MAT 367: Differential Geometry Exam
 Thursday, August 19

Instructions:

1. Submit by 11:30 AM through Crowdmark. No late submissions will be accepted.
2. There are 7 problems in this exam.
3. Choose only 4 out of the first 5 problems. Do not submit the problem that you choose to skip.
4. Problem 6 is mandatory.
5. Problem 7 is a bonus.
6. You can get up to $58 / 50$ in this exam.

Problem 1 [10]

Consider the vector field $X \in \mathfrak{X}\left(\mathbb{R}^{3}\right)$ and the 2-form $\omega \in \Omega^{2}\left(\mathbb{R}^{3}\right)$ defined by

$$
X=y \frac{\partial}{\partial x}+\frac{\partial}{\partial y}, \quad \omega=\left(x^{2}+y^{2}\right) d x \wedge d z
$$

(a) Compute $\mathcal{L}_{X} \omega$ by first computing the flow F of X and then taking the derivative of $F_{t}^{*} \omega$.
(b) Compute $\mathcal{L}_{X} \omega$ by using Cartan's magic formula $\mathcal{L}_{X}=d \iota_{X}+\iota_{X} d$.
(c) Let $\alpha \in \Omega^{1}\left(\mathbb{R}^{2}\right)$ be defined by $\alpha=\left(x-y^{3}\right) d x+x^{3} d y$. Compute $\int_{S^{1}} i^{*} \alpha$ where $i: S^{1} \hookrightarrow \mathbb{R}^{2}$ is the inclusion map.
Hint: Apply Stokes theorem on the unit disk $D:=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

Problem 2 [10]

Let $\omega_{1}, \omega_{2} \in \Omega^{1}(M)$ be non-vanishing 1-forms that are linearly independent at every point. Define a distribution Δ by $\Delta_{p}=\operatorname{Ker} \omega_{p}^{1} \cap \operatorname{Ker} \omega_{p}^{2}$ for $p \in M$. From problem 4 in Assignment 7 , we know that Δ is a smooth rank $n-2$ distribution .
(a) Let $\eta \in \Omega^{2}(M)$. Show that $\eta \wedge \omega^{1} \wedge \omega^{2}=0$ iff η annihilates Δ
i.e. $\eta(X, Y)=0$ for any local frame X, Y of Δ.
(b) Suppose $\eta \in \Omega^{2}(M)$ satisfies $\eta \wedge \omega^{1} \wedge \omega^{2}=0$. Show that $\eta=\omega^{1} \wedge \beta^{1}+\omega^{2} \wedge \beta^{2}$ for some 1-forms $\beta^{1}, \beta^{2} \in \Omega^{1}(M)$.
(c) ${ }^{*}$ (bonus) ${ }^{*}$ [2] Suppose $d \omega^{1} \wedge \omega^{1} \wedge \omega^{2}=0$ and $d \omega^{2} \wedge \omega^{1} \wedge \omega^{2}=0$. Show that ω^{1} and ω^{2} are locally a linear combination of 2 non-vanishing exact 1 -forms $d f_{1}$ and $d f_{2}$ for some $f_{1}, f_{2} \in C^{\infty}(M)$.
i.e. For any p, there exists a neighbourhood U of p and functions $g_{1}, g_{2}, h_{1}, h_{2} \in$ $C^{\infty}(U)$ such that $\omega^{1}=g_{1} d f_{1}+g_{2} d f_{2}$ and $\omega^{2}=h_{1} d f_{1}+h_{2} d f_{2}$ on U.

Problem 3 [10]

Let $F: M \rightarrow N$ be a surjective submersion. Define a distribution Δ on M by $\Delta_{p}:=$ $\operatorname{Ker} F_{*, p}$ for $p \in M$
(a) Show that Δ is a smooth rank $m-n$ distribution that is involutive.

Hint: Apply the submersion theorem.
(b) Let $\omega \in \Omega^{k}(N)$ and $\eta:=F^{*} \omega$. Show that $\iota_{X} \eta=0$ and $\mathcal{L}_{X} \eta=0$ for all sections X of Δ.
(c) Suppose $M=\mathbb{R}^{m}, N=\mathbb{R}^{n}$, and F is the canonical submersion. Let $\eta \in \Omega^{k}(M)$ such that $\iota_{X} \eta=0$ and $\mathcal{L}_{X} \eta=0$ for all sections X of Δ. Show that there exists a k-form $\omega \in \Omega^{k}(N)$ such that $\eta=F^{*} \omega$.
(d) ${ }^{*}$ (bonus) ${ }^{*}$ [2] Under the assumptions of (c), show that if $\omega^{\prime} \in \Omega^{k}(N)$ also satisfies $\eta=F^{*} \omega^{\prime}$, then $\omega^{\prime}=\omega$.

