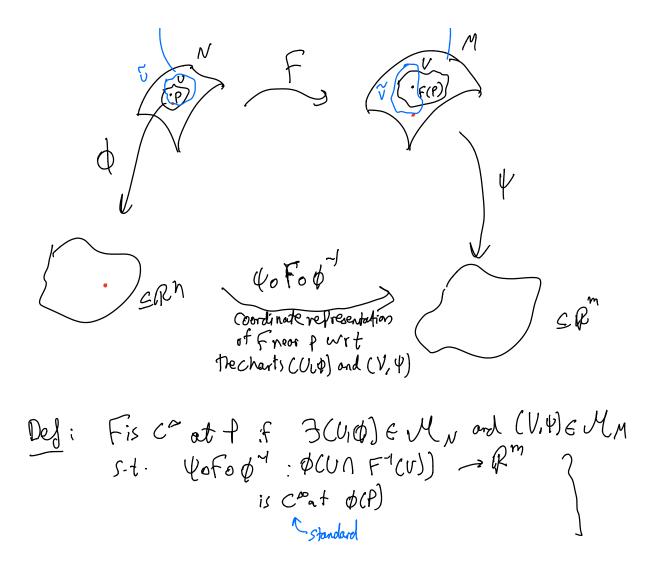
-OH - Assignment 2

Def: Let
$$(M, M)$$
 be a smooth manifold and let $f: M \rightarrow IR$. fis co at P
if $3(U, \phi) \in M$ near p s-t- $fo \phi^{-1}: \phi(u) \rightarrow R$ is $C^{\infty} \rightarrow \phi(P)$.
studed C^{∞}

Check, Let
$$M = lR^n$$
 with $A = \mathcal{L}(IR^n, Id)$
Let $f: R^n \to IR$.
We wort to check fis $C^\infty \mathcal{I} \Longrightarrow f$ is C^∞ (standard)
fis $C^\infty \mathcal{I} \Longrightarrow f \circ Id^{-1}$ is C^∞ standard $\Longrightarrow f$ is C^∞ (standard)



Check that the def is independent of charts:

$$\tilde{\Psi} \circ \tilde{F} \circ \tilde{\Phi}^{-1} = (\tilde{\Psi} \circ \tilde{\Psi}) \circ (\tilde{\Psi} \circ \tilde{F} \circ \tilde{\Phi}^{-1}) \circ (\tilde{\Phi} \circ \tilde{\Phi})$$

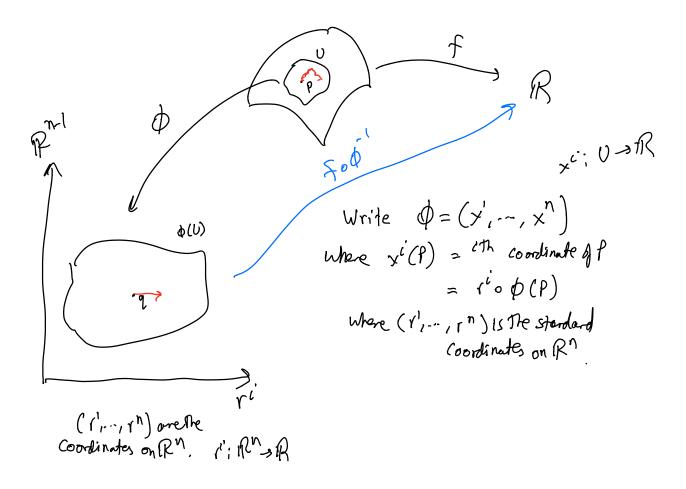
 $\tilde{\chi} \circ \tilde{F} \circ \tilde{\Phi}^{-1} = (\tilde{\Psi} \circ \tilde{\Psi}) \circ (\tilde{\Psi} \circ \tilde{F} \circ \tilde{\Phi}^{-1}) \circ (\tilde{\Phi} \circ \tilde{\Phi})$
 $\tilde{\chi} \circ \tilde{F} \circ \tilde{\Phi}^{-1} = (\tilde{\Psi} \circ \tilde{\Psi}) \circ (\tilde{\Psi} \circ \tilde{F} \circ \tilde{\Phi}^{-1}) \circ (\tilde{\Phi} \circ \tilde{\Phi})$
 $\tilde{\chi} \circ \tilde{F} \circ \tilde{\Phi}^{-1} = (\tilde{\Psi} \circ \tilde{\Psi}) \circ (\tilde{\Psi} \circ \tilde{F} \circ \tilde{\Phi}^{-1}) \circ (\tilde{\Phi} \circ \tilde{\Phi})$
 $\tilde{\chi} \circ \tilde{F} \circ \tilde{\Phi}^{-1} = (\tilde{\Psi} \circ \tilde{\Psi}) \circ (\tilde{\Psi} \circ \tilde{F} \circ \tilde{\Phi}^{-1}) \circ (\tilde{\Phi} \circ \tilde{\Phi})$
 $\tilde{\chi} \circ \tilde{\Phi} \circ \tilde{\Phi}^{-1} = (\tilde{\Psi} \circ \tilde{\Psi}) \circ (\tilde{\Psi} \circ \tilde{\Phi} \circ \tilde{\Phi}) \circ (\tilde{\Phi} \circ \tilde{\Phi})$

