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Question 1

Problem 1(a)

Let X be a compact metric space and f : X → X an isometry. Show that f is a homeomor-
phism.

Solution

First, note that any isometry f : X → Y of metric spaces (which need not be compact)
is continuous by the ε-δ characterization of continuity in metric spaces (with δ = ε) and
injective: if x, y ∈ X are such that f(x) = f(y), then

dX(x, y) = dY (f(x), f(y)) = 0,

hence also x = y. Thus f is bijective onto its image, and in fact f−1 : f(X)→ X is also an
isometry (exercise), hence continuous. It follows that f : X → f(X) is a homeomorphism,
where f(X) is endowed with the subspace topology. Therefore, in the case where Y = X
is a compact metric space, we need only check that f is surjective to conclude that it is a
homeomorphism.
To wit, fix x ∈ X. We recursively define a sequence by x0 = x and xn = f(xn−1) = fn(x0),
so that xn ∈ f(X) for all n ≥ 1. Since X is compact, the sequence (xn) has a convergent
subsequence, which is in particular Cauchy. It follows that, for every ε > 0, there exist
m,n ∈ N such that d(xm, xn) < ε. Without loss of generality, assume that m < n; then

d(x, f(X)) ≤ d(x0, xn−m) = d(xm, xn) < ε,

where the middle equality uses the fact that f is an isometry. Since d(x, f(X)) < ε for all
ε > 0, we conclude that d(x, f(X)) = 0. Since f(X) is compact, it follows that x ∈ f(X)
(see the solution to Problem Set 2 Q1(a)).

Problem 1(b)

Let X be a compact metric space and f : X → X be a shrinking map. Show that there exists
a unique fixed point.

Solution

Existence: The function g : X → [0,∞) given by g(x) = d(x, f(x)) is continuous, as it is
a composition of continuous functions. Since X is compact, g achieves its minimum by the
extreme value theorem, say at x ∈ X. We claim that f(x) = x. Indeed, if it were the case
that f(x) 6= x, then since f is shrinking,

g(f(x)) = d
(
f(x), f(f(x))

)
< d(x, f(x)) = g(x),

which contradicts the fact that x minimizes g.
Uniqueness: If there existed distinct fixed points x 6= y of f , then

d(x, y) = d(f(x), f(y)) < d(x, y),
which is impossible.
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Problem 1(c)

Let X be a complete metric space and f : X → X be a contraction. Show that there exists
a unique fixed point.

Solution

Existence: Choose any x0 ∈ X and let xn = f(xn−1) = fn(x0) as in part (a). If x1 = x0,
then we are done, so assume that x1 6= x0.
Claim: The sequence (xn) is Cauchy. From this, it follows that the sequence converges to a
point x ∈ X, as X is complete. Then x is a fixed point of f , as

x = lim
n→∞

xn = lim
n→∞

f(xn−1) = f
(

lim
n→∞

xn−1
)

= f(x),

where we used continuity of f for the third equality. (A contraction is Lipschitz continuous,
hence continuous.)

Proof of claim. First, note that for all n ∈ N, we have

d(xn+1, xn) = d(fn(x1), fn(x0)) ≤ αnd(x1, x0),

where α ∈ [0, 1) is such that d(f(x), f(y)) ≤ αd(x, y) for all x, y ∈ X. Given ε > 0, choose
N ∈ N such that

αN <
1− α

d(x1, x0)ε.

(This is possible since α ∈ [0, 1) and d(x1, x0) > 0 by assumption.) Given m > n > N , we
estimate

d(xm, xn) ≤
m−n∑
k=1

d(xn+k, xn+k−1) (by the triangle inequality)

≤
m−n∑
k=1

αn+k−1d(x1, x0)

= αnd(x1, x0)
m−n∑
k=1

αk−1

≤ αnd(x1, x0)
∞∑

k=0
αk

= αnd(x1, x0) 1
1− α.

