Summary of last lectore,
let $\omega: M \rightarrow T^{*} M$ beatform. The following areequiralert.

1) Wis c^{∞} as a section.
2) for ary chart $(U, \phi), w=a_{i} d x^{i} \quad$ where $a_{i} \in C^{\infty}(U)$
3) By its action on $x(M), w(X) \in \operatorname{Co}(\mu)$ wherear $X \in E(M)$

$$
\text { is an isomophism }{ }_{1} \text { miodules }
$$

We dente the stace of calloms by $\Omega^{\prime}(M)$

Pull back of 1-6oms

Let $f: N \rightarrow M$ bea c^{∞} mal.
Recall $F_{x, p}: T P N \rightarrow T_{F(P)} M$

$$
\begin{aligned}
& \text { (w: } \left.x(M) \rightarrow C^{\infty}(M)\right)
\end{aligned}
$$

$$
\begin{aligned}
& w: M \rightarrow T^{*} M \longmapsto w: H(M) \rightarrow C=(M) \\
& : X \longmapsto\left(\omega(x): p \mapsto \omega_{f}\left(x_{0}\right)\right)
\end{aligned}
$$

Recall that vectarfields cannst always be pushe forrad Howeres, 1-forms canalnay be Pulled back

Lot w beal-form or M
Then The Pull back of W is a l-form on N defiredby

$$
\begin{aligned}
& F^{*} w: N \rightarrow J^{*} N \\
&: p \longrightarrow\left(f^{*} \omega\right)_{p} \\
& \neg F^{* 1}\left(\omega_{F(p)}\right) \\
&=\omega_{F(p)} \circ F_{*, p}
\end{aligned}
$$

byitsaction on $f(N), F^{*} w$ satsfies: for $X \in X(N), F^{*} w(X)(p)=\left(F^{*} w\right)_{p}\left(X_{p}\right)$

$$
=\omega_{F(P)} \cdot \circ f_{x, P}\left(X_{P}\right)
$$

If Fisadiffermorhism, then $f^{*} \omega(x)=\omega\left(F_{*}(x)\right)$ Puhbrod vectarifol
Sowe can write: $F^{*} W=$ wo F_{*}

Propasition! 1) $f^{*}(g w)=f^{*}(g) f^{*} w$

$$
=g_{0} F F * \omega
$$

2)

$$
\begin{aligned}
\text { If } g \in C^{\infty}(M), & F^{*}(d g) \\
= & d\left(F^{*} g\right)
\end{aligned}
$$

Proot:

$$
=d(g \circ f)
$$

$$
\begin{aligned}
& d g\left(F_{x}, p(v)\right)=F_{*, p}(v)(g)=v(g \circ F)=d(g \circ f)(u) \\
&=d\left(F^{*} g\right)(v) \\
& F^{*}(d g)(v)
\end{aligned}
$$

3) If $w \in \Omega^{\prime}(M)$, Wen $w \in \Omega^{\prime}(N)$
and $F^{*}: \Omega^{\prime}(M) \rightarrow \Omega^{\prime}(N)$
and is \mathbb{R}-lineer
(linear wut theV.S. of $\Omega^{\prime}(M) \operatorname{and} s^{\prime}(N)$)
Exc IProvic.

Altemating tensors
Let V be a vectorslace
Def: a u-tensor on V isamap

$$
T: \underbrace{V \times \cdots \times V}_{k} \rightarrow \mathbb{R} \text { trat ismultilinear. }
$$

Weareinterated intensors that gines us a notion of a signed U-dimensoral volure meter.

mallesense of the sisred 2 -dimvolure

$$
\text { of }\left\{t v_{1}+s v_{2} \mid t_{1} s \in\left[0_{1} 1\right\}\right\}=i P_{v_{1}, v_{2}}
$$

Exarple: If $V=R^{3}$, a nexanple is signed 2-dimvolame meleg

$$
\begin{aligned}
:\left(v_{1}, v_{2}\right) \\
\in \mathbb{R}^{3} \times \mathbb{R}^{3}
\end{aligned} \longmapsto \operatorname{sgn}\left|v_{1} \times v_{2}\right|=\operatorname{det}\left[v_{1} v_{2} v_{1} \times v_{21}-\right] ~<\frac{\operatorname{det}\left[v_{1} v_{2} v_{1} \times v_{2}\right]}{\left|\operatorname{det}\left[v_{1} v_{2} v_{1} \times v_{2}\right]\right|}
$$

what should a sigred K-dion Volunemeres Satisty?

