MAT 327: Introduction to Topology Assignment #6 Due on Sunday August 13, 2023 by 11:59 pm

Note: This assignment covers material from Week #1-#11.

Problem 1

In this problem, we will prove the Baire category theorem and study its powerful consequences in analysis and topology.

(a) Baire Category Theorem Let X be a complete metric space or a locally compact Hausdorff space. Show that every countable collection of dense open sets has a dense intersection. Equivalently, show that the union of every countable collection of closed nowhere dense sets has empty interior.

Remark: A subset of X is nowhere dense if its closure has empty interior.

(b) Let \mathcal{F} be a collection of continuous real-valued functions on a locally compact Hausdorff space or a complete metric space. Suppose that \mathcal{F} is piece-wise bounded in the sense that for every $x \in X$, there exists M > 0 such that $|f(x)| \leq M$ for all $f \in \mathcal{F}$. Show that \mathcal{F} is uniformly bounded on some open set $U \subseteq X$, meaning that there exists M > 0 such that $\sup_{x \in U} |f(x)| \leq M$ for all $f \in \mathcal{F}$.

Hint: Consider $A_n := \{x \in X \mid |f(x)| \le n \text{ for all } f \in \mathcal{F}\}.$

- (c) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function with the property that for every $x \in \mathbb{R}$, $\lim_{n\to\infty} f(nx) = 0$. Show that $\lim_{x\to\infty} f(x) = 0$.
- (d) Let $f : \mathbb{R} \to \mathbb{R}$ be a function and let *D* be the set of all points in \mathbb{R} at which *f* is continuous. Show that *D* cannot be a countable dense set.

Hint: Show that D is a G_{δ} set.

(e) (*bonus*) Equip C([0,1]) with the supremum metric making it a complete metric space. For each $n \in \mathbb{N}$, let F_n be the subset of $(C([0,1], d_{\sup}))$ consisting of functions for which there is a point $x_0 \in [0,1]$ such that $|(f(x) - f(x_0)| \leq n|x - x_0|)$ for all $x \in [0,1]$. Show that F_n is a closed nowhere dense set. Using the Baire category theorem, conclude that the set of continuous no-where differentiable functions is dense in C([0,1]).

Problem 2

- (a) Show that every second countable, locally compact Hausdorff space is metrizable. Conclude that every n-manifold is metrizable.
- (b) For a topological space, a sequence $\{K_n\}_{n\in\mathbb{N}}$ of compact sets is called an exhaustion of X by compact sets if the $\bigcup_n K_n = X$ and $K_n \subseteq \operatorname{Int} K_{n+1}$ for every $n \in \mathbb{N}$. Show that every second countable, locally compact Hausdorff space, and in particular an *n*-manifold, admits an exhaustion by compact sets.
- (c) Let X be a second countable, locally compact Hausdorff space and let $\{U_{\alpha}\}_{\alpha \in J}$ be an open cover for X. Show that there exists an open cover $\{V_{\alpha}\}_{\alpha \in J}$ such that $\overline{V}_{\alpha} \subseteq U_{\alpha}$ and that for every $x \in X$, there exists a neighbourhood of x that intersects V_{α} for finitely many $\alpha \in J$.

Remark: This is a generalized form of the shrinking argument used in the proof of the existence of partition of unity in lectures.

Hint: Fix an exhaustion $\{K_n\}_{n\in\mathbb{N}}$ by compact sets and define $A_n := K_{n+1} \setminus \operatorname{Int} K_n$ and $U_n := \operatorname{Int} K_{n+2} \setminus K_{n-1}$.

(d) *(bonus)* Generalize our proof for the existence of a partition of unity to second countable, locally compact Hausdorff spaces and, in particular, to n-manifolds.

Problem 3

Let A be a subspace of a topological space X. We say A is a retract of X if there exists a continuous map $r: X \to A$ such that $r|_A = Id_A$. The map r is called a retraction.

In this problem, you can use without proof that the fundamental group of S^1 is isomorphic to the group $(\mathbb{Z}, +)$. We will prove this fact in the next lecture.

- (a) Show that if X is Hausdorff and A is a retract of X, then A is closed.
- (b) Suppose that A is a retract of X, Show that for any $x_0 \in A$, the homomorphism $\iota_* : \pi(A, x_0) \to \pi(X, x_0)$ induced by the inclusion map $\iota : A \to X$ is injective and the homomorphism $r_* : \pi(X, x_0) \to \pi(A, x_0)$ induced by the retraction r is surjective. Conclude that a retract of a simply connected space is simply connected.
- (c) Show that for any $n \in \mathbb{N}$, S^{n-1} is a retract of $\mathbb{R}^n \setminus \{0\}$. Conclude that $\mathbb{R}^2 \setminus \{0\}$ is not simply connected.
- (d) Show that the torus $T = S^1 \times S^1$ is not simply connected by finding a retract that is homeomorphic to S^1 .

(e) Let $n \ge 2$ and let N be the north pole in S^n . Let $p \in S^n \setminus \{N\}$. Show that any loop based at p is homotopic to one that doesn't contain N. Conclude that S^n is simply connected.

Hint: Recall that $S^n \setminus \{N\}$ is homeomorphic to \mathbb{R}^n .

(f) *(bonus)* Define the figure eight $Y \subseteq \mathbb{R}^2$ to be the union of the circles of radius one and centres (0, 1) and (0, -1). Show that Y is not simply connected.