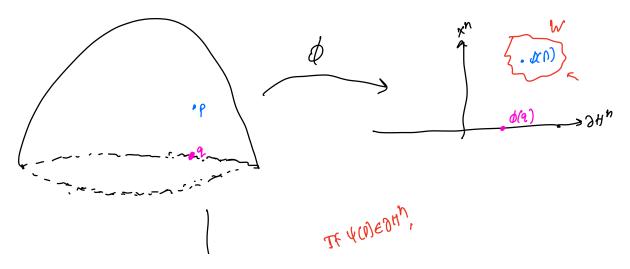
Consecration
 Assignment 7 & cesary one left to submit. Remail lit torre.
 OH
 Mock exam.

Smooth invariance of domain: IF $S: U \rightarrow S$ is a diffeomorphism where $S \subseteq \mathbb{R}^n$ is abiliting and $U \subseteq \mathbb{R}^n$ is deal, then Sisaden in \mathbb{R}^n .



$$\begin{array}{cccc} \mathcal{Y} & \mathcal{Y} &$$

2) Tangent rectors.

$$T^{x'} + H^2 = V$$

 $T^{p} H^2 = 2 V : Cp(H^2) \rightarrow IR | V is a point
 $T^{p} H^2 := 2 V : Cp(H^2) \rightarrow IR | V is a point
 $devination$
 $= Span 2 \frac{3}{2} \cdot |P, \frac{3}{2} \cdot |P]$
 $= TpIR^2$$$

For a manifeld with boundary. Let (U1) be a chart ver PEJM Then TPM 1= ZU: CP(M) -R Vis Point derivation Z = span { = ip / in fright Then TM and X(M) are defined in the same way. Also distributions and orientation are defined intresome may. 3) TPM is defined in the same way, And so is $\Lambda^{k}(T^{*}M)$ and $\mathfrak{A}^{k}(M)$ 4) embedded / regular submanifolds are defined in the same may. Is could be with or w(o boundary. If SAOM = \$, Then ; tis a manifold ? True -> with boundary DS = SNOM Spee Thm: Let M be an n-dim manifald with boundary. Then OM is n-I dim submanifold (M) and is without boundary, Proof: (Uip=(x',...,xn)) (hart on M near PEDM) => UNOM is defined as The varishing of the last coordinate. => and is and dim submanifald of M with chart

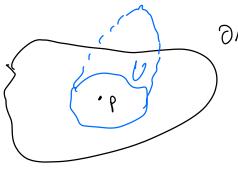
CUNOM,
$$\phi_{OM} = (y_{i}^{i}, y_{i}^{n-1})$$
)
where $y_{i}^{i} = x_{i}^{i}$ and $i: \partial M \subset M$
Let $\{2(Up_{i}\phi_{p}) \mid p \in \partial M\}$ be adapted that relative to ∂M
that cover ∂M .
Then $\{2(Up_{i} \cap \partial M, \phi_{P_{\partial M}}) \mid P \in \partial M\}$ is a CP attay brown
Since $\phi_{P_{\partial M}}(Up_{i} \cap \partial M)$ is often subset $\phi_{i} D^{n-1}$,
 ∂M_{is} a manifold U_{i} boundary.
 $= \sum \partial^{2}M = \phi$

We make the usual abuse gnotation:
$$(x_{i,p}(TPOM)) = TPOM$$

Let $(U_{i,p})$ benchet near $P \in \partial M$.
Then $TPOM = sPan \sum_{i=1}^{n} |p_{i} \cdots j_{i=n-1}| |p_{i}|^{2} \leq TPM$
 $w | o abuse Anotation; $(x_{i,p}(TPOM) = sPan \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}$$