1) $f: \underbrace{V \times \cdots \times V}_{u} \rightarrow \mathbb{R}$
$i\left(V_{1}, \ldots, V_{u}\right) \longmapsto$ the sisined U-dim Volune of $P_{v_{1}, \ldots, v_{k}}$
2) f is multilinea
3) $\underset{\text { (alterating) }}{f\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{k}\right)}=-f\left(v_{1}, \cdots, v_{j}, \cdots, v_{i}, \cdots, v_{k}\right)$

Any sigred H-dim volumemeter chould sabsfy 1-3. Anysuct map f giresusa notion of a sigred U-dim volumender.

Def: Analterrating K-tensor (K-covector) is a U-tensor on V that is alternating.

Propsition: Let f beal-tensor. The following areequirclent:

1) fisalterrating
2) $f\left(V_{1}, \ldots, V_{k}\right)=0$ whereg $V_{i}=v_{j}$ foc $c^{\prime} \neq j$
3) $f\left(v_{1}, \ldots, v_{k}\right)=0$ whenerer v_{1}, \cdots, v_{k} are lincady cleferdet
4) for any $\sigma \in S_{n}$,

$$
\begin{aligned}
\sigma f\left(U_{1}, \ldots, V_{k}\right) & =f\left(V_{\sigma(1)}, \ldots, V_{\sigma(k)}\right) \\
& =\operatorname{sgn}(\sigma) f\left(V_{1}, \cdots, V_{n}\right)
\end{aligned}
$$

Exandle: $\theta^{\prime}, \theta^{2} \in V^{*}$
define $\theta^{\prime} \wedge \theta^{2}:\left(u_{1}, v_{2}\right) \mapsto \theta_{1}\left(v_{1}\right) \theta_{2}\left(v_{2}\right)-\theta_{1}\left(v_{2}\right) \theta_{2}\left(v_{1}\right)$
Then $\theta_{1} \wedge \theta_{2}$ is an alternating 2-ten sor

Denste by $T_{n}(V)$ the V. 1, $A_{K}(V)$ The $V . S$. of alternativg h-tensor " $S_{k}(u)$ the N. of symmetric u-tenson

Define the lojection oferate:
Sym: $T_{n}(V) \longrightarrow S_{n}(V)$

$$
: f \longmapsto \frac{1}{k!} \sum_{\sigma \in S^{k}} \sigma f
$$

Then $\operatorname{Sym}(f)=f$ iff fis symuretric
Similarly Alt: $T_{n}(U) \rightarrow A_{n}(V)$

$$
: f \longmapsto \frac{1}{k!} \sum_{\sigma \in s^{h}}^{\operatorname{san}(\sigma) \sigma f}
$$

then $\operatorname{llt}(f)=f$ iff fisaltenativg
Wedefine $\left(\otimes: T_{n}(u) \times T_{l}(v) \rightarrow T_{k+l}(v)\right.$

$$
f \infty f \in T_{k}(v), g \in T_{e}(v), f \otimes g \in T_{k+l}(U)
$$

defired by

$$
f \otimes g\left(v_{1}, \cdots, v_{l}, w_{1}, \cdots, w_{l}\right)=f\left(v_{1}, \cdots, v_{u}\right) g\left(u_{1}, \ldots, w_{l}\right)
$$

(associative: $(f \otimes g) \otimes h=f \otimes(g \otimes h)$, sowe canjest write $f \otimes g \otimes h$)
If $f \in A_{u}(V), g \in A_{l}(V)$, Ther is $f \otimes g \in A_{u+e}(V)$? Wedefine $f \wedge g \in A_{u+e}(U)$ by

Note trat when $\left.f \in A_{0}(v):=R, c \wedge g:=c g\right)$
Properies of $\Lambda: A_{u}(v) \times A_{l}(V) \longrightarrow A_{n+l}(V)$
\#1) Bilineer
\#2) Let $\left\{e_{1}, \cdots, e_{n}\right\}$ bea basis for V and $\left\{\alpha^{\prime}, \ldots, 2^{n}\right\}$ be the dual basis of $V^{*}=T_{1}(v)=A_{1}(v)$

$$
\left(\alpha^{i}\left(\mathbb{E}_{j}\right)=d_{j}^{\prime}\right)
$$

Defire forary $I \subseteq\left\{c_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$ s.l. $\leq i, \angle \cdots<i_{u} \leq n$ the unigue alterating k-tenber α^{I} satisfyirg:
$\alpha^{I}\left(e_{J}\right)=\delta_{J}^{I} \quad$ forary mutionlex J in Moder.
Then $\left\{2^{I}:\right.$ multindex I in 9 order $\}$ malles a bais for $A u(U)$ and so $\operatorname{dim}\left(A_{u}(u)\right)=\binom{n}{n}$
\#3)

