
MAT 327: Introduction to Topology
Assignment #5

Due on Monday July 31, 2023 by 11:59 pm

Note: This assignment covers material from Week #1-#9.

Problem 1

Let X := {(x, y) ∈ R2 | y ≥ 0}. Define a basis B for a topology on X as follows:

B := {Bε((a, b)) | a ∈ R, b > 0, 0 < ε < b}
⋃
{Bε((a, ε)) ∪ {(a, 0)} | ε > 0, a ∈ R}

Convince yourself that B is indeed a basis for a topology on X. The space X equipped
with this topology is called the Moore plane.

(a) Show that the Moore plane is completely regular.

Let A be a closed set and p ∈ Ac. Let B be a basis set containing p. Define a function
f : X → [0, 1] as follows. First, define f(p) := 0. If x ∈ Bc, define f(x) := 1. If
x ∈ B \ {p}, then let Lx be the line segment starting from p, passing through x, and

ending at the boundary of B; define f(x) := d(p,x)
r

where d is the euclidean distance
and r is the euclidean length of L.

We show that f is continuous. Let x ∈ X and δ > 0. Let I = (f(x)− δ, f(x) + δ). It
suffices to show that there exist a basis neighbourhood U of x such that f(U) ⊆ I.
We first observe that B is the closed ball. If x ∈ Bc

, then we can choose U to be
a neighbourhood basis of x contained in B

c
and so f(U) = {1} = {f(x)} ⊆ I. If

x ∈ B, suppose for simplicity x 6= p. Then we can choose U to be a neighbouhood
basis of x with diameter equal δr/2 where r is the length of Lx and so f(U) ⊆ I.
The case when x = p is similar.

(b) Let Z be a topological space with a dense subset D and a closed discrete subset C
such that |P (D)| ≤ |C|. Show that Z is not normal.

Suppose Z is normal, D is a dense subset and C is a closed discrete set. Since C is
discrete and closed, A and C\A are closed disjoint sets for every A ⊆ C. For each set
A ⊆ C, we choose disjoint nieghbourhoods UA and VA of A and C \A. We define the
function F : P (C)→ P (D) as follows. Define F (∅) := ∅ and F (C) := D. Otherwise,
define F (A) := UA ∩D. We show that F is injective. Suppsoe A1, A2 ⊆ C such that
A1 6= A2. Assume without loss of generality that A2\A1 6= ∅. Then UA2\A1∩UA2 6= ∅
and VA2\A1 ∩ UA1 6= ∅. Since D is dense, we also have that UA2\A1 ∩ F (A2) 6= ∅ and



VA2\A1 ∩ F (A1) 6= ∅. Since UA2\A1 is disjoint from VA2\A1 , it follows that F (A1) 6=
F (A2) and hence F is injective. This implies that |C| < |P (C)| ≤ |P (D)| and so
|C| < |P (D)| as needed.

(c) Use the above to show that the Moore plane is not normal.

Let C := {(x, y) ∈ X | y = 0} and D = {(x, y) ∈ X | x, y ∈ Q}. It’s easy to see
that C is closed and discrete and D is dense. Since |C| = |R| = |P (Q2)| = |P (D)|,
it follows by part (b) that the Moore plane is not normal.

Let Y := {(x, y) ∈ R2 | y ≥ 0} ∪ {(0,−1)}. We define a collection B of subsets
of Y as follows. If (x, y) ∈ Y for y > 0, then {(x, y)} ∈ B. For each x ∈ R, let
Mx := {(x, y) | 0 ≤ y < 2}, let Nx := {(x+ y, y) | 0 ≤ y < 2}, and let Px be a finite subset
of (Mx∪Nx)\{(x, 0)}. Then for each x ∈ R, (Mx∪Nx)\Px is in B. Also, for each n ∈ N,
{(x, y) ∈ Y | x > n} ∪ {(0,−1)} is in B.

Draw a picture of the sets in B to help you visualize it and convince yourself that B is
indeed a basis for a topology on Y .

(d) Show that Y is regular.

Hint: Consider three cases, y = −1, y = 0, and y > 0.

Let (x, y) ∈ Y and let U be a neighbourhood of (x, y). If y > 0, then V := {(x, y)}
is a neighbourhood of (x, y) such that V = V ⊆ U . If y = 0, then there exists a
finite set Px ⊆Mx∪Nx such that (Mx∪Nx)\Px ⊆ U . Letting V := (Mx∪Nx)\Px,
it follows that V is a neighbourhood of (x, y) such that V = V ⊆ U . If y = −1,
then there exists n ∈ N such that {(x, 0) | x > n} ∪ {(0,−1)} ⊆ U . Letting
V := {(x, 0) | x > n + 1} ∪ {(0,−1)}, it follows that V is a neighbourhood of (x, y)
such that V = {(x, 0) | x ≥ n+ 1}∪ {(0,−1)} ⊆ U . We conclude that Y is regular.

