Let D be a smooth rank K distribution

for
$$PEM$$
, is there a submanifold S containing PSR .
 $TqS = Dq$, $tqES$?

Foolbenius. This Asmooth rank K distribution D is integrable iff it's involutive.

Step1: Let XIIIIX be a local frame of Don U nearf.
So we know [Xi, Xi] =
$$\sum_{l=1}^{k} C_{ci}^{l}$$
 Xe where $C_{ci}^{l} \in C^{\infty}(U)$
Then Binhod $\tilde{U} \subseteq U$ of f and another local frame
 $Y_{11}, ..., Y_{K} \notin \Delta$ sit. $[Y_{ci}, Y_{i}] = O$
(question on Assignment 6)

Step 2: We define an embedding
$$A:(t_1, \dots, t_K) \mapsto A(t_1, \dots, t_M) \in M$$

with the property that i) $A(o_1, \dots, o) = P$
2) $\frac{\partial A}{\partial t_i} = J_i$

Because A is an embedding, the image of t is a submanifold with the Protectry that the tangent stace of the submanifold is spanned by Si & so it's an integral submanifold containing P.

Step3: We will show
$$\exists$$
 a chart $(\bigcup_{\leq U}^{\infty}, \phi = (z', \dots, z^n))$ near β solutions
 $\frac{\partial}{\partial x_i} = \int_{C_i}^{\infty}$

If so, then suppose $\mathcal{A}(\tilde{U})$ is acude

Forbenius Thm (strengthered)

(ompletely integrable => integrable => involutive => completely integrable

Step2: Let Juir, Jn be a local frame of D on U nearf S.t. [Yi, Ys] = 0 for 150155K

For simplicity, suppose K=2

$$\begin{split} & [\mathcal{U} \notin S \circ o \text{ and } \widetilde{U} \leq U \quad \text{be a right } fi P \quad \text{s-t-} \\ & F_{1}(G: (-\xi, \xi)^{2} \longrightarrow M \\ & Define \quad A: (-\xi, \xi)^{2} \longrightarrow M \\ & : (-\xi, \xi)^{2} \longrightarrow F_{1} \circ G_{5}(P) = G_{5} \circ F_{1}(P) \\ & F_{1} \times (\mathcal{U} \circ S_{5}) , \quad \mathcal{U} \notin \mathbb{I}^{n} = \underbrace{\partial A}_{1} \Big|_{(\mathcal{U} \circ S_{5})} := A_{2} \cdot (\mathcal{U}_{1}, S_{5}) \left(\frac{\partial}{\partial t} \Big|_{(\mathcal{U} \circ S_{5})} \right) \\ & f_{1} \times (\mathcal{U} \circ S_{5}) , \quad \mathcal{U} \notin \mathbb{I}^{n} = \underbrace{\partial A}_{1} \Big|_{(\mathcal{U} \circ S_{5})} := A_{2} \cdot (\mathcal{U}_{1}, S_{5}) \left(\frac{\partial}{\partial t} \Big|_{(\mathcal{U} \circ S_{5})} \right) \\ & f_{1} \times (\mathcal{U} \circ S_{5}) , \quad \mathcal{U} \notin \mathbb{I}^{n} = \mathbb{$$

Defire a conector field as a choice of conector in TPM at each point P. (a map PH) DETP*M)

Fact

Idea: If index i appears twice, one up and the other is down, and you are summing one The index i, then the object will be basis in defendent.

Example : let
$$V \in TpM$$
 and $\theta \in Tp^*M$
So $V = \underset{i=1}{\overset{o}{\underset{i=1}{\underset{i=1}{\overset{o}{\underset{i=1}{\overset{o}{\underset{i=1}{\overset{o}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{o}{\underset{i=1}{\underset{i}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i}{\underset{i=1}{\atop\atopi}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atop\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i$

We want to make a Chrice of a corector at Gren point PEM.

$$\begin{array}{c} \overbrace{P}^{\mathsf{TP}} & \overbrace{P}^{\mathsf{TP}} &$$

Choose the unique toldogs on T*U that makes & a
homeomorphism. (this toldogs on T*U that makes & a
homeomorphism. (this toldogs is the coordinate mod of)
Then define the following toldogy on T*M:
$$T = \langle A \subseteq T^*M : A(T^*U) is den in T^*U \rangle$$

for any Chart (U) (5)
show T is a toldogs on T*M (Exc)
Also, the callection of charts $\langle CT^*U, \delta \rangle$ is a
CS atless on T*M unaking it a 2n dimensional swooth
maxifold.
Define a section w of T*M and map w: M - T*M
Satisfying tow = IdM.
This is called a 1-form. (differential 1-form)
Define A smooth 1-form w is a C^{or} section of T*M.
Why study dwal spaces & 1-forms?

Examples of 1- formy 1

let
$$f \in C^{\infty}(M)$$
, define $df : M \rightarrow T^{*}M$ by
 $df(P) = (P, df_P)$
 $\Im \in TPM \rightarrow IR$
 $: V \mapsto V(Cf3)$ Check linear
 $: V \mapsto V(Cf3)$ Check linear
 $Pecall That f_{X,P} : TPM \rightarrow T_{f(P)} R$
 $U'o describes how fast f charses.$
Prophaltion: Let $f \in C^{\infty}(M)$. Then for $P \in M$, and $X p \in IPM$
 $f_{X,P}(X_P) = df_P(X_P) \frac{d}{dx}|_{f(P)}$
Prophaltic is the total $R \rightarrow R$. Let $a \in R$ set.
 $f_{X,P}(X_P) = a \frac{d}{dx}|_{f(P)}$
 $a = ad_{X|F(P)}(Td) = f_{X,P}(X_P)(Td)$
 $= XP(Td of)$
 $= XP(Td of)$
 $= df_P(X_P)$

Post-lecture Practice Questions.

- Show that for any $f \in Co(S^2)$, d f p = 0 for some $P \in S^2$.