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Proof. Let V be an arbitrary subset of Y. I claim that the preimage f~1(V) is
open in X.

For any x € f~1(V), there exists an open neighborhood U on which f is constant.
In particular, f(U) = {f(z)} C V, and U C f~!(V). This shows that f~*(V) is
open as desired.

Now, let 2 be an element of X and yo = f(zo). By the claim above, f~!(yo)
is open. Furthermore, its complement f~!(yo)¢ = f~*(Y — {yo}) is open. This
shows that f~!(yo) is clopen and non-empty subset of X. Since X is connected,
we must have f~!(yo) = X. In other words, f is constant. O
Proof. Plugging in x = 1, we get in particular that [22f(z)]’ is positive at x = 1
and hence positive on [1,1 + €) for some € > 0 by continuity of the function
x + 22 f'(z). This implies that the function x — 22 f’(z) is increasing on [1, 1+¢)
which implies that f'(z) > 0 on (1,1 +¢). Since f(1) =1 and f is increasing on
(1,1 +¢), it follows that (1,14 ¢€) C A and so A is nonempty.

By virtue of the continuity of f’ and f, A is open. Now suppose there exists a
limit point of A that is not in A, then b := sup{z > 1| (1,2) C A} < co. Since
f'(x) > 0 and f(x) > 1 for all x < b, it follows that f'(b) > 0 and f’'(b) > 1.
Since f’(b) > 1, it follows from the ODE that [2?f’(z)]" is positive at = b and
so the same holds on (b — d,b + §) for some § > 0. Since z%f’(z) is positive for
x < b and 22 f/(x) is increasing on (b — 4,b + 9), it follows that 22 f/(x) as well
as f'(x) is positive on (b — §,b+ §). Since f(x) > 1 for z < b and f is increasing
on (b—0,b+ ), it follows that f(z) > 1 on (b — §,b+ J), which implies that
(b—0,b+ ) C A, contradicting the definition of b.

We conclude that A is a nonempty clopen subset of (1,00) and hence is equal to
(1,00). In particular, f is increasing as desired.

O

Proof. Let S be a collection of disjoint open sets in a separable space X, and
D be a countable dense subset of X. For each open set U € S, the intersection
U N D is non-empty. Then for every open set U in S, we can pick a point zy in
UnND. We see that U — zxy is injective as the sets in S are disjoint. This shows
that |S| < |DJ, and thus S is countable.

O

Let f be an increasing function, and a be a discontinuity. We have f(x) < f(a) for
all x < a. Since an increasing sequence bounded from above must be convergent,
the left limit lim,_,,- f(z) exists. Similarly, the right limit lim,_,,+ f(x) exists,
and

lim f(z) < f(a) < lim_f(a)

T—a~ z—a™t

By assumption, a is a discontinuity. So,

lm /() < lm f(x)

T—a—
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Observe that I, := (lim,_,,- f(z),lim,_,o+ f(x)) lies outside the image of f.
Moreover, I, and I, are disjoint for distinct discontinuities a and b. It follows
from the result above that f can have at most countably many discontinuities.
The proof is similar for a decreasing function.

Proof. Let p be a cut-point of X and h : X — Y a homeomorphism. By definition,
there exists disjoint open sets U and V' open in the subspace X \ {p} such that
X\ {p} =UUV. We have

X\ A{p}) =Y \{h(p)} = h(U) UR(V)

The restriction of h to X —{p} (as a function from X —{p} to its image Y —{h(p)})
is also a homeomorphism. So, h(U) and h(V) are disjoint open sets that cover
Y \ {h(p)}. Therefore h(p) is a cut-point for Y and so h defines a bijection of
cut-points. The number of cut-points is a topological invariant. O]
Observe that all points in R are cut-points. However, if we remove 0 from [0, 00),
we are left with (0,00) which is still connected. All other points of [0, 00) are
cut-points. And R™ has no cut points. It’s impossible to establish a bijection of
cut-points between any of the two spaces discussed above.