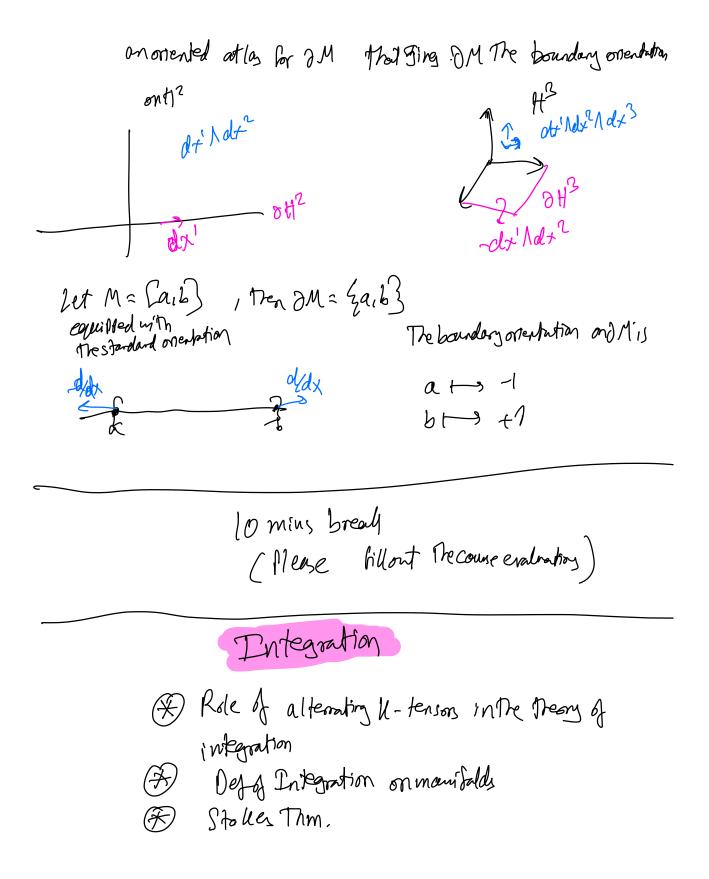
Let PEDM
We say XPE TPM is inward pointing if XE & TPDM
and IC: COIE) = M sit. C(D) = P, C(D) = YR
Us equinded to:
XPE at 3. |p
We say XRETPM ; sondward pointing if
-XP is inward pointing.
A vector field along DM is a map X: DM -> TM
Xis C[∞] II for every Chart (U10), Xq = a'(q)
$$\frac{D}{DTC}$$
|q
Here ai EC[∞] (UNDM)
It is ontimer ai EC[∞] (UNDM)
It is ontimer for the for every if an(q) 2 0 HqEU.
(if Xq is outward pointing HqEDM)

Profosition: On a manifuld with boundary, 3 Con outward parting vectorfield along DM.



$$\begin{array}{ccc} \mathcal{P}_{\text{rod}} : & \mathcal{L}_{X} \, \mathcal{W} \left(\begin{array}{c} \partial_{\mathcal{I}} & \dots & \partial_{\mathcal{I}} \\ \partial_{\mathcal{I}} & \partial_{\mathcal{I}} & \dots \\ \partial_{\mathcal{I}} & \dots & \partial_{\mathcal{I}} \\ & \dots & \partial_{\mathcal{I}} \\ \partial_{\mathcal{I}} & \dots & \partial_{\mathcal{I}} & \dots & \partial_{\mathcal{I}} \\ \partial_{\mathcal{I}} & \dots & \partial_{\mathcal{I}} \\ \partial_{\mathcal{I}} & \dots$$

$$= W(\underline{3} \xrightarrow{2}_{3n}, \frac{2}{3n}, \frac{2}$$



We cannot integrate functions on manifolds in
a coordinate indefendent way:
Let
$$f: \mathbb{R}^2 \rightarrow \mathbb{R}$$
, $M = B_1(o)$
Then $Integral(f) = \int_M f := \int_M f(coordinate)$
is not coordinate indefendent

<u>C</u> Sfor 201, ... 102 Z

Sogiren a signed length meter $W \in \mathcal{N}(M)$,

I signed langth of cure S'' := b S W OGS (H(Ct)) dt
with W
findefendent of the faranchization.
IF & : (aib) -3 M is another embedding set.
$$\tilde{\mathcal{S}}(\tilde{q},\tilde{b}) = S$$
 same manhather
2

Then
$$\int_{a}^{b} \int W_{\xi(t)} (\tilde{\gamma}'(t)) dt \simeq \int_{a}^{b} \int_{w_{r(t)}} (\tilde{\gamma}'(t)) dt \qquad \int_{sa}^{t} \tilde{\gamma}'(t) \int_{sa}^{b} \frac{\chi'(t)}{sa} diffeomorphisms$$

We define
$$\int_{S} \omega := \int_{\delta (\delta'(G))} \psi(\delta'(G)) dt$$

This nell defined.
defends only on S and ω .