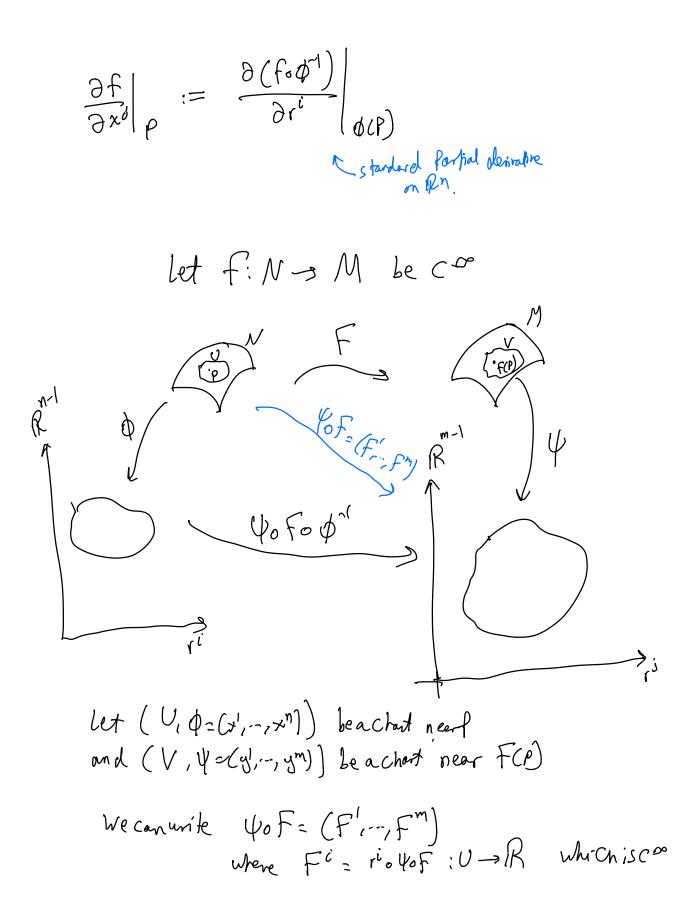
Profisition: Let FiN-) M be a continuous mot. Then The following (Corriterion) Obre equivalent.

Check that this definition is a generalizettim:
Let
$$N > B^n$$
 and $M > R^m$
 $A_N = \{(R^n, Id)\}$
Let $F(R^n \rightarrow R^m)$ be a continuous function.
 $F(R^n) = Td \circ F \circ Id^n$ is C^∞ (standard)
 $= \sum_{n=1}^{\infty} F(R^n) = F(R^n)$

Def: $F: N \rightarrow M$ is a diffeomorphism if Fis homeomorphism and C^{∞} , and F^{-1} is C^{∞} .

Propositions: Let
$$(U_{L}\phi)$$
 be a chart on M , Then
 $\phi: U \rightarrow \phi(U)$ is a diffeomorphism.
Proof \vdots disa homeomorphism L
 $A_{U} = \{(U, \phi)\}$ usually for U
 $A_{d(U)} = \{(\phi(U), Id)\}$ is an ally for $\phi(U)$
 $Id \circ \phi \circ \phi^{-1}: \phi(U) \rightarrow \phi(U)$ is $C^{\infty} \Rightarrow \phi^{-1} \otimes C^{\infty}$
 $\phi \circ \phi^{-1} \circ Id^{-1}: \phi(U) \rightarrow \phi(U)$ is $C^{\infty} \Rightarrow \phi^{-1} \otimes C^{\infty}$
 $for def Side U = M^{m}$ be a diffeomorphism on an
of ensubset $U \subseteq M$. Then (U, F) is a chart for
 M .
 $Example & different smooth structure on K
 M .
 $Finisher let $A_{1} = \{(R, Id)\}^{1/2}$ (all this R_{1}
installer let $A_{2} = \{(R, V(U)=r^{2}\}\}$ Call this R_{2}
 $do these at lases give R the same smooth structure
 A rether charts C^{∞} Compatible?$$$



