\circledast OH retarn tousual

Recall:
A 1-fome ω isa section of $T^{*} M$

$$
\begin{aligned}
w: M & \rightarrow T^{*} M \\
: & P \mapsto(P, \omega p) \text {, where } w p \in T_{p}^{*} M
\end{aligned}
$$

W is smooth if it's smorta asarection.

Exanple \#ni For $f \in C^{\infty}(M)$, wedefine the 1 -form $d f: M \rightarrow T^{*} M$
where $d f_{p} \in T_{p}^{*} M$ defind by:

$$
\text { for } v \in T_{p} M, d f p(v)=v(f)=f_{\alpha, p}(v)(I d)
$$

bypropaition
Proposition: The following diagram commates.

Under the identification $T_{f(P)} \mathbb{R} \cong \mathbb{R}$, whenere trat $f_{*, p} "=$ "dfp Both arecalled the differeatial of f at p.

Exanple \#2: Let (U, ϕ) be a cordinale chat.
Then $x^{i} \in C^{\circ}(U)$ and so $d x^{i}$ is r form satis fying

$$
d x_{p}^{i}\left(\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right)=\left.\frac{\partial}{\partial j^{j}}\right|_{p}\left(x^{i}\right)=\delta_{j}^{i}
$$

$\Rightarrow\left\{d x_{p}^{\prime}, \cdots, d x_{p}^{n}\right\}$ is the dual basis of

$$
\left\{\frac{\partial}{\partial x^{\prime}}\left|p, \cdots, \frac{\partial}{\partial x^{n}}\right| p\right\}
$$

called the coordinate dual basis.

Spoiler: Past like the coordinate Vectarields $\left\{\frac{\partial}{\partial f^{\prime}}, \cdots, \frac{\partial}{\partial x^{n}}\right\}$ on U wale abas of $\mathcal{X}(U)$ int module stractar. wealso have $\left\{d x^{\prime}, \cdots, d x^{n}\right\}$ mall a basis of The space of smith 1 former U writ the module structure.

Then for any $f \in C^{\infty}(0)$,

$$
d f p=a_{i} d x^{i} p \quad \text { for } a^{i} \in \mathbb{R} \text {. }
$$

Apply $\left.\frac{\partial}{\partial x^{\prime}} \right\rvert\,$ p to both sides:

$$
\begin{aligned}
\left.\frac{\partial f}{\partial x^{j}}\right|_{p} & =d f_{p}\left(\left.\frac{\partial}{\partial x^{j}} \right\rvert\, p\right)=a_{i} d x_{p}^{i}\left(\left.\frac{\partial}{\partial x^{j}} \right\rvert\, p\right)=a_{j} \\
\Rightarrow d f & =\frac{\partial f}{\partial x i^{i}} d x^{c^{\prime}} \quad \text { on } U
\end{aligned}
$$

In a different coordinate chart $\left(U, \psi=\left(y_{1}, \cdots, y^{n}\right)\right)$
then $d f=\frac{\partial f}{\partial y i} d y i$

Nole that,

Recall:
Df is the recion beld

$$
\begin{aligned}
& \left.\nabla f_{p}, v\right\rangle=D f_{p}(v) \\
& \forall V \in T P M \quad d f=\frac{\partial f}{\partial x^{i}} d x^{i} \\
& \text { notice on } \mathbb{P}^{n}, \quad D f \neq \frac{\partial f}{\partial r} \frac{\partial}{\partial r}+\frac{\partial f}{\partial \theta} \frac{\partial}{\partial \theta} \\
& \text { t } \begin{aligned}
& \boldsymbol{\partial f} \text { a } \\
& \hline
\end{aligned} \\
& \partial \phi \partial \phi
\end{aligned}
$$

Smoothres, cortesion lemma for V.F.
Let X be asection ores $T M$. The fallours areequiralent:

1) $\quad X: M \rightarrow T M$ is smooth
2) Goary (U, d) coordimale chat, $X=a^{i} \frac{\partial}{\partial x^{i}}$ on U where $a^{\prime} \epsilon^{\prime} C^{\infty}(U)$

Smorthress cricterion lemma fort forms:
Let $w: M \rightarrow T^{*} M$ ben 1 -form. Then the following are equimelt

1) W is smoth asasection
2) Onary chast $(U, \phi), \omega=a_{i} d x^{i}$ where $a_{i} \in C^{\infty}(U)$
(InParticular, $d x^{i}$ are smosth + formss on U)
E×C

