MAT 327 TUT * II
Plan: - The 58.2/58.3 Munkres

- Deformation retraction
\& examples

Lemma $=$ Let h, k be continuous maps

$$
\left(x, x_{0}\right) \rightarrow\left(y, y_{-}\right)
$$

If h, k homotopic and if
the homotopy maps x_{0} to y_{0}
then h_{*} and k_{*} are equal.
Recap: $h_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{-}\right)$

$$
h_{*}([f])=[h \circ f]
$$

Proof: wis hoof and kif
(for any loop of based at x_{0})
By assumption, $\exists H$ homotopy s, t.

$$
\begin{aligned}
& H(x, 0)=h(x) \\
& H(x, 1)=k(x) \\
& H(x, t)=y_{0} \quad \forall t \in[0,1]
\end{aligned}
$$

$$
\begin{aligned}
& h \circ f \simeq k \circ f \\
& H(f(s), t) \forall(s, t) \in I \times I \\
& H(f(s), 0)=h(x) \\
&=h(f(s))=h \circ f(s) \\
& H(f(s), l)=k \circ f(s)
\end{aligned}
$$

Path homotopy: based x_{0}

$$
H(\underbrace{f(0)}_{x_{0}}, t)=y_{0}
$$

Them 58.2.
The inclusion $j: S^{n} \rightarrow \mathbb{R}^{n+1} \backslash\{0\}$ induces an isomorphism of fundamental groups.

$$
\left(\pi, C S^{n}, b_{0}\right) \cong \pi_{j}\left(\mathbb{R}^{n+1}\left\{\{0\}, b_{0}\right)\right.
$$

Proof: $X=\mathbb{R}^{n+1} \backslash\{o\}$
let $r: X \rightarrow S^{n}$

$$
r(x)=\frac{x}{U \times U}
$$

$j=$ inclusion

$$
r o j: X \rightarrow S^{n}
$$

is identity when restricted to S^{n}.

$$
\begin{aligned}
& r_{0} j l_{s^{n}}=i^{a} S^{a} \\
& (r 0 j)_{k}=r_{*} \circ j_{*}=\text { identity } \\
& \Rightarrow j^{*} \text { is injection }
\end{aligned}
$$

Now

$$
X \xrightarrow{j \circ r}
$$

We'll show jor homotopic to id x Straight line homotopy:

$$
\begin{aligned}
& H(x, t)=(1-t) \frac{x}{i d "}+t \frac{x}{M x \|} \\
& t=0, H(x, 0)=x=i d
\end{aligned}
$$

$$
H\left(b_{0}, t\right)=b_{0} \forall t
$$

because $b_{0} \in S^{n}$

$$
U b_{0} \|=1
$$

Now, by leman,
It is a homotopy that "preserves" the base point.
between ide and $j \circ r$
So, $\underbrace{i d_{x *}}\}=(j \text { or })_{*}=\left[\left\{j_{*}\right\} 0 r_{*}\right.$

$$
(\underbrace{\text { on } \pi_{1}(x}_{j+} \text { subjective }_{b_{0}})
$$

We j* bijective homomovphisan.
so isomorphism.
X and S^{n} have the same fundamental group.

Def $A \subset X$
A is a deformation retract of X

$$
\text { if } \begin{aligned}
H: X x I & \rightarrow x \\
H(x, 0) & =x \\
H(x, 1) & \in A \\
H(a, t) & =a \quad \forall a \in A \quad \forall t \in[0,1]
\end{aligned}
$$

is cooled deformation retraction
Tho 58.3.
Let A be a deformation retrace of x, and $x_{0} \in A$
Then j : $\left(A, x_{0}\right) \rightarrow\left(X, x_{0}\right)$
induces $j *$ isomorphism
Example:

$$
-\mathbb{R}^{3} \backslash\{z \text {-axis }\}
$$

We can deform

$$
\begin{aligned}
& H(x, y, z, \sqrt{H}\} \\
& =(x, y,(\underbrace{(1-t) z)} \\
& \sim \mathbb{R}^{2}\{\{0\}
\end{aligned}
$$

Another example, "double punctured plane" $\mathbb{R}^{2}-p-q$

Step 1:

Step $2:$
Step 3:

Resulting space:

$$
\mathbb{R}^{2}-p-q
$$

They are not deform. retracts of each other.
Alternatively: at step 2 ,
But they we can
 are de form retracts of the same and hence have the ste $\pi 1$.

More on "figure 8" space:
We can consider it as the subspace of torus

$$
\begin{aligned}
p & =\mathbb{R} \rightarrow S^{\prime} \\
p \times p & =\mathbb{R} \times \mathbb{R} \rightarrow S^{\prime} \times S^{\prime}
\end{aligned}
$$

By restricting $p<p$ to a preimage of figure 8 .
wo have a covering map of 8