Since n > N and 0 ≤ α < 1, we have αn < αN , hence

d(xm, xn) < d(x1, x0)
1− α αN <

d(x1, x0)
1− α

1− α
d(x1, x0)ε = ε.

�

Uniqueness: The same proof idea as in part (b) works; namely, if x 6= y were both fixed
points of f , then

d(x, y) = d(f(x), f(y)) ≤ αd(x, y) < d(x, y),

which is impossible.
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Problem 1(d)

Show that if “compact” was replaced with “complete” in (b), the statement would be false.
Hint: Find a shrinking map f : R→ R that has no fixed point.

Solution

Following the hint, we define f : R→ R by the formula

f(x) = ln(ex + 1).

This is well-defined and smooth; moreover, f ′(x) = ex

ex+1 satisfies |f ′| < 1.
f is shrinking: Fix x, y ∈ R with x > y. Using the fundamental theorem of calculus and
the fact that |f ′| < 1, we compute

|f(x)− f(y)| =
∣∣∣∣∫ x

y
f ′(t) dt

∣∣∣∣ ≤ ∫ x

y
|f ′(t)| dt < |x− y|.

f has no fixed point: For all x ∈ R, we have f(x) = ln(ex + 1) > ln(ex) = x.

Problem 1(e) (bonus)

Would (a) be true if the codomain of f is a different compact metric space Y ? What if we
add the assumption that f is surjective?

Solution

Without the assumption that f : X → Y is surjective, the statement of part (a) is false. For
instance, let Y be any compact metric space with at least two points, fix a point x ∈ Y , and
set X = {x}. Then the inclusion f : X ↪→ Y is an isometry of compact metric spaces but is
certainly not a homeomorphism, as it is not surjective.
However, (failure of) surjectivity is the only obstruction to an isometry of compact metric
spaces being a homeomorphism. Indeed, this is what we saw in the solution to part (a).

Question 2

Problem 2(a)

Which of the four definitions of compactness is preserved by continuous functions? Which
of the four definitions satisfy the extreme value theorem?

Solution

Compactness: This is preserved by continuous functions (Lecture 11) and satisfies the
extreme value theorem (Lecture 12).
Sequential compactness: This is preserved by continuous functions: suppose X is sequen-
tially compact and f : X → Y is continuous. Let {yn}n∈N be any sequence in f(X). For
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each n ∈ N, choose xn ∈ X such that yn = f(xn). Since X is sequentially compact, {xn}n∈N
admits a convergent subsequence, say xnk

→ x ∈ X. Then ynk
= f(xnk

)→ f(x).
This satisfies the extreme value theorem: if X is sequentially compact and f : X → R is
continuous, then by the above, f(X) is a sequentially compact subset of R. Since R is
metrizable, this is equivalent to f(X) being compact. The Heine–Borel theorem yields the
conclusion.
Countable compactness: This is preserved by continuous functions: suppose X is count-
ably compact and f : X → Y is continuous. Let O be a countable open cover of f(X).
Then {f−1(U) | U ∈ O} is a countable open cover of X, hence admits a finite subcover
{f−1(U1), . . . , f−1(Un)}. Then {U1, . . . , Un} is a finite subcover of O.
This satisfies the extreme value theorem by the same reasoning as for sequential compactness;
namely, that R is metrizable, so a countably compact subset of R is compact.
Limit point compactness: This is not preserved by continuous functions: let X = Z ×
{0, 1} where Z has the discrete topology and {0, 1} has the trivial topology. Then X is
limit point compact, as every non-empty S ⊆ X has a limit point. (Choose any point
(n, i) ∈ S; then (n, 1− i) is a limit point of S, as every neighbourhood of (n, 1− i) contains
the set {n}× {0, 1}, which in particular includes (n, i).) However, the image of X under the
projection f : X → Z is all of Z, which is not limit point compact.
This example also shows that limit point compactness does not satisfy the extreme value
theorem (as the discrete topology on Z agrees with the subspace topology inherited from the
inclusion Z ↪→ R).