Recall whatwedid for vectar frelds:

Hi) Wedefined theaction of a vectofield on $\cos ^{\infty}(M)$, for $f \in C^{\infty}(M), X(f): M \rightarrow R$

$$
: p \mapsto X(f)(p):=X_{P}(f)
$$

\#2) Secoud Smorthras critenon:
A section $X: M \rightarrow T M$ is smooth iff $X(f) \in C^{\circ}(M)$ wheneres $f \in \operatorname{Coc}(M)$.

$$
\left(X: C^{\infty}(M) \rightarrow C^{\infty}(M)\right]
$$

\#3) * Any vectorfield defines a derivation on $C(M)$, $X\left(C^{\circ}(M) \rightarrow C^{\infty}(M)\right.$ is a deriration
(*) Every desivation on $C^{\infty}(M)$ coincides with theaction of aumque Smorth vectortield on $C^{\infty}(M)$
\#($)$

$$
\begin{aligned}
\Gamma(M) & \cong \operatorname{Der}\left(C^{\infty}(M)\right) \\
\left\{\begin{array}{c}
\text { smothsections } \\
X: M \rightarrow T
\end{array}\right\} & \cong\left\{\begin{array}{l}
\text { Derivations } \left.X: C^{\infty}(M) \rightarrow C^{\circ}(M)\right\} \\
\text { isomorphic writ the module structure }
\end{array}\right.
\end{aligned}
$$

we then denoted the space A smooth rector fields by $\notin(M)=S(M)$ "Der (cis)

We will do the same for 1-form:
\#1) Let w be 1-form. \quad let $x \in X(M)$

We define treaction of $1-$ forms on $\mathcal{X}(M)$, for $X \in \mathcal{X}(M)$, define $\omega(X): \mu \rightarrow \mathbb{R}$ $: p \longmapsto \omega p\left(X_{p}\right)$

Proposition: Let w beat-6rm. Then the action of w on $f(M)$ is C^{∞}-linear

Proof: for $x, y \in \in \subset M)$ and $f \in C^{\circ}(M)$
Then $w(f x+y)(p)=\operatorname{wp}\left(f(p) x p+y_{p}\right)$

$$
\begin{aligned}
& =f(p) w p(x p)+w_{p}(y p) \\
& =[f w(x)+w(y)](p)
\end{aligned}
$$

\#2) $2^{\text {nd }}$ smoothies criterion for $1-$ form:
W is C^{∞} asa section over $T^{*} M$ iff $W(X) \in C^{\infty}(M)$ utererg $X \in \mathcal{L}(M)$.

ExC

$$
\left(w: X(M) \rightarrow C^{\circ}(M)\right)
$$

\#3) * fromabore, we know that any smotht form ω defines a C^{∞} - lineermed $\left.w: \notin C M\right) \rightarrow C^{\infty}(M)$.

Tho: Let $A: f(M) \rightarrow C^{\infty}(M)$ be a C^{∞}-linear map, Then \exists ! smooth 1 form w sit. theaction of w on $E(M)$ coincides with A.

Proof: $\left\{\begin{array}{l}\text { The fact that A is cs-linear willingly } \\ \text { that } A(X)(P) \text { odyclefends on } X P \text {. }\end{array}\right\}$
Then wecandefine up $\in T_{p}^{*} M$ by for $v \in T P M, \quad w_{p}(V):=A(X)(P)$ where $X \in X(M)$ set. $X p=v$
Let $x_{1} y \in \mathcal{L}(M)$ set. $x_{p}=y_{p}$.

$$
\text { wis } A(X)(P)=A(y)(P) \Leftrightarrow A(X-y)(P)=0
$$

It suffices tr show that whenever $Z \in \notin(\mu), Z_{p}=0$

$$
A(z)(p)=0
$$

Then Toedefintion of wp is well defined and define

$$
\text { al -form } \quad \begin{aligned}
w: ~ & \mu \rightarrow T^{*} M \\
& : P \mapsto(P, \omega P)
\end{aligned}
$$

and itsatisfyirs for $X \in \mathcal{H}(M), \omega(X)(P)=\omega p\left(X_{p}\right)$

