Let $F: N \rightarrow M$ be C^{∞} mad
Then $\quad F_{x, p}: T_{p} N \rightarrow T_{f(r)} M$

f_{*}, p isclefined in this may:
for $X_{P} \in T_{P} N, \quad F_{x, P}\left(X_{P}\right)$ is The vector in $T_{f(P)} M$ satisfying: for $f \in C_{p}^{\infty}(M), \quad F_{*, p}\left(x_{p}\right)(f)=x_{p}(f \circ F)$

Check that f_{*} is a generalization of $D F$ in Euclidean space

OID definition:

$$
\begin{aligned}
& D F / p: \stackrel{(\mathrm{cold})}{T_{p} \mathbb{R}^{n}} \rightarrow T_{F(P)}^{\text {(old })} \mathbb{R}^{m} \\
& D F / p=\left[\begin{array}{c}
\left.\frac{\partial f}{\partial r^{\prime}}\right|_{i l_{i}} \\
\cdots \\
\cdots r_{i} \\
i_{i}
\end{array}\right]
\end{aligned}
$$

Let $v \in \sum_{i=1}^{n} v^{i} e_{i}$, Then $D F(v)=\left.\sum_{i=1}^{n} v^{i} \frac{\partial F}{\partial r^{i}}\right|_{p}$

Instead of V, we are looking at

$$
D_{v}:\left.g \in c_{p}^{\infty}\left(R^{n}\right) \longmapsto \nabla g\right|_{p} \cdot v
$$

Let $\Phi: T_{P} \mathbb{R}^{n} \rightarrow D_{p} \quad, \psi: T_{F(P)} \mathbb{R}^{m} \rightarrow D_{f(p)}$

$$
: v \longmapsto D_{v} \quad: w \longmapsto D_{w}
$$

WTS: for $v \in T p R R^{n}$,

$$
\begin{array}{r}
F_{*, p}\left(D_{v}\right)=D_{D F / p(v)} \\
\left(F_{*, p}\left(\not \Phi^{D}(v)\right)=\psi(D F(p(v))\right.
\end{array}
$$

Let $f \in C_{F(P)}^{\infty}\left(\mathbb{R}^{m}\right)$, then

$$
\begin{aligned}
D_{\left.D f\right|_{p}(v)}(f) & =\left.\nabla f\right|_{F(()} \cdot(D F(\rho v) \\
& =\left.\left(\nabla f_{\circ} F\right)\right|_{\rho} \cdot V \\
& =D_{V}\left(f_{0} F\right) \\
& =F_{*, p}\left(D_{v}\right)(f) \\
\Rightarrow D_{D F \mid \rho(v)} & =f_{*, \rho}\left(D_{v}\right)
\end{aligned}
$$

Chain rule: Let $F: N \rightarrow M, G: M \rightarrow P$ be (amp). Let $P \in N$

Since $\operatorname{Gof}_{\text {is }} C^{\infty}$

$$
\operatorname{Tp} N \frac{\left(G_{0} F\right)_{x, P}}{\left.D\left(G_{0} f\right)\right|_{\rho}} \rightarrow T_{G_{o f}(P)} P
$$

The: ChainRule

$$
(G \circ f)_{*, p}=G_{*, f(p)} \circ F_{*, p}
$$

Proof: : foray $f \in C_{\text {gof(P) }}^{\infty} P$ and for any $X_{p} \in T_{p} N$

$$
\begin{aligned}
& {\left[G_{*}, f(p) \circ f_{x, p}\right]\left(x_{p}\right)(f)} \\
& =G_{*, f(p)}\left(F_{*, p}\left(x_{p}\right)\right) \quad(f) \\
& =F_{*, p}\left(x_{p}\right)\left(f_{0} G\right) \\
& =X_{p}\left(f_{0} G \circ F\right)=(G \circ F)_{*, p}\left(x_{p}\right)(f)
\end{aligned}
$$

so $G_{*, F(P)}$ of $F_{x, P}=(G \in F)_{x, p}$

Consider Id: $M \rightarrow M$ (C^{∞} map)

$$
\begin{aligned}
I_{d *, p}: T_{p} M & \longrightarrow T_{p} M \\
: X_{p} & \longrightarrow X_{p}
\end{aligned}
$$

for $f \in C_{p}^{\infty}(M)$ and for XP $\operatorname{TP} M$,

$$
\begin{aligned}
I d_{*, p}\left(X_{p}\right)(f) & =X_{p}\left(f_{0} I d\right) \\
& =X_{p}(f) \\
\Rightarrow I d_{*}, p & \left(X_{p}\right)=X_{p}
\end{aligned}
$$