$$
\alpha^{I} \wedge \alpha^{J}=2^{I J}
$$

Thanks to the myskeroy
constant F
\#4) Associativity:

$$
(f \wedge g) \wedge h=f \wedge(g \wedge h)
$$

sown can write $f \Lambda g / h$.
Hint:

$$
\Rightarrow \alpha^{I}=\alpha^{(i)} \wedge \ldots \Lambda^{(i n}
$$

$$
\begin{aligned}
\alpha^{I J} \wedge \alpha^{u} & =\alpha^{I J k} \\
& =\alpha^{I} \wedge \alpha^{J u} \\
& =\alpha^{I} \wedge\left(\alpha^{I} \wedge \alpha^{h}\right)
\end{aligned}
$$

\#5) Anticommutativity, $f \wedge g=(-1)^{l k} g \wedge f$
Hint: on basis elements: $\quad \alpha^{I} \wedge \alpha^{J}=\alpha^{I J}$

$$
\begin{aligned}
& =\operatorname{sgn}(\sigma) \alpha^{J I} \\
& =(-1)^{l h} \alpha^{J I} \\
& =(-1)^{l n} \alpha^{J} \wedge \alpha^{I}
\end{aligned}
$$

$$
(\sigma \text { sends } I S \rightarrow J I)
$$

\#6) for any $\theta^{\prime}, \cdots, \theta^{k} \in U^{*}$ ard any $V_{1}, \ldots, v_{k} \in V$,

$$
\theta^{\prime} \wedge \cdots \wedge \theta^{k}\left(v_{1}, \cdots, v_{k}\right)=\operatorname{det}\left(\theta^{i}\left(v_{j}\right)\right)
$$

\#7) The wedge Product is The unique bilinear assarntiv, ardanticommutative product $A u(V) \times A l(V) \rightarrow A_{k+\infty}(V)$ satisfying $\alpha^{I}=\alpha^{i_{1}} 1 \cdots \cap \alpha^{i} k$.

Wedenote $A_{u}(U)$ by $\Lambda^{k}\left(V^{*}\right)$

$$
\begin{aligned}
&=\operatorname{span}\left\{\alpha^{i_{1}} \Lambda \cdots \mu \alpha^{i k}| | \leq i, 1 \cdots c i n \leq n\right\} \\
& \text { Define } \Lambda\left(U^{*}\right)=\underbrace{*}_{n=0} \Lambda^{k}\left(U^{*}\right)
\end{aligned}
$$

Def: Analgebra Aver R is graded if it can beuritten as a direct sum $A=\bigoplus_{u=0}^{\infty} A^{k}$
where A^{h} are V.S-ove R s-t. The multiplication map sends $A^{k} \times A^{l} \rightarrow A^{u+l}$

A graded algebra is anticommutative if itsatisties $a b=(-1)^{l k}$ ba $\left.\forall a \in A^{n}, b \in A\right)^{l}$.

Then the wedge frodud make $\Lambda\left(V^{*}\right)=\hat{t}_{t=0}^{n} \Lambda^{k}\left(V^{*}\right)$ on associative anticommutative graded algebra of $\operatorname{dim} 2^{n}$.

Differential forms

Let M be a sooth manifold \& let $P \in M$ and (O, ϕ) beachat near P.

Then $\left.\left\{\frac{\partial}{\partial x^{\prime}}\left|\rho, \ldots, \frac{\partial}{\partial x^{n}}\right|\right\}\right\}$ is the coordinate basis for TPM and $\left\{d x^{\prime} p, . ., d x_{p}^{n}\right\}$ is the coordinde dual basis
So $\left\{d x_{p}^{i_{1}} \wedge \ldots \cap d x_{p}^{i_{n}} \mid 1 \leq c_{i}<\ldots c i_{n} \leqslant n\right\}$ is a basis of $\mu^{k}\left(T_{p}^{*} \mu\right)$.

Define $\Lambda^{k}\left(T^{*} M\right):=\bigcup_{P \in M} \Lambda^{k}\left(T_{p}^{*} M\right)$
Ire bundle of alteration k-taos
which comes with the map $\pi: \Lambda^{k}\left(T^{*} M\right) \rightarrow M$

$$
:\left(p, \omega_{p}\right) \longmapsto p \quad, \quad \omega p \in \Lambda^{*}\left(T_{p}^{*} M\right)
$$

Exercise: Equip $\Lambda^{h}\left(T^{*} M\right)$ with a topology ard Smooth structure (just like for $T M$ and $T^{*} M$)
forachast (U, ϕ), define