$$
\begin{aligned}
& =A(x)(p) \\
& \Rightarrow w(X)=A(x)
\end{aligned}
$$

since $w(x)=A(x) \in C^{\infty}(M)$ forever $X \in \mathcal{H}(M)$, wis smash

define: $\left(m+w_{2}\right)(P):=\left(P, w_{1} p+w_{2} p\right)$ define

$$
\begin{array}{r}
\left(f w_{1}\right)(p):=\left(p, f(p) w_{1} p\right) \quad\left(w_{1}+w_{2}\right)(x):=w_{1}(x) \in w_{2}(x) \\
\left(f w_{1}\right)(x)=f w_{1}(x)
\end{array}
$$

show wat w w_{2}, fur \in

Show that it makes them module y over Ceo (M)
Denote by $\Omega^{\prime}(M)$ thespace of smooth 1 form (either * or *)
$Q^{\prime}(M)$ is a module over $C^{\infty}(M) \&$ V.S. over R

Post lecture Practice questions

1) Do the exercises above.
2) Let $f \in C^{\infty}(M)$ and let $\left(U, \phi=\left(x^{\prime}, \cdots, x^{n}\right)\right)$ and $\left(U, \psi=\left(y_{1}, \cdots, y^{n}\right)\right)$ be charts or M.

Define the vector field $X=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \frac{\partial}{\partial x^{i}}$ on $($. write X writ the basis $\left\{\frac{\partial}{\partial y^{\prime}}, \cdots, \frac{\partial}{\partial y^{n}}\right\}$ and show it's not necessarily equal to $\sum_{0=1}^{n} \frac{\partial f}{\partial y c} \cdot \frac{\partial}{\partial y c}$.
3) Let $F: N \rightarrow M$ beasmoth map and consider Chats $(U, \phi=(x), \cdots,+n))$ and $\left(V_{1} \psi=\left(y_{1}^{\prime}, \ldots, y^{h}\right)\right)$ on N and M respectively.
Show that

$$
F^{*} d y^{i}=\frac{\partial f^{i}}{\partial x^{j}} d x^{j} \quad \text { where } f_{\text {pull back }}^{*} \text { is the }
$$

4) What's urong with this argument:

Let $A: \notin(M) \rightarrow C^{\infty}(M)$ ben C^{∞} - lineermab and let $Z \in \notin(M)$ set. $Z_{p}=0$.
Let (U, ϕ) be Chat near P, and so $Z=a^{i} \frac{\partial}{\partial x} i^{\text {i }}$ where $a^{i}(\rho)=0$.

Then $A(z)(p)=A\left(a^{\prime} \frac{\partial}{\partial x^{\prime}}\right)(p)$

$$
\begin{aligned}
& =a^{i}(P) A\left(\frac{\partial}{\partial x^{i}}\right) \\
& =0
\end{aligned}
$$

5) If $w \in \Omega^{\prime}(M)$ and $U \subseteq M$ isoten, then $w l_{U} \in \Omega^{\prime}(U)$ where $w l_{U}$ is defined by

$$
\begin{aligned}
w / i ; & U \\
: P & \longrightarrow(p, w p)
\end{aligned}
$$

6) Show that $\left\{\right.$ smothsections $\left.\omega: M \rightarrow T^{*} M\right\}$ ard $\left\{w: \dot{X}(M) \rightarrow C^{\infty}(M) \mid w\right.$ is C^{∞}-linear\} ~ a r e ~ m o d u l e s ~ o v e r ~ $C^{\infty}(M)$ and $\Phi:\left(\omega: M \rightarrow T M^{*}\right) \longrightarrow\left(\omega: \mathcal{H}(M) \longrightarrow C^{\infty}(M)\right)$ is an module isomaprisn.
7) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $F(x, y, z)=\left(x^{3} e^{y z}, \sin x\right)$

Let $g \in\left(\mathbb{R}^{2}\right)$ be the function $g(u v)=u v$
Compute $d g, F^{*}(d g), F^{*} g$, and $d\left(F^{*} g\right)$
Verify that $f^{*}(d g)=d\left(F^{*} g\right)$
8)
let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad t \longmapsto(\cos t, \sin t)$
which is an integral curve of $\quad X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$
Let $\beta=d x-d y \in \Omega^{\prime}\left(\mathbb{R}^{2}\right)$
Compute $\beta(x), \gamma^{*} \beta, \gamma^{*} \beta\left(\frac{d}{d t}\right), \gamma^{*}(\beta(x))$
Verify that $\gamma^{*} \beta\left(\frac{d}{d t}\right)=\gamma^{*}(\beta(x))$