$$\int \mathcal{W}_{\mathcal{F}(\mathcal{L}_{1},\dots,\mathcal{L}_{k})} \left(\begin{array}{c} \Phi_{\mathcal{H}_{1}(\mathcal{L}_{1},\dots,\mathcal{L}_{k})}^{-1} & \frac{\partial}{\partial \mathcal{F}^{1}} \\ \\ \frac$$

$$= \int_{\Phi(S)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Phi^{T}(\mathcal{A}', \dots, \mathcal{A}')} d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$Let \ (\mathcal{A}: S \rightarrow \mathbb{R}^{h} \quad be another (hast (Pr \rightarrow (S'(\theta), \dots, S^{h}(\theta))))$$
Then $\int_{\Phi(S)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Phi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} d\mathcal{A}' \dots d\mathcal{A}^{h}$

$$= \int_{\Phi(S)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Phi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} clat(D \ (D \ (\mathcal{A}^{h})) d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} clat(D \ (\mathcal{A}^{h})) d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} clat(D \ (\mathcal{A}^{h})) d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} clat(D \ (\mathcal{A}^{h})) d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} clat(D \ (\mathcal{A}^{h})) d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} clat(D \ (\mathcal{A}^{h})) d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} clat(D \ (\mathcal{A}^{h})) d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} clat(D \ (\mathcal{A}^{h})) d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} clat(D \ (\mathcal{A}^{h})) d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} clat(D \ (\mathcal{A}^{h})) d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h})} d\mathcal{A}' \dots d\mathcal{A}^{h}$$

$$= \int_{\Psi(CS)} \int_{\Psi(CS)} W(\frac{2}{2^{N}}, \dots, \frac{2}{2^{N}}) \Big|_{\Psi^{T}(\mathcal{A}', \dots, \mathcal{A}^{h}$$

Not sized hindin Voluce
$$AS^{\prime}$$
 creatively supported
is contactly supported
If h = n and we size (M) and S = M (BSSURF also
is correctly supported
Then "signed Volume $AM^{\prime\prime} := \int W \oplus B^{\prime}$
what if supp (w) Consult be Correct by B^{\prime} (Control)
What if supp (w) Consult be Correct by B^{\prime} (Control)
(Control be Correct by B^{\prime} (Control)
(Control be Correct by B^{\prime} (M) where
Mass oriented manifold
We $\frac{2}{B}$
Let $\frac{2}{2}(U_{2}, \phi_{4})$ be an oriented atlay
Let $\frac{2}{3}S_{2}$ be a partition A unity .
Then S_{2} W is confluctly supported in U_{2} since supp (Sev)
 $\leq supp (Sev)$

1#

5)
Lan
; $N \rightarrow M$ & let $w \in Sh(M)$ conflictly
then $\int_{M}^{W} = \int_{N}^{K} F^{*}w$
6) If M can be covered by 1 chost up to
a measure 0 set,
then $\int_{M}^{W} = \int_{U}^{W}$
Stokles Theorem; let M be an onested monifold with boundary
and let ∂M be the boundary with the boundary
on controlom.
Let $w \in R^{n-1}(M)$ be conflictly supported.
Then $\int_{M}^{W} = \int_{\partial M}^{W}$ where $i: \partial M \subset M$
 $\int_{M}^{V} \int_{\partial M}^{W} \int_{\partial M}^$

Cth

$$b \int f'(x) dx$$

= $f(b) - f(a)$

Separtmotorn is completely detenined by information on OM

Suppose
$$M = [a_1b]$$
. Then $\partial M = \{a_1b\}$ with the boundary one holden
with standard one with $a \leftrightarrow -1$
 $b \leftrightarrow +1$
Let $f \in \mathcal{A}^{\circ}(M)$. Then $b \int f'(G) dx = \int df = \int f = -f(a) + f(b)$
 $M = \int M = \int M$

$$= \sum_{2} \int \varphi_{a}(v_{a}) \varphi_{a}^{-1} (dS_{a}w)$$

$$= \sum_{M} \int_{M} \frac{d(S_{M})}{d(S_{M})}$$
$$= \int_{M} \sum_{M} \frac{d(S_{M})}{d(S_{M})}$$

$$= \int_{M} d(\Xi S_{2} \omega)$$

$$= \int_{M} d\omega$$

$$\mathcal{U} = \frac{1}{2} \frac{dy}{dt^{2}} \frac{dt}{dt^{2}} + \frac{1}{2} \frac{dx}{dt^{2}} \frac{dy}{dt^{2}}$$

$$\frac{1}{2} \frac{1}{2} \frac{dy}{dt^{2}} \frac{dt}{dt^{2}} \frac{dt}{dt^{2}} + \frac{1}{2} \frac{dx}{dt^{2}} \frac{dt}{dt^{2}} \frac{dt}{dt^$$