Def: A section of $\Lambda^{k}\left(T^{*} M\right)$ is a map

$$
\omega: M \rightarrow \Lambda^{k}\left(T^{*} M\right)
$$

$$
p \longmapsto(p, \omega p) \quad, \omega p \in \Lambda^{n}\left(T_{p}^{*} \mu\right)
$$

So $T_{0} w=I_{d_{M}}$
Sections of $\Lambda^{k}\left(T^{*} M\right)$ are called differential K-forms

Exande: Let (U, ϕ) beachart
define $d x^{\top}: U \rightarrow \Lambda^{k}\left(T^{*} U\right)$

$$
: P \longmapsto\left(P, d x^{T} p=d x^{i_{p}} \wedge \cdots \wedge d x_{p}^{i_{p}^{\prime}}\right)
$$

so dx x^{I} is a differential $U-$ bro on U.

We extend the wedge product: Let ω and η be a 1 -form ard alison. on M, we define The $h+l$ form

$$
\begin{aligned}
w \wedge \eta: M & \longrightarrow \Lambda^{k+R}\left(T^{*} M\right) \\
: p & \longmapsto\left(p,(\omega \wedge)_{p}:=\omega p \wedge \eta p\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\phi}: \Lambda^{k}\left(T^{*} U\right) \rightarrow \phi(U) \times R^{(n)} \\
& :(p, \omega p) \longmapsto\left(\phi(p),\left\{c_{I}(p, \omega p)\right\}_{I}\right) \\
& \text { set. } \omega \cdot=\sum_{I} C_{I}\left(P_{1} \omega_{p}\right) \underbrace{d x_{p}^{P}}_{d x_{p}^{i_{p}} 1 \cdots \wedge d x_{p}^{i_{1}}}
\end{aligned}
$$

And so since $d x^{I} p=d x_{\rho}^{i_{1}} \Lambda \cdots \wedge d x_{p}^{c_{a}} \quad \forall \rho \in O$
then $d x^{I}=d x^{(i)} \wedge \cdots \wedge d x^{i a}$

We define the action of U-form on $X(M)$:
for $X_{1}, \ldots, X_{K} \in \notin(M)$, we define the function

$$
\begin{aligned}
w\left(x_{1}, \ldots, x_{k}\right): M & \longrightarrow \mathbb{R} \\
: \rho & \longrightarrow \operatorname{cop}\left(x_{l p}, \ldots, x_{k p}\right)
\end{aligned}
$$

The action of U-forms on $X(M)$ Satishes:

$$
\begin{aligned}
& \text { for } \left.g \in \operatorname{co}(M), \quad x_{1}, \ldots, x_{k} \in X \in M\right), \\
& \\
& w\left(x_{1}, \ldots, g x_{i}, \ldots, x_{k}\right)=\operatorname{gw}\left(x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

So wis C^{∞} multiliver and alternating!

$$
w\left(x_{1}, \cdots, x_{c}, \ldots, x_{j}, \ldots, x_{k}\right)=-w\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \cdots, x_{k}\right)
$$

Def: A differential K-form is C^{A} if it's smooth as a section.

Proposition: Let when h-form. The fallowing are equivalent.

1) wis (${ }^{\infty}$ asa Section.
2) on arg Chart, $W=C_{I} d X$ on U where $C_{I} \in C^{\circ}(\theta)$
3) By it's action on $X(M)$,

$$
\operatorname{co}\left(x_{1}, \ldots, x_{n}\right) \in C^{\infty}(M) \text { whenerg, } x_{1}, \ldots, x_{n} \in x(M)
$$

(so $\omega: f(M) \times \cdots \times f(M) \rightarrow C^{\infty}(M)$)

$$
\text { Also, }\left\{\begin{array}{l}
\text { cmosth section } \\
\text { over } \Lambda^{k}\left(T^{*} M\right)
\end{array} \rightarrow\left\{\begin{array}{l}
\left.w: f(M) \times \cdots \times f(M) \rightarrow c^{\circ}(M)\right] \\
w i s ~ c o s-m u l t i l i n e s ~ \\
\text { and altermating }
\end{array}\right\}\right.
$$

is an csomorphism of module andaltemating
 coincides with theaction of a ungur sinoth differeatial k-fom

We denote by $\Omega^{K}(M)$ the space of smoth differentiol M-form on M. Thisisamodule ore $C \sigma(M)$ ard V.s.orer \mathbb{R}.