(e) Let C := {(x, 0) | x ≤ 1, which is a closed set. Let f : Y → [0, 1] be a continuous
map such that f(C) = {0}. For n ∈ N, let An := f−1(0) ∩ {(x, 0) | n− 1 ≤ x ≤ n}.
Show that An is infinite for every n ∈ N.

We will prove it by induction. SinceA1 = {(x, 0) | 0 ≤ x ≤ 1}, A1 is infinite. Suppose
that An is infinite for some n ∈ N. Fix a countable set D ⊆ An and fix (q, 0) ∈ D.
We will first show that Nq \ f−1(0) is countable. We write Nq \ f−1(0) = ∪k∈NEk
where Ek := Nq \ f−1(−1/k, 1/k). Suppose Ek is infinite; then every neighbouhood
of (q, 0) will contain Nq except for finitely many points and, hence, in particular will
intersect Ek. This implies that (q, 0) ∈ Ek = Ek, but we know that f(q, 0) = 0 by
virtue of the fact that (q, 0) ∈ An. It follows that Ek is finite for every k ∈ N and so
Nq \ f−1(0) is countable.



Define the set Pq := {(x, 0) | x ∈ π1(Nq \ f−1(0))} and P := ∪(q,0)∈DPq. Then define
the set F := {(x, 0) | n ≤ x ≤ n + 1} \ P . Since Pq is countable for each (q, 0) ∈ D
and D is countable, it follows that P is countable and hence F is infinite. We will
show that F ⊆ f−1(0). Let (x, 0) ∈ F . Then every neighbourhood of (x, 0) must
contain Mx except for finitely many points; in particular, by definition of F , Mx must
intersect Nq ∩ f−1(0) for some (q, 0) ∈ D. It follows that (x, 0) ∈ f−1(0) = f−1(0).

Since F ⊆ f−1(0) and F ⊆ {(x, 0) | n ≤ x ≤ n+ 1}, it follows that F ⊆ An+1. Since
F is infinite, we conclude that An+1 is infinite.

(f) Use the above to show that Y is not completely regular.

Hint: Show first that f(0,−1) = 0.
Remark: In #11 in section 33, Munkres constructs another topological space that is
regular but not completely regular.

Let C be the closed set from part (e) and let f : X → [0.1] be a continuous function
such that f(C) = {0}. By part (e), we know that An is nonempty for every n ∈ N.
Then every basis neighbouhood of (0,−1) will contain An for some n ∈ N and
therefore intersect f−1(0). This implies that (0,−1) ∈ f−1(0) = f−1(0) and so
f(0,−1) = 0. We conclude that that the closed set C and the point (0,−1) cannot
be separated by a continuous function and so Y is not completely regular.

Problem 2

We will define a new separation axiom.
We say that a normal topological space X is perfectly normal (T6) if for every pair of
disjoint closed sets A and B, there exists a continuous function f : X → [0, 1] such that
f−1({0}) = A and f−1({1}) = B.

(a) We say a closed set A ⊆ X is a Gδ set if it’s the intersection of countably many open
sets. Let X be a normal space and let A and B be disjoint closed sets. Show that
A and B are Gδ sets if and only if there exists a continuous function f : X → [0, 1]
such that f−1({0}) = A and f−1({1}) = B.

Remark: This is usually called the strong version of the Urysohn Lemma.

=⇒
Suppose A and B are Gδ sets; so A = ∩nUn and B = ∩nVn where Un and Vn are
open sets.

For each n, A and U c
n as well as B and V c

n are disjoint closed sets and so we can
invoke Urysohn Lemma to choose continuous functions hn, gn : X → [0, 1] such that

hn(A) = 0, hn(U c
n) = 1, gn(B) = 0, gn(V c

n ) = 1



Then we define the functions h, g : X → [0, 1] as follows:

h(x) :=
∞∑
n=1

1

2n
hn(x), g(x) :=

∞∑
n=1

1

2n
gn(x)

Since the sum converges uniformly on X, it follows that h and g are continuous. If
h(x) = 0, then hn(x) = 0 for every n ∈ N implying that x ∈ Un for every n ∈ N. It
follows that x ∈ ∩nUn = A and so h−1(0) = A. Similarly, we have that g−1(0) = B.
Then the function h : X → [0, 1] defined by

f(x) :=
h(x)

h(x) + g(x)

is the desired function.

⇐=

Suppose there exists a function f : X → [0, 1] such that f−1(0) = A and f−1(1) = B.
Then A = ∩nUn and B = ∩nVn where

Un = f−1(−1/n, 1/n), Vn = f−1(1− 1/n, 1 + 1/n)

We conclude that A and B are Gδ sets as needed.

