Let 
$$S \subseteq M$$
 be a k-dim embedded submanifold in  $M$   
Let  $P \in S$   
What is  $T_P S$ ? is  $T_P S \subseteq T_P M$   
Recall  $P = P = OP(R)$   
 $T_P S = P = P = R$  D:  $C_P^{OP}(M) \rightarrow R$  Disa derivation at  $P$   
S is a smooth manifold.  
 $T_P S = P = P = R$  D is a derivation at  $P$   
 $T_P S = P = P = R$  D is a derivation at  $P$ 

Let VETPS, can you Think of VGTPM that is "the same of v?

)

Production: for every vettes, 
$$\exists ! \forall \in TPM$$
 with the holded  
 $\forall t \in Co(M)$ ,  $\forall (f) = v(f|_{c}) = v(for)$   
 $\exists v \in Co(M)$ ,  $\forall (f) = v(f|_{c}) = v(for)$   
 $\exists v \in Co(M)$   
 $\forall v$ 



Def #2: SCM is a regular submanifold of dimk if VPES 3 (U, &= (x',...,xN)) near P st. UNS is defined by The vanishing of the last n-h coordinates

$$(x^{k+l}, \dots, x^n) \bigg|_{q} = 0$$
 iff  $q \in U \cap S$ 

A chart (U, Q) like this is called an adapted chart relative to S. Note that (UNS, \$\$) is a chart on S where  $\phi_{S} = \pi_{o}\phi : U \cap S \longrightarrow \mathbb{R}^{k}$  $P \longmapsto (x'(P), \dots, x^{k}(P))$ If  $\{(U_2, \phi_2)\}$  is a collection of adapted charts relative to S covering S, Then Z(U2015, \$\$ make a Coatlas on S making a smoth manifold of dimk. Let f: IR - & IR be a Co Function. Ex#1: Findanadapted of IR relative to Is ٢  $\Psi$ :  $(x,y) \mapsto (x, y-FG)$ Visa diffeomorphism bisso (R2, V) is a chart on IR<sup>2</sup>

Def: let f: N -> M be a C<sup>o</sup>med. Let C & M. We say F<sup>-1</sup>(c) = F<sup>-1</sup>({C}) is the level set of F with level c.

Cisacritical value if JPFF'(c) s.t. Fx, p is not surflective Cisaregular value if it's not a critical value. If so, F'(c) is a regular level set.



Thm: Let F: M -> RK st. O is a regular value and F'(0) = \$\$\$, Then F'(0) is a submanifold of M & Codimension K. (dim = n-k)

Proof: let PEF-1(6), Then Fx, p is surjective

Since this ison often condition, Then Fr. p. 15 Smjectine on a neighborhood U of P. (Fis a submersion on U)

Then by submension Then Charlen), 
$$\exists a \text{ Chart} (\tilde{U}_{1}\phi) \text{ nearly}$$
  
In  $M$  and  $a \text{ Chart} (\tilde{V}_{1}\psi) \text{ near } 0 \text{ In } R^{M} \text{ sit-} \overset{\text{SU}}{\text{SU}}$   
Ho  $F_{0}\phi^{-1}: (\forall'_{1}\cdots,\forall^{n}) \mapsto G_{1}'\cdots,\forall^{M})$   
Let  $(a'_{1}\cdots,a_{k}) = \Psi(0)$   
Then  $f^{-1}(0) (\tilde{U}) = \langle P \in \tilde{U} | \chi^{i} = a^{i} \text{ for } i = l, \cdots, k \rangle$   
Define the chart  $\tilde{\phi}(P) = (\chi^{k+1}, \cdots, \chi^{n}, \chi^{k} - a^{i}, \chi^{2}, -a^{2}, \cdots, \chi^{k} - a^{i})$   
Then  $f^{-1}(0) (\tilde{U})$  is defined by the varishing  
 $k \text{ Coordinates making } (\tilde{U}_{1}\tilde{\phi}) \text{ an adapted Chart rear } P$   
reliative to  $f^{-1}(0) = \langle F^{-1}(0) \rangle$  is a regular submanifold.  
 $d \text{ cod } h$ 

B

Moregeneral: Constant Rank Level Set Dearem Let Fin > M le a command and let cen If Fis of constant rank K on a neighbod of f<sup>-1</sup>(c), Then F-1(C) is a submanifold of Cod K. Def: SCM is a "level set" Subman fold of dimit if it's locally a regular level set of a map. Precisely: if types, 3F: U -> Rn-k a Compone neighted U of P sil- O is a negular value and f'(0) = 0 0.5. Thm: "levelset" (=) embeddel (=) regular submanifold (=) submanifold (=) submanifold 7 submonifeld. Motivation defire: Vector fields, differential forms, Tenson fields, Riemannianmetric N. F. R. S.R. P