Problem 2(b)

Show that sequential compactness is countably productive but not arbitrary productive.
Hint: Show that [0, 1]R is not sequentially compact.

Solution

Let {Xi}i∈N be a countable collection of sequentially compact spaces and set X =
∏∞

i=1Xi.
Fix a sequence {xn}n∈N in X; we want to show that this has a convergent subsequence.
First, a notational convention: we denote the entire sequence with the boldface symbol
x0 = {xn}n∈N, and will do similarly for other sequences in consideration.
First, choose a subsequence x1 = {x1,n}n∈N of x0 whose first coordinates form a convergent
sequence in X1, i.e., such that {π1(x1,n)}n∈N converges to some point in X1 as n → ∞.
Next, choose a subsequence x2 = {x2,n}n∈N of x1 whose second coordinates converge in X2.
Continue in this way to obtain, for each i ∈ N, a subsequence xi = {xi,n}n∈N of the previous
sequence xi−1 whose ith coordinate converges in Xi. Now consider the sequence obtained
from the “diagonal” in the following array:

x1 = x1,1 x1,2 x1,3 · · ·
x2 = x2,1 x2,2 x2,3 · · ·
x3 = x3,1 x3,2 x3,3 · · ·
...

...
...

... . . .

For each i ∈ N, the tail of the sequence {xn,n}n∈N is eventually a subsequence of xi, and
therefore converges in the ith coordinate. Thus this diagonal sequence converges in each
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coordinate, yielding the desired convergent subsequence of the original sequence.
To show that [0, 1]R is not sequentially compact, consider the sequence of functions fn : R→
[0, 1] defined by fn(x) = the nth digit after the decimal point in the binary expansion of x.
Given any subsequence fnk

, let x ∈ [0, 1] be defined by the property that fnk
(x) = 0 if k is

odd and fnk
(x) = 1 if k is even. Then the sequence {fnk

(x)} alternates between 0 and 1,
and hence does not converge.

Problem 2(c)

Let B be the collection of all sets of the form {2n− 1, 2n} for n ∈ N. Show that B is a basis
for a topology T on N. Decide which notion of compactness (N, T ) satisfies.

Solution

B is a basis: We certainly have N =
⋃

n∈N{2n − 1, 2n}. If B1, B2 ∈ B have non-empty
intersection, then necessarily B1 = B2 as the sets in B are all mutually disjoint.
Claim: (N, T ) is limit point compact, but not compact, sequentially compact, or countably
compact.

Proof of claim. Observe that B itself is a countable open cover of (N, T ) which does not
admit a finite subcover. Thus (N, T ) is not countably compact, which further implies that
(N, T ) is neither sequentially compact nor compact.
To show that (N, T ) is limit point compact, we will prove the stronger statement that every
non-empty subset S ⊆ N has a limit point. Indeed, if m ∈ S, then either m = 2n is even, in
which case m− 1 is a limit point of S, or m = 2n− 1 is odd, in which case m+ 1 is a limit
point of S. (Exercise: Show that (N, T ) is homeomorphic to the space Zdiscrete × {0, 1}trivial
considered in part (a).) �

Problem 2(d) (bonus)

Find an example of a sequentially compact space that is not compact.

Solution

Many choices are possible. For instance, the first uncountable ordinal, and the subspace{
f ∈ {0, 1}R | f−1(1) is countable

}
of {0, 1}R (see this StackExchange post).
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Question 3

Problem 3(a)

Let X := {xn | n ∈ N} be a countable metric space. Suppose X has no isolated points.
Show that X cannot be sequentially compact by constructing a sequence in X that has no
converging subsequence. Conclude that a compact metric space with no isolated point must
be uncountable.

Solution

Let U1 and V1 be disjoint neighbourhoods of x1 and x2, respectively. Let J1 be all the natural
numbers n > 2 in which xn ∈ V1. Since X is T1 and every point in X is a limit point, every
neighbourhood of every point is infinite; in particular, J1 is infinite.