Post-Lecture fractice Questions

 $\left(\right)$

1) Do the exercises above
2)
Define
$$f: ft^2 \rightarrow \mathbb{R}$$
 by $f(x^1, x^2) = x^1 x^2$
show that f is c^∞ chandlered. (Find an extension $\tilde{f} \in C^\infty(U)$
where $U \ge tf^2$ and isolen s.t. $\tilde{f}|_{H^2} = f$
3) let $f \in C^\infty(H^2)$.
Define $\frac{\partial f}{\partial x^1}|_{(\sigma \sigma)} := \frac{\partial \tilde{f}}{\partial x^1}|_{(\sigma \sigma)}$ where \tilde{f} is an extension of f
show that $\frac{\partial f}{\partial x^1}|_{(\sigma \sigma)}$ is in defendent of the extension.

Show that for every fixed is omorphism $\overline{Pirz}^{O}(M) \rightarrow \Omega^{n}(M)$, we have a notion on D_{f} integration on M that depends on \overline{P} .

10) Let
$$w = (z - x^2 - x_3) dx \lambda dy - dy \lambda dz - dz \lambda dx$$

(one liste $\int i^* w$ where $i: D \subset R^3$
ord $D = \frac{1}{2} (x_0 x_2) \in \mathbb{R}^3 | x^2 + 3 \leq 1, z_3$
11) Problem 22.7 - 22 · 11
12) Problem 23.3
13) What is using with the following argument.
Let $B_1(a)$ be the general ball which is on n-dim manifold
without boundary.
 $\frac{4}{3}TI = \int_{B_1(a)} dx \lambda dy \lambda dz = \frac{1}{2} \int_{B_1(a)} d[x dy \lambda dz + y dz \lambda dx + z dx M_2]$
by stakes $= \frac{1}{2} \int_{B_1(a)} (x dy \lambda dz + y dz \lambda dx + z dx M_2)$
by stakes $= \frac{1}{3} \int_{\partial B_1(a)} (x dy \lambda dz + y dz \lambda dx + z dx M_2)$
by stakes $= \frac{1}{3} \int_{\partial B_1(a)} x dx \lambda dz + y dz \lambda dx + z dx M_2$
by stakes $= \frac{1}{3} \int_{\partial B_1(a)} x dz + y dz \lambda dx + z dx M_2$
by stakes $= \frac{1}{3} \int_{\partial B_1(a)} x dz + y dz \lambda dx + z dx M_2$
by stakes $= \frac{1}{3} \int_{\partial B_1(a)} x dz + y dz \lambda dx + z dx M_2$
by stakes $= \frac{1}{3} \int_{\partial B_1(a)} x dz + y dz \lambda dx + z dx M_2$
by stakes $= \frac{1}{3} \int_{\partial B_1(a)} x dz + y dz \lambda dx + z dx M_2$
by stakes $= \frac{1}{3} \int_{\partial B_1(a)} x dz + y dz \lambda dx + z dx M_2$
 $= 0$ since $\partial B_1(a) = p$
So $\frac{4\pi}{3} = 0$ \bigcirc
14) Recall for $x \in \mathcal{X}(\mathcal{R}^{n+1})$, $(\nabla \cdot X \in Corc(\mathcal{R}^{n+1}) = D \cdot X dx^{n+1} \cdot N dz M$

Show that
$$\int D \cdot X dx^{i} h \cdots h dx^{n} = \int_{S^{n}} \langle X \cdot N \rangle h \cdot N (dx^{i} h \cdots h dx^{n})$$

 $\overline{B_{1}(0)}$
where $N = \sum_{i=1}^{n+1} \frac{2}{2^{i}x^{i}} \frac{2}{2^{i}x^{i}}$
(Use stolles this and Cartan's magic formula)