MAT 367: Differential Geometry Exam
 Monday, August 24

Instructions:

1. Submit by 11:30 AM through Crowdmark. No late submissions will be accepted.
2. There are 7 problems in this exam.
3. Choose only 4 out of the first 5 problems. Do not submit the problem that you choose to skip.
4. Problem 6 is mandatory.
5. Problem 7 is a bonus.
6. You can get up to $56 / 50$ in this exam.

Problem 1 [10]

(a) Consider the vector fields $X, Y \in \mathfrak{X}\left(\mathbb{R}^{2}\right)$ defined by:

$$
X=x \frac{\partial}{\partial x}, \quad Y=y \frac{\partial}{\partial y}
$$

Show that they commute and verify by direct computation that their flows commute.
(b) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function defined by $F(x, y)=\left(x y, e^{x}\right)$ and let $\omega \in \Omega^{1}\left(\mathbb{R}^{2}\right)$ be the 1 -form defined by $\omega=x d y$. Verify by direct computation that $F^{*} d \omega=d F^{*} \omega$.
(c) Let $\eta \in \Omega^{2}\left(\mathbb{R}^{3}\right)$ be the closed 2-form defined by $\eta=2 x y^{2} d x \wedge d y+z d y \wedge d z$. Verify Poincaré lemma by showing that η is exact. (Find a 1 -form $\omega \in \Omega^{1}\left(\mathbb{R}^{3}\right)$ such that $\eta=d \omega$.)
Hint: Assume $\omega=g d y$ for some $g \in C^{\infty}\left(\mathbb{R}^{3}\right)$.

Remark: Keep in mind that you do not have to show all your rough work. So you can say directly "the flow of X and Y are ..."

Problem 2 [10]

Let M be a 3 dimensional manifold. Let $X \in \mathfrak{X}(M)$ and $\omega \in \Omega^{1}(M)$ be a vector field and a 1-form satisfying:

$$
\iota_{X} \omega=1, \quad \mathcal{L}_{X} \omega=0
$$

Suppose also that $d \omega$ is nowhere vanishing.
(a) Show that $\omega \wedge d \omega$ is a nowhere vanishing 3-form.
(b) Show that the smooth rank 2 distribution Δ associated to ω is not involutive. Conclude that $\omega \wedge d \omega(Y, Z,[Y, Z])$ is a nowhere vanishing smooth function for any local basis Y, Z of Δ.
(c) Show that there cannot exist a nowhere vanishing function $f \in C^{\infty}(M)$ such that $d(f \omega)=0$.
Hint: Compute $\omega \wedge d \omega$.
(d) Suppose $M=S^{3}=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x^{2}+y^{2}+z^{2}+w^{2}=1\right\}$. Define $\alpha \in \Omega^{1}\left(\mathbb{R}^{4}\right)$ by:

$$
\alpha=x d y-y d x+z d w-w d z
$$

For $\omega=i^{*} \alpha$ where i is the inclusion map, show that $\omega \wedge d \omega$ is a nowhere vanishing 3 -form on S^{3}.
Hint: Define the vector field $X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}+z \frac{\partial}{\partial w}-w \frac{\partial}{\partial z}$ and use 2a.

Problem 3 [10]

(a) Let $f^{1}, \ldots, f^{k} \in C^{\infty}(M)$ such that $d f^{1} \wedge \ldots \wedge d f^{k}$ is a nowhere vanishing k-form. Show that for each $p \in M$, there exists a coordinate chart such that $f^{i}=x^{i}$ for $i=1, \ldots, k$. Hint: Use the submersion theorem.
(b) Let $\omega^{1}, \ldots, \omega^{k} \in \Omega^{1}(M)$ be closed 1-forms such that $\omega^{1} \wedge \ldots \wedge \omega^{k}$ is a nowhere vanishing k-form. Show that near each point, there exists a coordinate chart such that $\omega^{i}=d x^{i}$. Conclude that the 1 -forms define a smooth involutive distribution of codimension k.