Corollary: If $f i N \rightarrow M$ is a differmorphisun.
Then $F_{*, P}: T_{p} N \rightarrow T_{f(P)} M$ is an isomophsim.
Proof: $I d_{*, \rho}=\left(F^{-1} \circ F\right)_{*, \rho}=\left(F^{-1}\right)_{*, F(\rho)} \circ F_{*, \rho}$

$$
I d_{*, F(P)}=\left(f \circ f^{-1}\right)_{*, F(P)}=F_{*, P} \circ f_{*, f(P)}^{-1}
$$

$\Rightarrow \quad F_{* i \rho}$ is invertible and so is an isomorphism

$$
\text { and }\left[\left(F_{x, p}\right)^{-1}=F_{*, F(P)]}^{n \cdot \text { atm }}\right.
$$

Corollary: $\operatorname{dim} M=\operatorname{dim} T p M$
let M beam manifold of $\operatorname{dim} n$. (locally Enc of $\operatorname{dim} n$)

Recall $\phi: U \rightarrow \phi(U)$ is a diffemorphism
note:

$$
\phi_{*, p}: T_{p} O \rightarrow T_{\text {Pep }} \phi(u) \text { is }
$$

$$
\begin{aligned}
& C_{p}^{\infty}(U) \cong C_{p}^{\infty}(M) \\
& {[f]_{U} \cong[f]_{M}} \\
& T_{p} U \cong T_{p} M \\
& \begin{array}{c}
I f M=R^{n} \\
\operatorname{col}(x) \\
\left.\cos ^{(d)}\right)_{n}
\end{array} \\
& { }_{T P}^{T_{n}^{(d v)} U}=T_{P}^{\text {cold }} R^{n}{ }_{c} \\
& r_{R^{n}} \quad{ }^{2} \mathbb{R}^{n}
\end{aligned}
$$

\Rightarrow dimension of a manifold is well defined.
If (U, ϕ) and (U, ψ) arecharts near p

$$
\begin{aligned}
\text { s.t. } & \phi: U \\
& \rightarrow \mathbb{R}^{n} \\
& : V \mathbb{R}^{m}
\end{aligned}
$$

Then $n=\operatorname{dim}\left(T_{\phi(p)}^{(n e-t)} \mathbb{R}^{n}\right) \hat{\theta} \operatorname{dim}(T P M)$

$$
\begin{aligned}
& =m
\end{aligned}
$$

for $f \in C_{p}^{\infty}(M)$
Recall the partial derivative $\left.\frac{\partial f}{\partial x^{c^{\prime}}}\right|_{\rho}=\left.\frac{\partial\left(f_{0} \phi^{-1}\right)}{\partial r^{i}}\right|_{\phi(\rho)}$
Define $\left.\frac{\partial}{\partial x^{i}}\right|_{p}: C_{p}^{\infty}(M) \rightarrow \mathbb{R}$

$$
\left.\partial x^{i}\right|_{\rho}:\left.f \longmapsto \frac{\partial\left(f_{0} \phi^{-1}\right)}{\partial r^{i}}\right|_{\phi(p)}
$$

$\left.\frac{\partial}{\partial x^{i}}\right|_{p}$ is a derivation (exc) $\begin{array}{r}\text { Pa stol durative }\end{array}$

$$
\Rightarrow \frac{a}{\left.\partial x^{i}\right|_{p}} \in T_{p} M
$$

Proposition: $\left\{\left.\frac{\partial}{\partial y^{1}}\right|_{p}, \ldots, \left.\frac{\partial}{\partial y^{n}} \right\rvert\, p\right\}$ is a basil for $T_{p} M$
Proof: $\begin{aligned} & O \cap \mathbb{R}^{n},\left\{e_{1}, \cdots, e_{n}\right\}^{\alpha} \text { make a basis for } \\ & \begin{array}{l}(d d) \\ T_{\phi(P)}\end{array} \mathbb{R}^{n},\end{aligned}$
Since $\Phi: V \mapsto D_{V}$

Since $\phi_{*, p}$ is an isonsophism $\underset{T_{\phi(2)}^{(n e w)} \mathbb{R}^{n}}{\frac{\partial}{\partial r^{2}}}$

$$
\phi_{x, p}: T_{P} M \rightarrow \frac{(n e w)}{T_{\phi(P)}} \mathbb{R}^{n}
$$

Then $\left\{\phi_{*, \phi(p)}^{-1}\left(\left.\frac{\partial}{\partial r^{\prime}} \right\rvert\,(\phi(P)), \cdots, \phi_{*, \phi(p)}^{-1}\left(\left.\frac{\partial}{\partial r^{n}}\right|_{\phi(p)}\right)\right\}\right.$ is a basil for $T_{f} M$.