Problem 4 [10]

Let $M:=\overline{B_{1}} \subset \mathbb{R}^{n+1}$ be the closed unit ball with the standard orientation. Let $\omega \in$ $\Omega^{n}(\partial M)$ be defined by $\omega:=i^{*}\left(\sum_{i=0}^{n}(-1)^{i} x^{i} d x^{0} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n}\right)$ where $i: \partial M \hookrightarrow M$ is the inclusion map.
(a) Show that ω is an orientation form for $\partial M=S^{n}$ with the boundary orientation and that

$$
\int_{M} \mathcal{L}_{X}\left(d x^{0} \wedge \ldots \wedge d x^{n}\right)=\int_{S^{n}} \omega=(n+1) \operatorname{Vol}(M)
$$

where $X=\sum_{i=0}^{n} x^{i} \frac{\partial}{\partial x^{i}}$ is the outward vector field along ∂M and $\operatorname{Vol}(M)$ is the volume of the unit ball in \mathbb{R}^{n+1}.
(b) Let $F: M \rightarrow \partial M$ be a smooth map. Show that $\left.F\right|_{\partial M}: \partial M \rightarrow \partial M$ cannot be the identity.
Hint: Show first that $\int_{M} d F^{*} \omega=0$, and arrive to to a contradiction.

Problem 5 [10]

Let $M:=[0,1] \times S^{n}$ with the standard orientation. Let $f_{0}, f_{1}: S^{n} \rightarrow S^{n}$ be smooth maps and let $F: M \rightarrow S^{n}$ be a smooth map satisfying $F(0, \cdot)=f_{0}$ and $F(1, \cdot)=f_{1}$.
(a) Describe the boundary orientation of ∂M.
(b) Show that for any $\omega \in \Omega^{n}\left(S^{n}\right), \int_{S^{n}} f_{0}^{*} \omega=\int_{S^{n}} f_{1}^{*} \omega$.

Hint: Integrate $d F^{*} \omega$ on M.
(c) ${ }^{*}$ (bonus)*[2] Show that if $f_{0}=I d$ and $f_{1}: x \mapsto-x$ is the antipodal map, then n cannot be even.

Problem 6 [10]

Are the following true or false? Justify your answer briefly.
2 marks each. 10 is the maximum mark
(a) Let $X, X_{1}, \ldots, X_{k} \in \mathfrak{X}(M)$ such that $\left[X, X_{i}\right]=0$ for $i=1, \ldots, k$. Then for any $\omega \in \Omega^{k}(M), \mathcal{L}_{X} \omega\left(X_{1}, \ldots, X_{k}\right)=X\left(\omega\left(X_{1}, \ldots, X_{k}\right)\right)$.
(b) Let M be a compact oriented 3-manifold. Define the map $F: \Omega^{1}(M) \times \Omega^{1}(M) \rightarrow \mathbb{R}$ defined by $F(\omega, \eta)=\int_{M} \omega \wedge d \eta . F$ is bilinear and symmetric.
(c) Any rank 2 smooth distribution Δ on S^{3} admits a global frame.
(d) Let S be a submanifold of M such that $S=f^{-1}(0)$ for some $f \in C^{\infty}(M)$. Then $X \in \mathfrak{X}(M)$ is tangent to S if and only if $X(f)=0$.
(e) Let $\omega \in \Omega^{1}(M)$ be non-vanishing. Then for any $\eta \in \Omega^{1}(M), \eta \wedge \omega=0$ if and only if $\eta=f \omega$ for some $f \in C^{\infty}(M)$.
(f) Let $\pi: S^{n} \rightarrow \mathbb{R} P^{n}$ be the usual projection map and let $F: S^{n} \rightarrow S^{n}$ be the antipodal map $F: x \mapsto-x$. If $X \in \mathfrak{X}\left(S^{n}\right)$ is π-related to $Y \in \mathfrak{X}\left(\mathbb{R} P^{n}\right)$, then $F_{*} X=X$.

Problem 7 *(bonus)* [2]

Let $\omega \in \Omega^{k}(M)$. For X_{1}, \ldots, X_{k+1}, show that

$$
d \omega\left(X_{1}, \ldots, X_{k+1}\right)=\frac{1}{2} \sum_{i=1}^{k+1}(-1)^{i+1}\left[X_{i}\left(\omega\left(X_{1}, \ldots, \widehat{X_{i}}, \ldots, X_{k+1}\right)\right)+\mathcal{L}_{X_{i}} \omega\left(X_{1}, \ldots, \widehat{X_{i}}, \ldots, X_{k+1}\right)\right]
$$

Note: You can get up to 58/50 in this exam.

