p). Show that f−1(−∞, c] is
compact for all c ∈ R.

(g) Use f to find a compact exhaustion.

We want to prove that continuous functions on manifolds are arbitrarily close to C∞

functions. Let f ∈ C(M) and let ε > 0.

(h) Show there exists a function g ∈ C∞(M) such that sup
p∈M
|f(p)− g(p)| < ε.

Hint: For any p ∈M , there exists a neighbourhood Up of p such that |f(q)−f(p)| < ε
for all q ∈ Up by the continuity of f .

(i) Suppose f is C∞ on a closed set A. Show that we can choose g so such that g = f
on A.



Problem #4

You will do some computational examples in this problem.

(a) Show that
φt(x, y) = et(cos(t)x+ sin(t)y, cos(t)y − sin(t)x)

is a flow some vector field X on R2. Find X expressed in the form

X = f(x, y)
∂

∂x
+ g(x, y)

∂

∂y

.

(b) Define the vector fields X and Y on R2

X = x
∂

∂x
− y ∂

∂y
, Y = x

∂

∂y
+ y

∂

∂x

Compute the flows F and G of X and Y and verify that the flows do not commute
by finding explicit open intervals J and K containing 0 such that Ft ◦Gs and Gs ◦Ft

are both defined for all (s, t) ∈ J ×K but they are unequal for some such (s, t).

(c) Find the general expression for a vector field X ∈ X(R2) satisfying [ ∂
∂x
, X] = X and

[ ∂
∂y
, X] = X

(d) Let φ : R × TM → TM defined by φ(t,X) = etX. Show that φ is a global flow.
This means that φ satisfies:

• φ is C∞.

• φ(s+ t,X) = φ(s, φ(t,X)) for all t, s ∈ R and X ∈ TM . Using the notation we
used in class, this means φs+t(X) = φs ◦ φt(X).

Then find Y ∈ X(TM) that generates φ.

Remark #1: From the post-lecture practice questions, we know that any map satis-
fying the above is the global flow generated by some vector field.

Remark #2: Note that φt : TM → TM is a diffeomorphism. Letting Diff(TM)
be the group of diffeomorphisms on TM , we note that a global flow φ gives rise to
a group homomorphism from R to Diff(TM) defined by Φ : t 7→ φt (it’s a group
homomorphism since Φ(s + t) = Φ(s) ◦ Φ(t)). We refer to this as a one parameter
group of diffeomorphisms.

(e) Solve problem 14.2.



Problem #5 (*bonus*)

We will prove the fundamental theorem of flows and study some of their properties. Let
X ∈ X(M). We want to prove the existence of a maximal flow generated by X.

Let p ∈M and let γ1 : I →M and γ2 : I →M be two integral curves of X starting at
p, where I is open intervals containing 0. Let A = {t ∈ I : γ1(t) = γ2(t)}.

(a) Show that A = I.

Hint: Show that A is a non-empty clopen subset of the connected set I.

This shows that any two integral curves starting at p are equal. Let D(p) be the union
of all open intervals containing 0 on which an integral curve starting at p is defined. This
proves the existence and uniqueness of a maximal integral curve starting at p denoted by
γp(t) : D(p) →M . (How would γp(t) be defined).

Define D = {(t, p) : p ∈M, t ∈ D(p)} ⊆ R×M . Then the maximal flow F : D →M is
defined by F (t, p) = γp(t).

(b) Show that F satisfies the properties of a flow: F is C∞, F (0, p) = p, and F (s+t, p) =
F (s, F (t, p)) for appropriate s, t ∈ R and p ∈M . Also, it satisfies D(F (s,p)) = D(p)−s.

(c) Show that D is open and so is Mt := {p ∈M : (t, p) ∈ D}.

(d) Show that Ft : Mt →M−t defined by Ft(p) = F (t, p) is a diffeomorphism with inverse
F−t.

(e) The uniqueness of maximal integral curves uses the fact that M is Hausdorff. Explain
how Hausdorfness is used in the proof. Find a non-Hausdorff “manifold” and a vector
field that does not have a unique maximal integral curve.

Hint: Define a vector field on the real line with two origins using charts and find
two different integral curves of it.

(f) Show that if M is compact, then any vector field is complete.

Hint: Show first that there exists an ε > 0 such that every integral curve is defined
on (−ε, ε).