(b) Let X be a normal space. Show that X is perfectly normal if and only if every
closed set is a Gδ set if and only if every closed set A is f−1({0}) for some continuous
function f : X → [0, 1].

Suppose X is perfectly normal. Let A be a closed set. If A = X, then A is trivially
a Gδ set and can be written as f−1(0) where f = 0. Otherwise, let B = {x} where
x /∈ A. By the definition of perfectly normal, there exists a continuous function
f : X → [0, 1] such that f−1(0) = A and f−1(1) = B. By the backward direction
in part(a), it follows that A is a Gδ set. This shows that the first statement implies
the second and third.

By part (a), the second statement trivially implies the first.

The proof of the forward direction in part (a) shows in particular that if two disjoint
closed sets can be written as A = h−1(0) and B = g−1(0) for some continuous
functions h, g : X → [0, 1], then there exists a function f : X → [0, 1] defined by
f := h

h+g
such that A = f−1(0) and B = f−1(1). This shows that the third statement

implies the first. We have then shown that all three statements are equivalent.



(c) Show that every metrizable space is perfectly normal.

Let A and B be disjoint closed sets. Since A and B are closed, d(x,A) = 0 iff x ∈ A
and similarly for B. Then f : X → [0, 1] defined by f(x) := d(x,A)

d(x,A)+d(x,B)
is the

desired function.

(d) Show that perfectly normal is strictly stronger than completely normal.

To show that perfectly normal is stronger than completely normal, it suffices to show
that the property of being perfectly normal is hereditary. If so, then a perfectly
normal space is in particular a normal space that is hereditarily normal, and hence
completely normal. Let Y be a subspace of a perfectly normal space X and let A
and B be disjoint closed set in Y . Then A = Ã∩ Y and B = B̃ ∩ Y for some closed
sets Ã and B̃ in X. Since X is perfectly normal, there exist continuous functions
h, g : X → [0, 1] such that h−1(0) = Ã and g−1(0) = B̃. Then h|Y , g|Y : Y → [0, 1]
are continuous functions such that h|Y −1(0) = A and g|Y −1(0) = B. Define the

function f : Y → [0, 1] by f := h|Y
h|Y +g|Y

; then f satisfies f−1(0) = A and f−1(1) = B.

In particular, f−1([0, 1/4) and f−1(3/4, 1] are disjoint open neighbourhoods of A
and B, and hence Y is normal. The existence of such a function f for every pair of
disjoint closed sets in Y implies that Y is perfectly normal as needed.

Consider (R, T ) defined in the hint. We will show that this space is completely
normal but nor perfectly normal. It is clear that (R, T ) is a T1 space since R \ {p}
is open for every p ∈ R. Let A and B be subsets of R such that A ∩ B = ∅ and
A ∩ B = ∅. We want to show that there exists disjoint neighbouhoods of A and
B. At least one of A or B does not contain 0. if 0 /∈ A and 0 ∈ B, A = A ∪ {0}
and the condition A ∩ B = ∅ cannot be satisfied. If both A and B do not contain
0, then they are both open sets. The statement then follows trivially since A and
B are disjoint neighbouhoods of A and B, respectively. We conclude that (R, T ) is
completely normal.

We now show that X is not perfectly normal. Consider the set Z, which is a closed
set as it contains 0. Notice that any neighbourhood of Z must be of the form R\P for
some finite set P . If Z is a Gδ set, then it can be written as a countable intersection
of neighbourhoods of Z. However, such a set must be of the form R \ D for some
countable or finite set D and hence uncountable. Since Z is countable, it cannot be
a Gδ set. We conclude that X is not perfectly normal as there exists a closed set
that is not a Gδ set.

Hint: Consider (R, T ) where T := {U ⊆ R | 0 /∈ U or U c is finite }.



Problem 3 *(bonus)*

We have defined many separation axioms and have proven the following hierarchy:

T6 =⇒ T5 =⇒ T4 =⇒ T3.5 =⇒ T3 =⇒ T2 =⇒ T1

Find topological spaces Xi, where i ∈ S := {1, 2, 3, 3.5, 4, 5}, such that Xi is Ti but
not Tj where j is the next number in S. You do not need to prove that these topological
spaces satisfy what you claim they do.

• Let X = {x, y} where {x} is the only nontrivial open set. Then X is T1 but not T2.

• The space RK defined in lectures is T2 but not T3.

• The space Y defined in problem 1 is T3 but not T3.5.

• The Moore plane defined in problem 1 is T3.5 but not T4.

• The space [0, 1]R is T4 but not T5.

• The space (R, T ) defined in problem 2d is T5 but not T6.