(TPM) 2 Map TPM want to make a " smooth choice" of a vector at each point p tuo Want tomoke a smooth Chorce of a dual vector at each point P. This will be called a differential + form a (k, L) tensor on TPM is TP (KR) : TP X ... X TP M X TP M X TP M ~ TP M and is multilinear We want tomake a "smooth choice" of a tensor TP chie) at each point. Callit T ( smooth tensor field) A differential 1-form is (0,K) smooth tensor field Sahsfying - - -Want tomake a smooth closre of a K-elim subiPace EP of TPM aleach port PEM. doc, There exist a submonifold to f M s.t. ix, p(Tps) = FP? Answered by Frobening Thm.

Torgert Bundle (The key to the 3rd step of generalizing Calculus)

Def: Let Mbe a C<sup>DP</sup> manifold.  
The tangent bundle denoted by TM is defined by  
TM = 
$$\prod_{P \in M} TPM := U \{P\} \times TPM$$
  
PEM PEN  $P \in M, V \in TPM$   
 $V = E^{T}A^{S'}$   
 $(P, V) \to P$   
 $V_{1}, V = E^{T}A^{S'}$   
 $(P, V) \to (Q, V = T)A^{S'}$   
 $(P, V) \to (Q, V)A^{S'}$   
 $(P,$ 

=> TM is a topological manifold of dim2n.  
Let 
$$\left\{ (U_{a}, \phi_{a}) \right\}$$
 be an atlas on M  
We want to show  $\left\{ (TU_{a}, \phi_{a}) \right\}$  is a Co  
atlas on TM.  
Let  $(TU_{a}, \phi_{a})$  and  $(TU_{B}, \phi_{B})$  be charts  
(or  $v \in TpM$ ,  $v = \sum_{i=1}^{i} c_{i}^{i} \frac{\partial}{\partial v_{i}} p = \sum_{i=1}^{i} b_{i}^{i} \frac{\partial}{\partial v_{i}} p$   
 $f(v_{a}, \phi_{a})$   $f(v_{a}, \phi_{a})$   $f(v_{a}, \phi_{b})$   
Then  
 $\left[ \int_{B}^{i} o \phi_{a}^{-1} : (x_{i}^{i}, x_{i}^{n}, c_{i}^{i}, c_{i}^{n}) \right] \mapsto (u_{a}^{i}, \dots, u_{a}^{n}, b_{i}^{i}, \dots, b_{a}^{n})$   
 $\left[ \int_{B}^{i} o \phi_{a}^{-1} : (x_{i}^{i}, x_{i}^{n}, c_{i}^{i}, \dots, c_{a}^{n}) \right] \mapsto (u_{a}^{i}, \dots, u_{a}^{n}, b_{i}^{i}, \dots, b_{a}^{n})$   
 $\int_{B}^{i} o \phi_{a}^{-1} : (x_{i}^{i}, x_{i}^{n}, c_{i}^{i}, \dots, c_{a}^{n}) \mapsto (u_{a}^{i}, \dots, u_{a}^{n}, b_{i}^{i}, \dots, b_{a}^{n})$   
 $\int_{B}^{i} o \phi_{a}^{-1} : (x_{i}^{i}, x_{i}^{n}, c_{i}^{i}, \dots, c_{a}^{n}) \mapsto (u_{a}^{i}, \dots, u_{a}^{n}, b_{i}^{i}, \dots, b_{a}^{n})$   
 $\int_{B}^{i} o \phi_{a}^{-1} : (x_{i}^{i}, x_{i}^{n}, c_{i}^{i}, \dots, c_{a}^{n}) \mapsto (u_{a}^{i}, \dots, u_{a}^{n}, b_{i}^{i}, \dots, b_{a}^{n})$   
 $\int_{B}^{i} o \phi_{a}^{i} = v(y_{a}^{i}) = \sum_{k=1}^{n} c_{k}^{k} \frac{\partial}{\partial x_{k}} \left[ p(y_{a}^{i}) = \sum_{k=1}^{n} c_{k}^{k} \frac{\partial \phi_{a}^{i}}{\partial x_{k}} \right]_{b_{a}^{i}(c)}$   
 $\int_{C}^{i} b^{n} = D(\phi_{B} \circ \phi_{a}^{i}) \Big|_{(x_{i}^{i}, \dots, x_{i}^{n})} \int_{C}^{i} b^{n} \frac{\partial \phi_{a}^{i}}{\partial x_{i}} \Big|_{b_{a}^{i}(c)}$ 

