- feedback form
- Off and frere of form
- Assignment of pated on friday

Let M beaset.

Need the notion of continuity, compact, neighbourhood, connected,...

Substace Topology.
If
$$(M,T)$$
 is a topological space, then $A \le M$
inherits a topology from the ambient space.
(Characterized by: Unique topology s-l.
 $f: N \longrightarrow A$ is cont iff
 $i \circ f: N \longrightarrow M$ is cont
Where $i: A \longrightarrow M$
 $: P \to P$

let
$$T_A = \{ A \cap U : U \in T \}$$

 T_A is called the subspace to fology
 $exc: venty T_A$ is a topology on A
Bases
Def: Let (M,T) be a topological space.
 $B \subseteq T$ is called a basis for T if
for every $U \in T$ and $P \in U$, $\exists B \in B \ s \cdot t$.
 $P \in B \subseteq U$
equivalently
 B is a basis for T if every $U \in T$ is a
union by elements in B .
 $E_X: R^n$. $B = \{ Br(P) : P \in R^n, r \in R^+ \}$
is a basis for the regular to fology.
 $In fact, we can find a countable basis
 $B^* = \{ Br(P) : P \in Q, r \in Q \}$$

Back to Manifolds, Topological Manifolds

Def : 2 charts
$$(U_1\phi)$$
 and $(V_1\Psi)$
are C° compatible if the transition map
 $\Psi_0 \phi^{-1}$ is a diffeomorphism.
 $\left(\begin{array}{c} \Psi_0 \phi^{-1} : \phi(U \cap V) \rightarrow \Psi(U \cap V) \\ \phi_0 \Psi^{-1} : \Psi(U \cap V) \rightarrow \phi(U \cap V) \end{array} \right)$

Def: A C^{oo} atlay is a collection of Charls

$$A = \left\{ \left(U_{d}, \Phi_{d} \right) \right\}$$
 Covering the manifold
and are pairwise C^{oo} compatible.

precisely: 1)
$$\bigcup_{d} U_{d} = M$$

2) (U_{d}, ϕ_{d}) and (U_{B}, ϕ_{B})
on C^{p} compatible $\forall d, \beta$

Symmetric: 1

$$transitive:$$

 $suppose (U_{1},Q_{1})$ is combatile with (U_{2},Q_{2})
 (U_{2},Q_{2}) is combatile with (U_{3},Q_{3})
 $question: is (U_{1},Q_{1})$ combatile with (U_{3},Q_{3})
 $question: is (U_{1},Q_{1})$ combatile with (U_{3},Q_{3})
more precisely:
 $is \quad Q_{3}\circ Q_{1}^{-1}: Q_{1}(U_{13}) \rightarrow Q_{3}(U_{13})$
 $a \text{ diffeomorphism}? (U_{13}:=U_{1}\cap U_{3})$
 $A \text{ Kira's Answer: underest the tree 1 its only tree on
 $Q_{3}\circ Q_{1}^{-1} = (Q_{3}\circ Q_{2}^{-1})\circ (Q_{2}\circ Q_{1}^{-1})$
 $A \text{ diffeon } A \text{ diffeo}$
 $\Rightarrow \quad Q_{3}\circ Q_{1}^{-1} = is a \text{ diffeonophism.}$
 $all meconsary \quad Q_{2}\circ Q_{1}^{-1}: Q_{1}(U_{123}) \rightarrow Q_{2}(U_{123})$
 $A \text{ diffeon } .$$

Det of a smooth manifald Asmooth manifold of dimn is a topological monifold of dimn equipped with a Coatlay. The Coastlay gives the topological manifold a Smooth spincture making it a smooth manifold.