Problem 4 [10]

Let M be a compact manifold with boundary. Let $\omega \in \Omega^{n}(M)$ be a nowhere vanishing top form on M. Define the map $\operatorname{div}_{\omega}: \mathfrak{X}(X) \rightarrow C^{\infty}(M)$ in the following way: if $X \in \mathfrak{X}(M)$, then $\operatorname{div}_{\omega}(X)$ is the function on M satisfying $\mathcal{L}_{X} \omega=\operatorname{div}_{\omega}(X) \omega$. This map is well defined thanks to question 3c in assignment 7.

Let N be a smooth outward pointing vector field along ∂M. Define another map $<N, \cdot>_{\omega}: \mathfrak{X}(M) \rightarrow C^{\infty}(\partial M)$ in the following way: If $X \in \mathfrak{X}(M)$, then $<N, X>_{\omega}$ is the function on ∂M satisfying $i^{*} \iota_{X} \omega=<N, X>_{\omega} i^{*} \iota_{N} \omega$ where $i: \partial M \hookrightarrow M$ is the inclusion map.
(a) Show that the map $<N, \cdot>_{\omega}$ is well defined. That is show that for every $X \in \mathfrak{X}(M)$, there exists a unique function $<N, X>_{\omega}$ such that $i^{*} \iota_{X} \omega=<N, X>_{\omega} i^{*} \iota_{N} \omega$.
(b) Prove the "divergence theorem": For any $X \in \mathfrak{X}(M)$

$$
\int_{M} d i v_{\omega}(X) \omega=\int_{\partial M}<N, X>_{\omega} i^{*} \iota_{N} \omega
$$

(c) Show that $\mathcal{L}_{f X} \omega=f \mathcal{L}_{X} \omega+d f(X) \omega$ for any $X \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$.
(d) Prove the "integration by parts" formula: for any $X \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$,

$$
\int_{M} f d i v_{\omega}(X) \omega=\int_{\partial M} f<N, X>_{\omega} i^{*} \iota_{N} \omega-\int_{M} d f(X) \omega
$$

(e) ${ }^{*}(\text { bonus }[2])^{*}$ Let $M=\bar{B}_{1}$ be the closed unit ball in \mathbb{R}^{n}. Let $\omega=d x^{1} \wedge \ldots \wedge d x^{n}$ and $N=x^{i} \frac{\partial}{\partial x^{2}}$. Show that the "divergence theorem" implies the divergence theorem:

$$
\int_{\bar{B}_{1}} \nabla \cdot X d x^{1} \ldots d x^{n}=\int_{S^{n-1}} X \cdot N d A
$$

and the "integration by parts" formula implies the integration by parts formula:

$$
\int_{\bar{B}_{1}} f \nabla \cdot X d x^{1} \ldots d x^{n}=\int_{S^{n-1}} f X \cdot N d A-\int_{\bar{B}_{1}} \nabla f \cdot X d x^{1} \ldots d x^{n}
$$

Problem 5 [10]

Let $\omega \in \Omega^{n-1}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ be the $n-1$-form defined by

$$
\omega=\frac{1}{\|x\|^{n}} \sum_{i=1}^{n}(-1)^{i-1} x^{i} d x^{1} \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n}
$$

(a) Show that $i^{*} \omega$ is a nowhere vanishing closed $n-1$-form on the sphere S_{r}^{n-1} of radius $r>0$, where $i: S_{r}^{n-1} \hookrightarrow \mathbb{R}^{n}$ is the inclusion map.
(b) Show that

$$
\int_{S_{r}^{n-1}} i^{*} \omega=\frac{n}{r} \operatorname{Vol}\left(B_{r}\right)=\operatorname{SA}\left(S_{r}^{n-1}\right)
$$

