(A) Course civalinations

Dre question on the exam will come from the optional questions in Assignment 7.

Recall: we defined orientation on vectorspace
One-phatim :=
$$\begin{pmatrix} Chaice d \\ an ordered \\ basis \end{pmatrix} \begin{pmatrix} Chaice d \\ d \in \Lambda^n(V^*)/\{2^3\} \end{pmatrix}$$

 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
for a ≥ 0
 $d \wedge d'$; it a = ad'
 $d \wedge d'$; it a = ad

A pointuise orientation on M is a choice of orientation on each TPM. we have 2^{1M} Choices of pointure on adation.

I want to matte a small Choice of orrestation on each TPM

Exe
Equivalently: An orientation on
$$M$$
 is a pointwise orientation on M
S.L. $\forall P \in M$, $\exists a$ Chart $(U_1 \notin)$ near p s-t.
 $\begin{cases} \frac{\partial}{\partial \chi_1} | q \rangle^{(-)}, \frac{\partial}{\partial \chi_1} | q \end{cases}$ is convised with orientation on $Tq M$
 $\forall q \in U$.

Equivalently: An orientation on M is a pointwise orientation on M that admits an oriented anatlog.

Each equivalence (lass refresent an orientation on M

Del : Misorientable if it admits an orientation
An oriented manifold is an orientation
(Mobius StrP, Weinbottle, PPP^{2N} are ut orientable
manifolds)
Profibition: An orientable manifold admits 2^C
orientations Where C = ## of connected comboels.
Profi : let M, V be 2011entation on M (MP, VP preoreated comboels.
Profi : let M, V be 2011entation on M (MP, VP preoreated comboels.
Profi : let M, V be 2011entation on M (MP, VP preoreated comboels.
Profi : let M, V be 2011entation on M (MP, VP preoreated comboels.
Profi : let M, V be 2011entation on M (MP, VP preoreated comboels.
Profi : let M, V be 2011entation on M (MP, VP preoreated comboels.
Profi : let M, V be 2011entation on M (MP, VP preoreated comboels.
Profi : let M, V be 2011entation on M (MP, VP preoreated comboels.
Profi : let M, V be 2011entation on M (MP, VP preoreated comboels.
Profi : let M, V be 2011entation on M (MP, VP and V)
(MP=VP of MP=-VP)
Let f: M -> {± 1
connected comboels.
Profice (U(0)) and (U, W) be chards new P consistent with M and V
respectivels.
Then det (DWod¹) ±0 on
$$\phi(U(NV)$$
.

let are an(M) be nowhere vanishing

Def anovertation on TPM specified by up which defines a pointwise orientation. Let (U10) be a chart Then $W(\frac{1}{21}, ..., \frac{3}{27n}) > 0$ Since $W(\frac{3}{27n}, ..., \frac{3}{27n}) \neq 0$

Assume whog that
$$W(\frac{1}{2}, \dots, \frac{1}{2}, \frac{1}{2}) \ge 0$$
 on U
=> $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

let Mbe an onertable manifold.
Let
$$W \in \Omega^{n}(M)$$
 be nowhere varishing.
Then W specifies anorientation as in the proof above.
We define a relation on nonhere where varishing n-forms.
 $U e conw' \in Sn^{n}(M)$ be nowhere varishing:
 $W nw'$ if $W = f w'$ for $f > 0$
(so if w and w' specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation),
 $So if w and w'$ specify the same orientation orientation orientation),
 $So if w and w'$ specify the same orientation orientation

 $\overline{}$

The Prototype of a manifold with boundary is
for
$$n \ge 2$$
: $tt^n = \langle (x'_1, ..., t^n) \in Q^n | x^n \ge 0 \rangle$ with the substance
for $n \ge 1$: $tt'_t = \langle x \ge 0 \rangle$ or $tt'_t = \langle x \le 0 \rangle$ for technical
with the reasons
substance topology
Points with $x_n \ge 0$ are called interior points of tt^n
denoted by $(tt^n)^o$
Points with $x_n \ge 0$ are called boundary points of tt^n
(denoted by $2tt^n$)
 $x_n \ge 0$ $(tt^n)^o$
 $(denoted by 2tt^n)$

Def: A topological n-manifold with boundary is second countable, Hausdorff topological space that is lacally UN.

for $n \ge 2$, A chart $(U_1 \phi)$ is a homeomorphism $\phi: U \rightarrow d(U) \subseteq H^n$

Where Uis openingen, and Q(U) is open in HM.
(form=1, Q(U)
$$\subseteq$$
 H'x or H'_)
A collection of charts $\langle (U| \phi) \rangle$ is a CP adlas if
they cores M and if for any 2 charts (U) ϕ), (U) ψ),
deningen
 $\psi \circ \phi \uparrow$: $\phi (U \cap V) \longrightarrow \psi (U \cap V)$
is a diffeomorphism
 $\begin{pmatrix} smooth admits a smoth extension \\ on an open subset in R2 containing \\ Q(U \cap V) \end{pmatrix}$

Post-lecture Practice Questions

Show that $\xi((a,b), Td)$, ((a,b), Td) is an oriented at (as fall (a,b)) for the standard positive orientation specified by the 1-form dx.

4) Let
$$f: \mathbb{R} \to \mathbb{R}$$
 s.t. $df \neq 0$. Show that $f'(-\sigma, 1)$ is a manifold $M \subseteq \mathbb{R}^n$ with boundary $\partial M = f'(1)$

Use this to show that $M = \overline{B_1(o)}$ the closed unit ball in \mathbb{R}^n is a manifold with boundary and that $\partial M = S^2$.

Then the Klein bottle K:= R²/T (quotient of R² by the subgroup
I de diffeomorphisms)
let TT: R² -s K be the projection rop. (which is a local diffeomorphism)
let W be any smooth 2-form on K.
Let
$$\widetilde{W} := TT * W$$
.
a) show that $\sigma * \widetilde{W} = \widetilde{W}$
b) show that $\widetilde{W} = f d_{X} A d_{Y}$ where $f \in C^{\infty} CR^{2}$ satisfies for =-f
c) show that W vanishes somewhere & Conclude K is not orientable.