WIS: $\quad \phi_{*, \phi(p)}^{-1}\left(\left.\frac{\partial}{\partial, i}\right|_{\phi, p)}\right)=\left.\frac{\partial}{\partial x^{c}}\right|_{p}$

$$
\text { for } \begin{align*}
f \in C_{p}^{\infty}(M), & \phi_{*, \phi(p)}^{-1}\left(\left.\frac{\partial}{\partial r i}\right|_{\phi(c)}\right) \tag{f}\\
= & \left.\frac{\partial}{\partial r^{i}}\right|_{\phi(p)}\left(f \circ \phi^{-1}\right) \\
= & \left.\frac{\partial}{\partial x^{i}}\right|_{p}(f)
\end{align*}
$$

Def: $\left\{\frac{\partial}{\partial x^{\prime}}\left|\rho, \cdots, \frac{\partial}{\partial x^{n}}\right| p\right\}$ is the coordinate basis for $T_{p} M$ writ $\left(U, \phi=\left(y^{\prime}, \ldots, x^{n}\right)\right)$

Exc: for any basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of $T P M$, $\ni\left(U_{1 \phi} \phi\right)$ near p sill. $\quad V_{i}=\left.\frac{\partial}{\partial x^{i}}\right|_{\rho}$

Let $\left(V, \psi=\left(y^{\prime}, \cdots, y^{n}\right)\right)$ be another Chat near, Then $\left\{\frac{\partial}{\partial y^{\prime} \mid}\left|p, \cdots, \frac{\partial}{\partial y n}\right| p\right\}$ is another Coordinate basis.

Exc: $\quad \frac{\partial}{\partial y^{i}}=\sum_{j=1}^{n} \frac{\partial x^{j}}{\partial y^{i}} \frac{\partial}{\partial x^{j}}$.
(Apply $x^{i} \in C_{p}^{\infty}(M)$ to both sides and show $\left.\left.\frac{\partial x^{i}}{\partial x^{j}}\right|_{p}=\delta_{j}^{i}\right)$

Let $F: N \rightarrow M$ be C^{∞} map

$$
F_{*, p}: T_{p} N \rightarrow T_{f(p)} M \underset{\Phi_{\gamma} \downarrow}{T_{p} N \xrightarrow{F_{x}} \underset{T_{\beta}(p)}{ } d_{\beta}}
$$

Let $\left(U_{1} \phi=\left(y^{\prime}, \cdots, x^{n}\right)\right)$ be chart near ρ
 tet $\left(V, \psi=\left(y^{\prime}, \cdots, y^{n}\right)\right.$ bechart near $F(\Gamma)$ maxing dianjumme.
We canusite $F_{x, p}$ wot $\gamma=\left\{\left.\frac{\partial}{\partial x^{i}}\right|_{\beta}\right\}$ and $\beta=\left\{\left.\frac{\partial}{\partial y^{i}}\right|_{F B B}\right\}$,
$m \times 1$ vector $\left[\begin{array}{c}a_{1}^{i} \\ \vdots \\ a_{m}^{i}\end{array}\right]$ satisfying

$$
F_{*}\left(\frac{\partial}{\partial x^{i}}\right)=\left.\sum_{j=1}^{n} a_{j}^{i} \frac{\partial}{\partial y^{j}}\right|_{F(p)}
$$

we compute the coefficiats a_{i}. Apply y^{k} to both sides:

$$
\begin{aligned}
a_{k}^{i} & =\left.\sum_{j=1}^{n} a_{j}^{i} \frac{\partial}{\partial y^{j}}\right|_{f(n)}\left(y^{k}\right) \\
& =f_{*}\left(\frac{\partial}{\partial x^{i}}\right)\left(y^{k}\right) \\
& =\left.\frac{\partial}{\partial x^{i}}\right|_{p}\left(y^{k} \circ f\right) \\
& =\left.\frac{\partial\left(\psi_{0} f_{0} \phi^{-1}\right)^{k}}{\partial r^{i}}\right|_{\phi(p)}=\left.\frac{\partial f^{k}}{\partial x^{i}}\right|_{p}
\end{aligned}
$$

$$
\text { So }\left[[F *, f]_{\gamma}^{B}=D\left(\psi_{0} F \phi^{-1}\right)\right.
$$

Jachican of F urt the charts.

Curves on M
(howthey gire usa meaning to "dicection")
westant with \mathbb{R}^{n}.