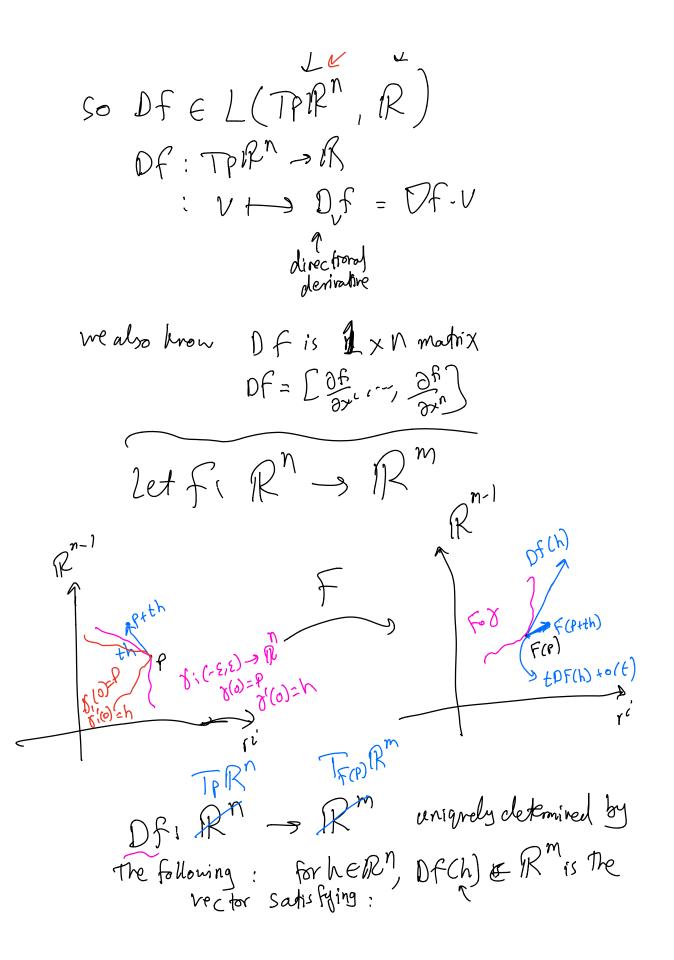


We contally about
$$\frac{\partial F^{i}}{\partial v^{i}}\Big|_{P} = \frac{\partial (f^{i} \circ \phi^{i})}{\partial r^{i}}\Big|_{b(P)}$$

$$= \frac{\partial (r^{i} \circ (k \circ F \circ \phi^{i}))}{\partial r^{i}}\Big|_{\partial (P)}$$

$$= \frac{\partial (\Psi \circ F \circ \phi^{i})^{i}}{\partial r^{i}}\int_{K}$$
We call $\left(\frac{\partial f^{i}}{\partial x^{i}}\Big|_{P}\right) = D(\Psi \circ F \circ \phi^{i})$ the Sackbarn
of Fat P. (defendent on the coordinate system).
If you have another chart $(\tilde{U}, \tilde{\phi})$ and $(\tilde{V}, \tilde{\Psi})$,
then
 $\tilde{\Psi} \circ F \circ \tilde{\phi}^{-1} = (\tilde{\Psi} \circ \Psi^{i}) (\Psi \circ F \circ \phi^{i}) \circ (\tilde{\Psi} \circ \tilde{\phi})$
 $D [\tilde{\Gamma} - \tilde{J}] = D[\tilde{\Gamma} - \tilde{J}] D[\tilde{\Gamma} - \tilde{J}]$
Lemma : The rank of $\left(\frac{\partial f^{i}}{\partial x^{i}}\Big|_{P}\right)$ is
is indefendent of coordinates, and so is well defined.

It is called the realk of Fat P.]
No we have:
Frivese function This on manifold:
let
$$f: N \rightarrow M$$
 be a smooth moof (dim Nodim M).
If the Tacobian of Fat P is invertible, then
 $\exists U neighting P and $\exists V neighting, then
 $\exists U neighting P and $\exists V neighting, then
 $f: U \rightarrow V$ is a diffeomorphism.
What do we need to define the derivative?
 $f: U \rightarrow V$ is a diffeomorphism.
 $Mat do we need to define the derivative?$
 $f: U \rightarrow V$ is a diffeomorphism.
 $Mat do we need to define the derivative?$
 $f: U \rightarrow V$ is a diffeomorphism.
 $Mat do we need to define the derivative?$
 $f: U \rightarrow V$ is a diffeomorphism.
 $Mat do we need to define the derivative?$
 $f: dended by $\exists P R$
 $f: Rep \rightarrow R$
 $f: Rep \rightarrow R$
 $f: interdirection = Df(u) = \nabla f \cdot U$
 $f: interdirection of the mean space.$$$$$$