$$= \left\{ \begin{array}{c} \left\{ \begin{array}{c} \left\{ \begin{array}{c} V_{1}, \left\{ \varphi_{z} \right\} \right\} \right\} \right\} is a C^{p} atles on T M \\ making it a smooth montifield of dim 2n \\ \end{array} \right\}$$

$$\left\{ \begin{array}{c} \left\{ \begin{array}{c} V_{1}, \left\{ \varphi_{z} \right\} \right\} \right\} is a C^{p} atles on T M \\ making it a smooth montifield of dim 2n \\ \end{array} \right\}$$

$$\left\{ \begin{array}{c} \left\{ \begin{array}{c} V_{1}, \left\{ \varphi_{z} \right\} \right\} \right\} \right\} \left\{ \left\{ \left\{ \varphi_{z}, \left\{ \varphi_{z} \right\} \right\} \right\} \right\} \right\} \left\{ \left\{ \varphi_{z}, \left\{ \varphi_{z} \right\} \right\} \right\} \left\{ \varphi_{z}, \left\{ \varphi_{z} \right\} \right\} \right\} \\ \left\{ \left\{ \begin{array}{c} \left\{ \varphi_{z} \right\} \right\} \right\} \left\{ \varphi_{z} \right\} \right\} \left\{ \left\{ \varphi_{z} \right\} \right\} \left\{ \varphi_{z} \right\} \right\} \\ \left\{ \varphi_{z} \right\} \left\{ \left\{ \varphi_{z} \right\} \right\} \left\{ \varphi_{z} \right\} \right\} \\ \left\{ \left\{ \varphi_{z} \right\} \right\} \left\{ \varphi_{z} \right\} \left\{ \varphi_{z} \right\} \right\} \\ \left\{ \varphi_{z} \right\} \left\{ \varphi_{z} \right\} \left\{ \varphi_{z} \right\} \\ \left\{ \varphi_{z} \right\} \left\{ \varphi_{z} \right\} \right\} \\ \left\{ \left\{ \varphi_{z} \right\} \left\{ \varphi_{z} \right\} \right\} \\ \left\{ \varphi_{z} \right\} \left\{ \varphi_{z} \right\} \\ \left\{ \varphi_{z} \right\} \\ \left\{ \varphi_{z} \right\} \left\{ \varphi_{z} \right\} \right\} \\ \left\{ \varphi_{z} \right\}$$

Vector fields

Choice of vector at each paint  
PEM  
X: 
$$p \leftrightarrow X p \in TPM$$
  
 $\chi: p \leftrightarrow X p \in TPM$   
 $\chi: M \rightarrow TM$  []  
 $P \mapsto (P, X p)$   
Def: A section of The tangent bundle is a  
map  $\chi: M \rightarrow TM$  s.t.  $To \chi = Id_M$   
 $To \chi(P) = T(X p) = P$   
A section is smooth if  $\chi: M \rightarrow TM$  is smooth !!  
A section is called a vector field on M  
A smooth section is called a smooth vector field on M.  
Profissition: Let  $\chi_{iy}$  be  $C^{-p}$  sections of  $TM$ .  
 $Then$   
 $i) Define \chi + y: M \rightarrow TM$  defined by  
 $\chi + y(P) = \chi p + 3P$   
 $c^{crosectom}$   
 $2) \forall f \in Cor(M)$  define  $f\chi: M - 3TM$   
defined by  $f\chi(P) = f(P)$ ;  $\chi p$ 

Post-lecture Practice questions

5) If 
$$(U_i \phi)$$
 is a chart near P and VETPM,  
show that  $V = \sum_{i=1}^{N} V(x^i) \frac{\partial}{\partial x^i} | p$ 

7) let 
$$f:\mathbb{R}^{h} \to \mathbb{R}^{h}$$
 be a rector field on  $\mathbb{R}^{h}$ .  
Describe it as a section of  $T\mathbb{R}^{h}$ .

8) for 
$$f:\mathbb{R}^2 \to \mathbb{R}$$
,  $f(x_1,y_2) = y_2^2 + y_3^3 + 5x + 9$   
Find  $A = \{(a, b) \mid 0 \text{ is a critical value } f \}$   
sketch typical levelsets  $f^+(o)$  for  $(a, b) \notin A$ .