Let n1 := 2 and n2 := min J1. Note that J1 is a subset of N and so has a least element by
the well ordering principle. Then let U2 and V2 be disjoint neighbourhoods of xn1 and xn2

contained in V1. Proceed inductively as follows. Suppose xnk
, Uk, and Vk are defined for

some k ∈ N. Then let nk+1 = min Jk, where Jk := {n ∈ N | n > nk, xn ∈ Vk}. Choose
disjoint neighbourhoods Uk+1 and Vk+1 of xnk

and xnk+1 contained in Vk. We have then
obtained a sequence {xnk

}k∈N and two collections of open sets {Uk}k∈N and {Vk}k∈N such
that xnk

∈ Vk, Uk ∩ Vk = ∅ and Vk+1 ⊆ Vk for every k ∈ N. Furthermore, it holds that
nk+1 := min Jk, where Jk := {n ∈ N | n > nk, xn ∈ Vk}.

We claim that the sequence {xnk
}k∈N does not have a converging subsequence. Suppose there

exists a subsequence {xnkl
}l∈N that converges to xm ∈ X for some m ∈ N. This implies that

xm ∈ Vk for every k ∈ N since {Vk}k∈N is nested. Choose l ∈ N such that m < nkl
. Then

xm /∈ Vkl+1 , which is a contradiction. We conclude that X is not sequentially compact.

Observe that if X = Q ∪ (0, 1), then {xnk
}k∈N could be a sequence converging to π and so

does not have a converging subsequence in X.

Since compactness is equivalent to sequential compactness in metric spaces, we have then
proven that every countable metric space with no isolated points is not compact. Equiva-
lently, every compact metric space with no isolated points is uncountable.

Problem 3(b)

Show that the Cantor set C is an uncountable, compact, totally disconnected space with no
isolated points, but with empty interior.

Solution

C is compact: Each set Cn in the construction of the Cantor set is a finite union of closed
intervals of length 3−n, and is thus closed; it follows that C =

⋂
n∈NCn is an intersection of

closed sets, hence closed. Since C is contained in [0, 1], it is bounded, and thus C is compact
by the Heine–Borel theorem.
C is totally disconnected: It suffices to show that C does not contain any open interval.
If there existed an open interval (a, b) ⊆ C with a < b, then (a, b) ⊆ Cn for all n ∈ N. In
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particular, (a, b) ⊆ Cn for n ∈ N satisfying b − a < 3−n. But this is impossible, as Cn is a
disjoint union of closed intervals of length 3−n.
C has no isolated points: Given x ∈ C and ε > 0, choose n ∈ N such that 3−n ≤ ε. Since
x ∈ Cn, x lies in one of the closed intervals [x1, x2] of length 3−n which form Cn. Thus
(x− ε, x+ ε) ∩ C contains points other than x, so x is not an isolated point of C.
C has empty interior: This follows from the fact that C contains no non-empty open
intervals.
C is uncountable: By 3a, C is a compact metric space with no isolated points, and hence
must be uncountable.

Problem 3(c)

Show that C is homeomorphic to {0, 1}N, where {0, 1} is equipped with the discrete topology.
Use this to show that C is homeomorphic to CN.

Solution

Each x ∈ [0, 1] can be represented in its ternary expansion, which means that x =∑∞
k=1 an3−n for some sequence {an}n∈N in {0, 1, 2}. It is easy to see that all the end points of

the subintervals in each Cn, which are numbers of the form m3−n, all have a unique ternary
expansion that contains only 0s and 2s, and all other points in [0, 1] have a unique ternary
expansion. It is also easy to see that Cn is precisely all numbers in [0, 1] with a ternary
expansion containing no 1s in the first n terms. (Note that if x is not an end point of an
subinterval in any Cn, then an = b3n(x−

∑n−1
k=1 ak3−k)c ). It follows that x ∈ C if and only

if it has a ternary expansion containing no 1s.