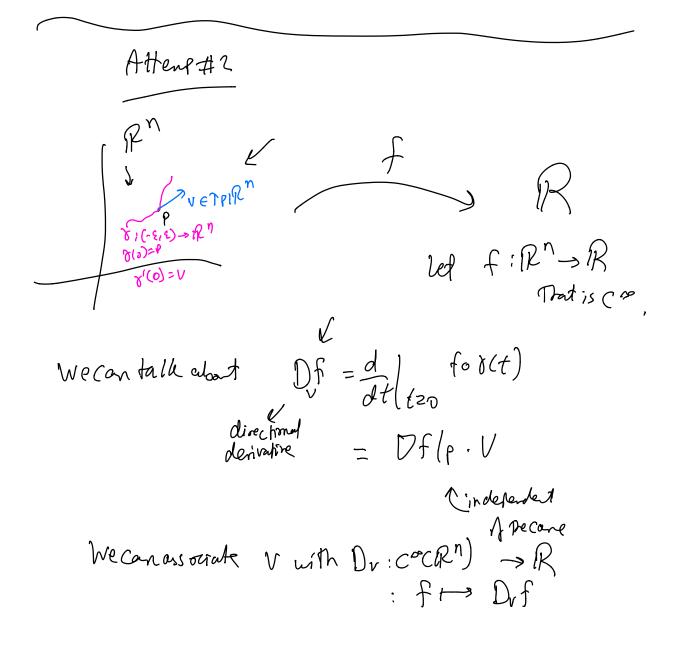


$$\begin{aligned} \left(F(P+th) - F(P) = tOF(h) + o(t) \right) \\ Magicultum: DF(P \in L(TPP), T_{S(P)}R^{m}) \\ is the myn matrix $\left[\frac{\partial F'}{\partial r'} \right]_{P} \\ fo the myn matrix \left[\frac{\partial F'}{\partial r'} \right]_{P} \\ Fo to to = F(P) \\ direction Igo arostion \\ f(P) as Igo in Redirection \\ dt \\ t = 0 \\ DF/p \cdot to(0) \\ = DF/p \cdot to(0) \\ f(P) = DF/p \cdot to(0) \\ f(P) = 0 \\ f(P)$$$

Define the Tangent space

$$R^{n}$$
 R^{n} R^{n} R^{n}
 $Arttendo 1:$ R^{n} R^{n} R^{n}
 $Arttendo 1:$ R^{n} R^{n} R^{n}
 R^{n} R^{n} R^{n} R^{n}
 R^{n} R^{n} R^{n} R^{n}
 R^{n} R^{n} R^{n} R^{n}
 R^{n} R^{n} R^{n} R^{n} R^{n}
 R^{n} R^{n} R^{n} R^{n} R^{n}
 R^{n} R^{n}

This definition carries over to Monifold. Define TPM as Ap/~



Dv satisfies 1) linear with the U.S. of
$$C^{\infty}(\mathbb{R}^{n})$$

2) Leibnie Rule wit ringstructure V_{sourch}
 $f_{1}^{C^{\infty}(\mathbb{R}^{n})}$
 $\mathcal{D}_{v}(f_{3}) = f(p) \mathcal{D}_{v}(g) + g(p) \mathcal{D}_{v}(f)$
 $\mathcal{D}_{p} := \underbrace{\langle}_{2} \mathcal{D}_{1} : C^{\infty}(\mathbb{R}^{n}) \rightarrow \mathbb{R} : \mathcal{D}_{catisfies 1 \text{ and } 2}$
 $= \underbrace{\langle}_{2} \mathcal{D}_{v} : C^{\infty}(\mathbb{R}^{n}) \rightarrow \mathbb{R} : \mathcal{D}_{catisfies 1 \text{ and } 2}$
 $= \underbrace{\langle}_{2} \mathcal{D}_{v} : C^{\infty}(\mathbb{R}^{n}) \rightarrow \mathbb{R} : \mathcal{D}_{catisfies 1 \text{ and } 2}$
 $Think of Telk as \mathcal{D}_{p}
Think of Telk as \mathcal{D}_{p}
 $Think of Telk as \mathcal{D}_{p}
 $Think of Telk as \mathcal{D}_{p}
 $(s an isomorphism)$
 $v \mapsto \mathcal{D}_{v}$$$$