Proof. Recall that non-empty open sets of the co-finite (or co-countable) topology
are sets whose complements are finite (resp. countable). If U and U® are both
non-empty and open in the co-finite topology, then U and U€¢ are both finite
(resp. countable). But this is impossible because R is uncountable. O
Note that the proof above only relies on the space being uncountable. Since R
minus a point is still uncountable, it is connected by the same proof. Hence,
Reo—finite and Reo—countabie do not have cut-points.

For the topologist’s sine curve, points in {(z,sin(1/z)) |0 < x < 1)} are cutpoints.
On the other hand, the right endpoint (1,sin1) is clearly not a cutpoint. Points
in the interval {0} x [—1,1] are also not cutpoints since any set B satisfying
A C B C A is connected, where A := {(z,sin(1/z)) |0 < x < 1)} and A is the
topologist’s sine curve.

Proof. Let D be the collection of all step functions with finitely many steps,
rational step heights, and whose steps are all on rational intervals. It’s clear that
D is countable as the cartesian product of countable sets is countable.

Let U be an arbitrary open set, then U = [] . Us, where U, # R for finitely
many z. We can find a function from D with step heights f(x) € U, for these
x’s. Therefore D is dense in RE.

Recall from 1(c) that a separable space has at most countably many disjoint open
sets. In the box topology, however, we can construct an uncountable collection
of disjoint open sets {U, },cr with

Wu(Ux) = (53004 - 176$a)

where d,, is 1 when z = « and 0 otherwise. We can check that for x # vy,

U: Uy = [[ 7aU=nU,) = [ 7a(Us) N 7a(U,)

aEeR a€R

However, for oo = ,
7 (Uz) N7 (Uy) = (0,1) N (=1,0) = &

So, U, and U, are disjoint. O

Proof. Suppose a subset B C A is countable. It suffices to show that B is not
dense in A.
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For a function g € A, define D, := {z € R|g(z) # f(x)}. By the definition of A,
D, is countable. Then,
D:=|]J D,

geB

A countable union of countable sets is, again, countable. But R is uncountable,
so D #R. Take a € R — D. It satisfies that f(a) = g(a) for all g € B.

Let U have 7,(U) = R — {f(a)}, and 7, (U) = R for all z # a. Then U is an
open set that doesn’t intersect B. This shows that B is not dense. O]

Proof. Suppose there exists a dense subset A C R’. Consider a set 7 (Rxo)
open in the product topology for a € J.
Define f: J — P(A) to be

fla) = Anm ! (Rxo)

That is, f(«) contains all u € A that satisfies u(«) > 0. Since A is dense, f(a) is
non-empty.

Now, we verify that f is injective. That is, f(a) # f(8) whenever a # .

For o # f3, consider the nonempty open set 7,1 (Rxq) N wgl(R@), which, by the
density of A, contains v € A that satisfies u(a)) > 0 and u(8) < 0. So there exists
u € A such that u € f(«) but u ¢ f(5) implying that f(«) # f(8). This verifies
that f is injective.

However, this implies |J| < |P(A)| = |P(N)| = |R|, which contradicts the as-
sumption. O

Note that P, = P; and Py = P5. We have
(P, but not P3) = (P but not P5) = (P, but not Py)

and
(P, but not P3) = (P, but not Py)

So, it suffices to find a space that is P, but not P (path-connected but not locally
connected), and this space will satisfy all four cases of P; but not P;. We will see
that the topologist’s comb has this property.

It’s clearly path-connected. However, it’s not locally path-connected. Consider
x = (0,1/2). Every element of the local basis of x contains infinitely many
disconnected segments of “comb teeth”.

Similarly, for the cases of P; but not F;, we have
(P4 but not Pl) = (Pg but not Pl):> (Pg but not P2)

and
(P4 but not Pl) = (P4 but not Pg)

So, it suffices to find a space that is Py but not P; (locally path-connected but
not connected).