We define f : C → {0, 1}N: given x ∈ C, write x in its unique infinite ternary representation
consisting only of the digits 0 and 2; replace all instances of the digit 2 with the digit 1.
Interpret the infinite sequence as an element of {0, 1}N. For instance,

1 = 0.223 7→ (1, 1, . . .), 2
9 = 0.0203 7→ (0, 1, 0, 0, . . .), 1

4 = 0.02023 7→ (0, 1, 0, 1, . . .).

In a formula,

f

( ∞∑
n=1

an3−n

)
=
(
a1
2 ,

a2
2 , . . .

)
.

f is bijective: Its inverse g : {0, 1}N → C can be explicitly written down as

g (a1, a2, . . .) =
∞∑

n=1
(2an)3−n.

f is continuous: We will use the universal property of products to prove this. Define
fn : C → {0, 1} by

fn

( ∞∑
n=1

an3−n

)
= an

2 .
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Then fn is continuous: the preimage of the open set {0} is the set of numbers in C whose nth

digit in their infinite ternary expansion is 0, and the preimage of the open set {1} is those
whose nth digit in their infinite ternary expansion is 2. These are both open sets in C, as
they can be written as the intersection of C with a union of 2n−1 open intervals of length
3−n + ε for sufficiently small ε (depending on n). See Figure 3.1 for an example.
Since each fn : C → {0, 1} is continuous, it follows that there is a unique continuous map
C → {0, 1}N whose nth coordinate function is fn. This map is f itself, so f is continuous.
f is a homeomorphism: C is compact (by part (b)) and {0, 1}N is Hausdorff (since it is
a product of discrete spaces); a continuous bijection from a compact space to a Hausdorff
space is automatically a homeomorphism, whence the result.
C is homeomorphic to CN: This is because CN ∼= ({0, 1}N)N ∼= {0, 1}N×N ∼= {0, 1}N ∼= C.

Figure 3.1: Numbers in C whose ternary expansion has a 0 in the second place must occur in the
blue intervals. As such, f−1

2 ({0}) can be written as the intersection of C with the two open intervals
in red, which shows that f−1

2 ({0}) is open.

Problem 3(d)

Show that [0, 1], as well as [0, 1]N, is the continuous image of C.

Solution

Define the map g : {0, 1}N → [0, 1] by (an)n∈N 7→
∑∞

n=1 an2−n. g is surjective due to the fact
that every number in [0, 1] admits a binary expansion. It is continuous using an argument
similar to the one described in 3(c) for f . Then g ◦ f is the desired continuous surjective
function from C to [0, 1]. Taking the product map of this yields a continuous surjection
CN → [0, 1]N, and pre-composing with the homeomorphism C ∼= CN from part (c) yields a
continuous surjection C → [0, 1]N.

Problem 3(e)

Show that every compact metrizable space is the continuous image of C.
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Solution

X is second countable as it is compact and metrizable. Let {xn | n ∈ N} be a countable
dense set and let d be a metric inducting the topology on X and bounded by 1. Define the
map F : X → [0, 1]N by F (x) = (d(x, xn))n∈N. We claim that F is an embedding. This then
show that X is homeomorphic to a subset of [0, 1]N. In light of 3d, this implies the existence
of a continuous surjective function from C to X.

Since x 7→ d(x, xn) is continuous for each n ∈ N, which implies that F is continuous.
If F (x) = F (y), then d(x, xn) = d(y, xn) for all n ∈ N. Let ε > 0 and choose n ∈ N
large enough so that d(x, xn) < ε/2 and d(y, xn) < ε/2. Using the triangle inequality,
d(x, y) ≤ d(x, xn) + d(y, xn) < ε. Since ε is arbitrary, it follows that x = y and so F is
injective. we conclude by the closed map lemma that F is a homeomorphism onto its image
and, hence, an embedding as needed.

Question 4 (optional)
Let X be a non-compact, locally compact Hausdorff space. Recall that the topology on its

one-point compactification X∗ = X ∪ {∞} is

T = {open subsets of X} ∪ {U ⊆ X∗ | X∗ \ U is a compact subset of X}.

