Submonsfolds

We start by studying more the algebraic Property of Fx.

Let
$$F: N \longrightarrow M$$
 be a $C^{o}map$
 $rKF(P) := rank (F_{X,P}: T_{P}N \longrightarrow T_{F(P)}M)$
 $= dim (F_{X,P}(T_{P}N))$
 $= rank (D(40F00)|_{(dM)}) = rank ($\int \frac{\partial F^{c}}{\partial x^{s}}|_{P}$)$

Ex2: Let f: R -> R,
$$f(t) = lx$$
.
Then $f_{f} = \frac{1}{2} (X, f(t)) : X \in R \frac{1}{2} is a smooth manifold with coatlas \frac{2}{2} (f_{f}, TT(f_{f})) \frac{2}{3} where $Tt: (X, y) +> x$
Is this an embedded submanifold of R²?
Is i: $f_{f} \longrightarrow R^{2}$ an embedding?
Holdosical endedling?$

Ex3: Graphy a smooth function.
Let
$$F: N \rightarrow M$$
 beac map.
Then $\Gamma_F = \{(P, FCP_F) \in N \times M \mid P \in N\}_{L \in V \times M}$

is an embedded submanifald of NXM. Exc Ex4: Mensubuts UCM ane embedded submanifolds of The same dimension. (they are the only ones)

Exs. Let F: N > M be an enbedding then 31 smoothstructure on F(M) S.C. F(N) is an embedded submanifold with the property F: N->F(N) is a deffemonthism. F SCN)

For every diffeonorphism
$$f: R^3 \rightarrow R^{15}$$
,
 $F(S^2)$ is a submanifold of R^3
that is diffeomorphy: to S^2
 $S^2 \cong ellifte
 $F(\tau, y, g) = (a \times by, ct)$
 f restrict to an embedding.
Enfact, Every manifold is also brainfuld of
a Euclidean space.
Whitney's Embedding Them:
for any Smoth manifold M of dim n,
 $\Im f: M \rightarrow R^{2n}$ that is an embedding
so $(F(M))$ is a submany full of R^{2n} diffeomorphy
to $M$$

Sharp!! Whis? Sharp!! Rp2 & Weinbottle are 2-dim manifolds That 3 (armat be embedded in IR³

Post-lecture Practice Westing:

1) do the exercises above?

5) If SEM is an embedded submanifold. Show That There is no other smooth structure on Smaking Sa submanifold of M.