(0,1 ,
Let $\beta:(a, b) \rightarrow \mathbb{R}^{n}$ beacamal

$$
\text { S.t. } \beta(0)=P \text {. }
$$

(β is a smooth curre Passing Through P)
$B: t \longmapsto\left(r^{\prime}(t), \cdots, r^{n}(t)\right)$

$$
\begin{aligned}
& \left.D \beta\right|_{t_{0}} ^{(\text {(old) }}: \frac{\text { (old) }}{T_{t_{0}}} \mathbb{R} \rightarrow \overbrace{\beta \in \mathbb{R}}^{\prod_{\beta-1}} \mathbb{R}^{\text {(old) }} \mathbb{R}^{n} \\
& :\left.C \xrightarrow{ } B \beta\right|_{t_{0}}(c)=c\left[\begin{array}{c}
\sigma^{\prime \prime}\left(t_{0}\right) \\
\vdots \\
r^{\prime \prime}\left(t_{0}\right)
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.D \beta\right|_{\text {to }} \\
& \text { wedenote it } \\
& \text { by } \beta_{3}^{\prime}\left(t_{0}\right) \\
& \begin{array}{l}
\text { in multivaney } \\
\text { Course }
\end{array}
\end{aligned}
$$

Velocity vector $\beta^{\prime}\left(t_{0}\right)$ of the curve β at P is \& defined as

$$
\beta^{\prime}\left(t_{0}\right):=\left.D B\right|_{t_{0}}(1)=\left[\begin{array}{c}
r^{\prime}\left(t_{0}\right) \\
\vdots \\
r^{\prime}\left(t_{0}\right)
\end{array}\right]
$$

Now we use the new definition

$$
\begin{aligned}
& B_{*, t_{0}}: T_{t_{0}}^{\text {(new) }} \mathbb{R} \rightarrow T_{\beta+(0)}^{(\text {new })} \mathbb{R}^{n} \\
& \left\{\left.c \frac{d}{d t}\right|_{t_{0}} ^{\lambda}: c \in \mathbb{R}\right\} \quad \operatorname{span}\left\{\left.\frac{\partial}{\partial r}\right|_{\beta\left(t_{0}\right)}: i=1, n\right\}
\end{aligned}
$$

$$
:\left.\left.c \frac{d}{d t}\right|_{t_{0}} \longmapsto \sum_{i=1}^{n} c r^{i^{\prime}}\left(t_{0}\right) \frac{\partial}{\partial r^{i}}\right|_{\beta\left(t_{0}\right)}
$$

Velocity vector at $\beta\left(t_{0}\right)$ is then

$$
\begin{aligned}
& \left.\beta^{\prime}\left(t_{0}\right) \Theta \sum_{i=1}^{n} r^{i^{\prime}}\left(t_{0}\right) \frac{\partial}{\partial r^{i}}\right|_{\beta\left(t_{0}\right)} \\
& =\beta_{*, t_{0}}\left(\left.\frac{d}{d t}\right|_{t_{0}}\right) \leftrightarrows \\
& \text { Twill be used. }
\end{aligned}
$$

Let M be a smooth manifold

 p in te somedrec ion.
Wedefine the velocity vector $\gamma^{\prime}\left(t_{0}\right)$ of the curve γ at $\gamma\left(F_{0}\right)$ as:

$$
\gamma^{\prime}\left(t_{0}\right):=\gamma_{* \tau_{0}}\left(\left.\frac{d}{d t}\right|_{t_{0}}\right)
$$

Let $f \in C_{P}^{r}(M)$,
Then $\gamma^{\prime}(0)(f)=\gamma_{*_{0}}\left(\left.\frac{d}{d t}\right|_{t_{0}}\right)$

$$
\begin{equation*}
=\left.\frac{d}{d t}\right|_{0} f_{0} \gamma(t) \tag{f}
\end{equation*}
$$

\approx standard derivative.
indelerdent of The carve used
(is the same for any other curve $\tilde{\gamma}$
Satisfying $\tilde{\gamma}(0)=P$ and $\left.\tilde{\gamma}^{\prime}(0)=\gamma^{\prime}(0)\right)$
Proposition: for any $X_{p} \in T P M, \exists \gamma_{i}(a, b) \rightarrow M$ set. $\gamma(0)=p, \gamma^{\prime}(0)=X p$.

Let $F: N \rightarrow M$
be C^{∞} map

$$
F_{*, p}: T_{p} M \rightarrow T_{F(\theta)} N
$$

I claim for any curve γ passing through p in the "direction" of X_{P},
for is acme Passing through $F(P)$ in The "direction" of $F_{*}, p\left(X_{P}\right)$

$$
\begin{aligned}
\text { "direction" of } F_{o \gamma} \gamma & =F \circ \gamma{ }^{\prime}(0) \\
& =(F \circ \gamma)_{*, 0}\left(\left.\frac{d}{d t}\right|_{0,0}\right) \\
c_{* * i c} \downarrow & =\left.\left(F_{*, p} \circ \gamma_{*, 0}\right) \frac{d}{d t}\right|_{t=0}
\end{aligned}
$$

$$
\begin{aligned}
& =F_{*, p}\left(\gamma_{*, 0}\left(\left.\frac{d}{d t}\right|_{t=0}\right)\right) \\
& =F_{*, p}\left(\gamma^{\prime}(0)\right) \\
& =F_{*, p}\left(X_{p}\right) \\
& =\text { direction of }^{\prime \prime} F_{*, p}(X P)
\end{aligned}
$$