Note that this union is disjoint: sets in the first collection cannot contain the point at infinity, while
sets in the second collection necessarily do contain ∞.

Problem 4(a)

Show that X∗ is a compact Hausdorff space.

Solution

X∗ is compact: Let O ⊆ T be any open cover of X∗. For each U ∈ O, let U ′ = U \ {∞}
denote the same set as U , except possibly with the point at infinity removed (thus U = U ′ if
U ⊆ X). Then each U ′ is an open subset of X because either U was already an open subset
of X, or U = (X \K)∪ {∞} for some compact K ⊂ X, and hence U ′ = X \K is open in X
(recall that compact sets are closed in Hausdorff spaces!). It follows that

O′ = {U ′ | U ∈ O}

is an open cover of X.
Since O is an open cover of X∗, there exists U0 ∈ O which contains the point ∞. Then
X∗ \ U0 is a compact subset of X, so there exist finitely many U1, . . . , Un ∈ O such that
the corresponding U ′1, . . . , U ′n ∈ O′ cover X∗ \ U0. It follows that {U0, U1, . . . , Un} is a finite
subcover of O.
X∗ is Hausdorff: Fix distinct points x 6= y in X∗.
Case 1. Suppose neither x nor y are the point at infinity. Then they are both points in X;
since X is Hausdorff, there exist disjoint open subsets U, V ⊂ X such that x ∈ U and y ∈ V .
Since U and V are also open subsets of X∗, these yield the desired separating sets in X∗.
Case 2. Suppose one of them is the point at infinity, say y =∞. Since X is locally compact,
there exist subsets U,K ⊂ X such that x ∈ U ⊆ K, U is open in X, and K is compact. Set
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V = (X \K) ∪ {∞}. Then U and V are the desired separating open subsets of X∗.

Problem 4(b)

Suppose that X is first countable. Show that a sequence {xn}n∈N in X has no converging
subsequence in X if and only if it converges to ∞ in X∗.

Solution

Lemma 4.1. If {xn}n∈N is a convergent sequence in a locally compact Hausdorff space X,
then there exists a compact subset of X which contains all points in the sequence, as well as
the limiting point.

Proof. Suppose xn → x ∈ X. Since X is locally compact, there exist U,K ⊆ X such that
x ∈ U ⊆ K, U is open in X, and K is compact. All but finitely many points in the sequence
are contained in U , and taking the union of K with these finitely many points yields the
desired compact set. �

Unravelling the definitions, we have

xn →∞ in X∗
m

For every open neighbourhood U ⊆ X∗ of ∞, the set {n ∈ N | xn /∈ U} is finite
m

For every compact K ⊂ X, the set
{
n ∈ N | xn /∈ (X \K) ∪ {∞}

}
is finite

m
For every compact K ⊂ X, the set {n ∈ N | xn ∈ K} is finite.

(Note that the last equivalence uses the fact that none of the xn’s are the point ∞.)
Suppose {xn}n∈N has a subsequence {xnk

}k∈N which converges to x ∈ X. By Lemma 4.1,
there exists a compact K ⊂ X containing all the xnk

’s (and x). Then the set {n ∈ N | xn ∈
K} is infinite, as it contains all the infinitely many nk’s. Thus {xn}n∈N does not converge
to ∞ in X∗.
Conversely, suppose {xn}n∈N does not converge to ∞ in X∗. Then there exists a compact
K ⊂ X such that the set {n ∈ N | xn ∈ K} is infinite. These indices define a subsequence
of {xn}n∈N which is contained inside K. Since X is first countable, so too is K (first
countability is hereditary); thusK is also sequentially compact. Therefore by taking a further
subsequencea which converges in K, we obtain a subsequence of the original sequence which
converges in X.

a“subsubsequence”?