Example,

$$
f^{\prime}, \ldots, f^{\prime} \in c^{\infty}(M)
$$

Then $d f^{\prime}, \ldots, d f^{n} \in \Omega^{\prime}(M)$
On a chat $(U, \phi), d f^{\prime} \Lambda \ldots \wedge d f^{h}=C_{I} d x^{I}$
Apply $\left.\frac{\partial}{\partial x^{I}} \right\rvert\, \rho \Rightarrow$

$$
\begin{array}{r}
d f_{p}^{\prime} \wedge \cdots \wedge d f_{p}^{\prime \prime}\left(\left.\frac{\partial}{\partial x^{I}}\right|_{p}\right)=C_{I}(p) \\
\operatorname{det}\left(d f_{p}^{i}\left(\frac{\partial}{\left.\partial x^{i j}\right)_{p}}\right)\right) \\
L=\operatorname{det}\left(\left.\frac{\partial f^{i^{\prime}}}{\partial x^{i_{j}}}\right|_{p}\right) \\
=: \frac{\partial\left(f^{\prime}, \cdots, f^{k}\right)}{\partial\left(x^{i,}, \ldots, x^{i^{i u}}\right)} \in C^{\infty}(U) \\
\Rightarrow d f^{\prime} \wedge \cdots \Lambda d f^{k} \in \Omega^{k}(\mu) \\
(\operatorname{sinoth})
\end{array}
$$

If $n=n, \quad d f^{\prime} \wedge \ldots \wedge d f^{n}=\frac{\partial\left(f^{\prime} \ldots, f^{n}\right)}{\partial\left(x_{1}^{\prime} \ldots \alpha^{n}\right)} d x^{\prime} n \wedge 1 d x^{n}$
In fact, if $\left(d f^{\prime} \wedge \cdots \Lambda d f^{n}\right)_{p} \neq 0$, Then $\left.\frac{\partial\left(f^{\prime} \cdots, \ldots, n^{n}\right)}{\partial\left(x_{1}^{\prime} \cdots, n^{n}\right)} \right\rvert\, \rho \neq 0$ $\Rightarrow\left(f, \cdots, f^{n}\right)$ male a coordinate map near p.

Ingereal, for $w \in \Omega^{k}(M)$ and $\eta \in \Omega^{l}(M)$
Onachat, $w \wedge \eta=\left(c_{I} d x^{I}\right) \wedge\left(b_{J} d x^{\top}\right)$

$$
\begin{aligned}
& =c I I b J d x^{I} \wedge d x J \\
& =\underbrace{c_{I} b J}_{\left(S \in C^{\infty}(C)\right.} d x^{I J}
\end{aligned}
$$

$$
\Rightarrow w n \eta \in \Omega^{k+l}(M)
$$

$$
\Rightarrow \Lambda: \Omega^{k}(M) \times \Omega^{l}(M) \rightarrow e^{k+l}(M)
$$

$$
\begin{aligned}
&=c^{\infty}(M) \\
& \text { and } f \in \Omega^{\circ}(M), w \in \Omega^{K}(M), \\
& f \wedge w_{i}
\end{aligned}=f w .
$$

Define the vectarsface $\Omega^{*}(M)$ of C^{∞} differentia forms on M to be The directsum

$$
\Omega^{*}(M):=\bigoplus_{k=0}^{n} \Omega^{k}(M) \text { V.S. ores } R
$$

with the wedge product, $\Omega^{*}(M)$ become on associative anticommutative graded algebra.

Post-lecture Practice question

1) Fill in ell the gaps and do allererises above.
2) Verify That The properties q wedge product on $\Lambda^{u}\left(T_{p}^{*} M\right)$ stay true on $\Omega^{k}(M)$.
3) let $w \in \Omega^{k}(M)$ and let $U \subseteq M$ bean den set. Shourthat $\omega_{v}: \nu \rightarrow \lambda^{k}\left(T^{*} U\right)$
$: P \mapsto(p, C Q)$ is in $\Omega^{u}(u)$
and $m_{u}: \notin(v) \times \cdots \times \neq(v) \longrightarrow C^{\infty}(v)$ satisfying
for $x_{1, \cdots}, x_{n} \in *(0), \quad w l_{v}\left(x_{1}, \ldots, x_{n}\right)=\left.w\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)\right|_{U} \quad$ fro ry extension $\tilde{x}_{1}, \cdots, \tilde{x}_{4} \in \psi_{(M)}$.
4) If (U, ϕ) isachert and $w \in \Omega h(\alpha)$, then

$$
\omega=C_{I} d x^{I} \text { where } C_{I}=\omega l_{V}\left(\frac{\partial}{\partial x^{I}}\right)
$$

we sometime drop the "lu" since its implied.
5) Describe an element $\Omega^{*}(M)$. Con you describe how it acts on X(A)P Is $\Omega^{*}(M)$ a module over $C^{*}(M)$?

