MAT 327: Introduction to Topology Assignment #5 Due on Monday July 31, 2023 by 11:59 pm

Note: This assignment covers material from Week #1-#9.

Problem 1

Let $X := \{(x, y) \in \mathbb{R}^2 \mid y \ge 0\}$. Define a basis \mathcal{B} for a topology on X as follows:

$$\mathcal{B} := \{B_{\epsilon}((a,b)) \mid a \in \mathbb{R}, b > 0, 0 < \epsilon < b\} \left(\left| \{B_{\epsilon}((a,\epsilon)) \cup \{(a,0)\} \mid \epsilon > 0, a \in \mathbb{R} \} \right| \right)$$

Convince yourself that \mathcal{B} is indeed a basis for a topology on X. The space X equipped with this topology is called the Moore plane.

- (a) Show that the Moore plane is completely regular.
- (b) Let Z be a topological space with a dense subset D and a closed discrete subset C such that $|P(D)| \leq |C|$. Show that Z is not normal.
- (c) Use the above to show that the Moore plane is not normal.

Let $Y := \{(x, y) \in \mathbb{R}^2 \mid y \geq 0\} \cup \{(0, -1)\}$. We define a collection \mathcal{B} of subsets of Y as follows. If $(x, y) \in Y$ for y > 0, then $\{(x, y)\} \in \mathcal{B}$. For each $x \in \mathbb{R}$, let $M_x := \{(x, y) \mid 0 \leq y < 2\}$, let $N_x := \{(x + y, y) \mid 0 \leq y < 2\}$, and let P_x be a finite subset of $(M_x \cup N_x) \setminus \{(x, 0)\}$. Then for each $x \in \mathbb{R}$, $(M_x \cup N_x) \setminus P_x$ is in \mathcal{B} . Also, for each $n \in \mathbb{N}$, $\{(x, y) \in Y \mid x > n\} \cup \{(0, -1)\}$ is in \mathcal{B} .

Draw a picture of the sets in \mathcal{B} to help you visualize it and convince yourself that \mathcal{B} is indeed a basis for a topology on Y.

(d) Show that Y is regular.

Hint: Consider three cases, y = -1, y = 0, and y > 0.

- (e) Let $C := \{(x,0) \mid x \leq 1, \text{ which is a closed set. Let } f : Y \to [0,1] \text{ be a continuous map such that } f(C) = \{0\}.$ For $n \in \mathbb{N}$, let $A_n := f^{-1}(0) \cap \{(x,0) \mid n-1 \leq x \leq n\}.$ Show that A_n is infinite for every $n \in \mathbb{N}$.
- (f) Use the above to show that Y is not completely regular.

Hint: Show first that f(0, -1) = 0. *Remark:* In #11 in section 33, Munkres constructs another topological space that is regular but not completely regular.

Problem 2

We will define a new separation axiom.

We say that a normal topological space X is perfectly normal (T_6) if for every pair of disjoint closed sets A and B, there exists a continuous function $f: X \to [0, 1]$ such that $f^{-1}(\{0\}) = A$ and $f^{-1}(\{1\}) = B$.

(a) We say a closed set $A \subseteq X$ is a G_{δ} set if it's the intersection of countably many open sets. Let X be a normal space and let A and B be disjoint closed sets. Show that A and B are G_{δ} sets if and only if there exists a continuous function $f: X \to [0, 1]$ such that $f^{-1}(\{0\}) = A$ and $f^{-1}(\{1\}) = B$.

Remark: This is usually called the strong version of the Urysohn Lemma.

- (b) Let X be a normal space. Show that X is perfectly normal if and only if every closed set is a G_{δ} set if and only if every closed set A is $f^{-1}(\{0\})$ for some continuous function $f: X \to [0, 1]$.
- (c) Show that every metrizable space is perfectly normal.
- (d) Show that perfectly normal is strictly stronger than completely normal.

Hint: Consider $(\mathbb{R}, \mathcal{T})$ where $\mathcal{T} := \{ U \subseteq \mathbb{R} \mid 0 \notin U \text{ or } U^c \text{ is finite } \}.$

Problem 3 *(bonus)*

We have defined many separation axioms and have proven the following hierarchy:

$$T_6 \implies T_5 \implies T_4 \implies T_{3.5} \implies T_3 \implies T_2 \implies T_1$$

Find topological spaces X_i , where $i \in S := \{1, 2, 3, 3.5, 4, 5\}$, such that X_i is T_i but not T_j where j is the next number in S. You do not need to prove that these topological spaces satisfy what you claim they do.

Problem 4 (optional)

Let X be a set. A nonempty collection $\mathcal{F} \subseteq P(X)$ is called a filter on X if the following are satisfied:

- $\emptyset \in \mathcal{F}$.
- If $A \in \mathcal{F}$ and $A \subseteq B$, then $B \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

A filter \mathcal{F} is called an ultrafilter if it is not properly contained in any other filter on X.

- (a) Use Zorn's lemma to prove that every filter on X is contained in an ultrafilter.
- (b) Show that a filter $\mathcal{U} \subseteq P(X)$ is an ultrafilter if and only if for every $A \subseteq X$, either $A \in \mathcal{U}$ or $A^c \in \mathcal{U}$. Conclude that for every $a \in A$, $\mathcal{U}_a := \{A \subseteq X \mid a \in A\}$ is an ultrafilter.

Remark: \mathcal{U}_a is called the principal ultrafilter at a.

Let \mathcal{Y} be the collection of all ultrafilters on \mathbb{N} , and give it the topology generated by the basis $\mathcal{B} := \{\mathcal{B}_A \mid A \subseteq \mathbb{N}, \text{ where } \mathcal{B}_A := \{\mathcal{U} \in \mathcal{Y} \mid A \in \mathcal{U}\}.$ We will show that \mathcal{B} is a basis for \mathcal{Y} making it the Stone-Čech compactification of \mathbb{N} .

- (c) Show that \mathcal{B} is a basis for a topology on \mathcal{Y} .
- (d) Define the map $i : \mathbb{N} \to \mathcal{Y}$ by $i(n) := \mathcal{U}_n$, where \mathcal{U}_n is the principal ultrafilter at n. Show the following:
 - *i* is an embedding.
 - $i(\mathbb{N})$ is dense in \mathcal{Y} .
 - \mathcal{Y} is compact and Hausdorff.
 - Every bounded function $f: i(\mathbb{N}) \to \mathbb{R}$ can be uniquely extended to a continuous function $\tilde{f}: \mathcal{Y} \to \mathbb{R}$.

Conclude that \mathcal{Y} is the Stone-Cech compactification of \mathbb{N} .