where $\operatorname{Vol}\left(B_{r}\right)$ is the volume of the ball of radius r and $\mathrm{SA}\left(S_{r}^{n-1}\right)$ is the surface area of S_{r}^{n-1}.
Hint: Consider the $n-1$-form $\eta=\|x\|^{n} \omega$. Use stokes theorem.
(c) Show that ω cannot be exact on $\mathbb{R}^{n} \backslash\{0\}$.
(d) *(bonus)* [2] Find what is wrong with the following argument: Consider $M=$ $\bar{B}_{r} \backslash\{0\}$. Then $\partial M=S_{r}^{n-1}$. Then by Stokes theorem,

$$
\int_{S_{r}^{n-1}} i^{*} \omega=\int_{M} d \omega=0
$$

Problem 6 [10]

Are the following true or false? Justify your answer briefly.
2 marks each. 10 is the maximum mark
(a) Any nowhere vanishing vector field is a coordinate vector field near each point. Similarly, any nowhere vanishing 1 -form is a coordinate 1 -form near each point.
(b) Let $v \in T_{p} M$ and let $X \in \mathfrak{X}(M)$. Let γ be the integral curve of X starting at p. Then there exists a unique vector field Y on γ such that $\left.Y\right|_{p}=v$ and $\mathcal{L}_{X} Y=0$.
(c) Let F be the flow of a vector field X and let Y be another vector field. Then for $p \in M$ and an appropriate number $t,\left.Y\right|_{F_{t}(p)}=\left.\left(F_{t}\right)_{*, p} Y\right|_{p}+\left.t\left(F_{t}\right)_{*, p} \mathcal{L}_{X} Y\right|_{p}+$ $\left.\frac{t^{2}}{2}\left(F_{t}\right)_{*, p} \mathcal{L}_{X} \mathcal{L}_{X} Y\right|_{p}+o\left(t^{2}\right)$.
(d) Suppose M is an oriented manifold with boundary. Let $\omega \in \Omega^{n-1}(M)$ with compact support inside a chart $\left(U, \phi=\left(x^{1}, \ldots, x^{n}\right)\right)$. Let $\left(U \cap \partial M, \phi_{\partial M}=\left(x^{1}, \ldots, x^{n-1}\right)\right)$ be the corresponding chart on ∂M. Then by Stokes theorem,

$$
\begin{gathered}
\int_{\phi(U)} d \omega\left(\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right)\left(x^{1}, \ldots, x^{n}\right) d x^{1} \ldots d x^{n} \\
=\int_{\phi_{\partial M}(U \cap \partial M)} \omega\left(\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n-1}}\right)\left(x^{1}, \ldots, x^{n-1}, 0\right) d x^{1} \ldots d x^{n-1}
\end{gathered}
$$

(e) Let $\alpha: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ be a C^{∞}-linear map. Then for every $p \in M$, there exists a linear map $\alpha_{p}: T_{p} M \rightarrow T_{p} M$ such that $\alpha(X)_{p}=\alpha_{p}\left(X_{p}\right)$.
(f) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=x$. Define a vector field on \mathbb{R} by $X=x^{2} \frac{d}{d x}$. There exists a unique vector field $Y \in \mathfrak{X}\left(\mathbb{R}^{2}\right)$ that is f-related to X.

Problem 7 *(bonus)* [2]

Let $X, Y_{1}, \ldots, Y_{k} \in \mathfrak{X}(M), \omega \in \Omega^{k}(M)$ and $f \in C^{\infty}(M)$. Show that

$$
\mathcal{L}_{f X} \omega\left(Y_{1}, \ldots, Y_{k}\right)=f \mathcal{L}_{X} \omega\left(Y_{1}, \ldots, Y_{k}\right)+\sum_{i=1}^{k}\left(\mathcal{L}_{Y_{i}} f\right) \omega\left(Y_{1}, \ldots, Y_{i-1}, X, Y_{i+1}, . ., Y_{k}\right)
$$

Note: You can get up to 56/50 in this exam.