Problem 4(c)

Show that X is open in X∗ and has the subspace topology. Show also that X is dense in
X∗.
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Solution

X is open in X∗: The topology on X∗ includes all the open subsets of X, including X
itself.
X has the subspace topology: Every open subset of X can be viewed as an open subset
of X∗ which does not contain the point at infinity, from which it follows that the original
topology on X is coarser than the subspace topology induced by the inclusion X ⊂ X∗. On
the other hand, as noted in the solution to part (a), removing the point at infinity from any
open subset of X∗ yields an open subset of X. Thus the subspace topology on X is coarser
than the original topology on X. The two topologies therefore must coincide.
X is dense in X∗: This is equivalent to showing that every open neighbourhood U ⊆ X∗

of ∞ has non-empty intersection with X. This is true because such a neighbourhood must
be of the form U = (X \K) ∪ {∞} for some compact K ⊂ X. Thus U ∩X = X \K, which
is non-empty as K 6= X (recall that X is non-compact).

Problem 4(d)

LetN be the north pole in Sn. Show that the stereographic projection map f : Sn\{N} → Rn

defined by f(x1, . . . , xn+1) = 1
1−xn+1

(x1, . . . , xn) is a homeomorphism that extends to a
homeomorphism f̃ : Sn → (Rn)∗.

Solution

We will first define f̃ : Sn → (Rn)∗ by

f̃(x) =
{
f(x), if x 6= N,

∞, if x = N,

and show that f̃ is a homeomorphism. From this it automatically follows that f : Sn\{N} →
Rn is a homeomorphism, as the restriction of a homeomorphism is a homeomorphism (onto
the restriction’s image).
f̃ is bijective: This is equivalent to showing that f : Sn \ {N} → Rn is bijective, as f̃ maps
N and no other point to∞. For this, simply observe that the map g : Rn → Sn\{N} defined
by

g(y1, . . . , yn) =
(

2y1
‖y‖2 + 1 , . . . ,

2yn

‖y‖2 + 1 ,
‖y‖2 − 1
‖y‖2 + 1

)
inverts f (here ‖ · ‖ denotes the Euclidean norm).
f̃ is continuous: The restriction of f̃ to Sn \ {N} is given by f , which is visibly continuous
from the formula (note that xn+1 6= 1 for all x ∈ Sn\{N}, so the denominator never vanishes).
The only possible point of discontinuity is at N . To check continuity at this point, it suffices
to check that if {Xk}k∈N is a sequence in Sn converging to N , then f(Xk)→∞ in (Rn)∗ as
k → ∞ (the spaces we are dealing with are first countable). This is true because Xk → N
implies that Xk

n+1 → 1, and hence the 1−Xk
n+1 in the denominator converges to 0 as k →∞.

Since |Xk
i | ≤ 1 for all i = 1, . . . , n, this implies that ‖f(Xk)‖ → ∞, which is equivalent to

f(Xk)→∞ in (Rn)∗.
f̃ is a homeomorphism: A continuous bijection from a compact space to a Hausdorff
space is automatically a homeomorphism. (Note that (Rn)∗ is Hausdorff by part (a).)
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Figure 4.1: A cartoon depiction showing that (R2)∗ ∼= S2.

Problem 4(e) (bonus)

Describe, geometrically if possible, the one-point compactifications of the following spaces:
R2 \ {(0, 0)}, R2 \ {finitely many points},

⋃
n,m∈ZB1/2

(
(n,m)

)
in R2, and Rdiscrete.

Solution

Since R2 is homeomorphic to S2 with a point removed, R2 \ {(0, 0)} is homeomorphic to S2

with two points removed, say the north and south poles. The one-point compactification of
R2 \ {(0, 0)} can thus be visualized by bringing the north and south poles of S2 together to
a single point; the result looks like a torus where the “inner circle” has been pinched to a
point. This is known as a horn torus; see Figure 4.2.
Describing the one-point compactifications of the other three spaces is left as a healthy
exercise to the reader.

Figure 4.2: A full view (left), cutaway (middle), and cross-section (right) of a horn torus, which
is homeomorphic to the one-point compactification of R2 \ {(0, 0)}. Figure adapted from Wolfram
MathWorld.
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