For example, (0,1) U (2,3). It’s obviously not connected. To see that it is locally
path-connected, take a small enough neighborhood so that it only intersects one
of the two intervals.

Proof. Note that path-connectedness always implies connectedness. So, it suffices
to show that a connected and locally path-connected space X is path-connected.
Let p be an arbitrary point of X. Define U, to be the set of all points that can
be connected to p by a path (so U, is the path-connected component containing
p). Since there is a path-connected local basis of p, U, is certainly not empty.
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We will show that U, is also clopen.

To see that it is open, consider ¢ € U,. By local path-connectedness, there exists
an open neighborhood V' of ¢ that is path-connected. By connecting paths, points
in V' can also be connected to p by paths. Hence V' C Uj,.

To see that it is closed, consider a limit point [ of U,. By definition, there every
neighborhood of [ intersects U,. We may choose the neighborhood to be path-
connected. Again, by connecting paths, we see that [ € U,.

Since X is connected and U, is a non-empty clopen subset, we have U, = X. O

Proof. By definition, the quotient topology is the finest topology that makes 7
continuous (i.e. U C X/ ~ is open implies 7~ (U) C X is open).
Define

T={UcCX/~ |7 }U) is open in X}

(i.e. U is open iff 7=1(U) is open.)
If 7 is a topology, then it is the clearly the finest among all topologies that makes
7 continuous. So, it suffices to check that 7 is indeed a topology.
For @ and X/ ~,
7 (2) =0

T X/~ =X

Also, preimage of a finite intersection (resp. arbitrary union) is a finite intersec-
tion (resp. union) of preimages.

ﬂfl(ijch>::£jw—%Up
wl(U&J:Uﬂ%@)

jeJ jed
In conclusion, this shows that T is the quotient topology. By the definition of T,
it satisfies the statement in the question. O

Proof. Note that if g = f o m, then, more explicitly,

g9(x) = (f om)(z) = f([z])

Using f([z]) = g(x) as the definition of f, it is indeed unique. This is well-defined
as g(x) = g(y) for all y € [z] (i.e. the definition doesn’t depend on the choice of
representative element x).

If f is continuous, then g = f o 7 is a composition of continuous functions and is
thus continuous.

Now suppose g is continuous. Let U be an open set. Then the preimage ¢~ (U) =
(fom) X (U) = = Y(f~1(U)) is open. By part (a), this implies that f~1(U) is
open. Hence, f is continuous. O
Proof. Define the equivalence relation by letting 0 ~ 1. Every other point is only
equivalent to itself. Define a function g : [0,1] — S*,

g(z) = (cos(2mz), sin(27wz))

We see that ¢g(0) = g(1). So, by part (b), this induces a continuous function
f:10,1]/ ~— St

Since g is bijective from (0,1) to S* — {(1,0)} and g(0) = g(1) = (1,0), we can
infer that f is bijective.

[0,1] is compact and 7 is continuous, so [0,1]/ ~= 7([0,1]) is compact. R? is
Hausdorff, so S* as a subspace is also Hausdorff. Since f is a bijective continuous
function from a compact space to a Hausdorff space, it is a homeomorphism. [
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g) First observe that X/ ~ is homeomorphic to a disk D? with an equivalence
relation that identifies every boundary point to its antipodal point (let’ call it
~1. @ ~1 —x for ¥ € dD? ). And this is homeomorphic to a closed upper
hemisphere (i.e. S2, := {(x1,22,73) € S?|z3 > 0}) with the same equivalence
relation on the equator. See figure 1.

Kt D L ey

Figure 1

Also note that collapsing every line passing through the origin in R*\ {0} to one
point is the same as first collapsing every ray to a point (~o: = ~9 y if x = Ay
for some A > 0), and then identifying pairs of antipodal points (~3: © ~3 —x).
See figure 2.
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Figure 2
(R3\ {0})/ ~2 is just the 2-sphere S2. So,
RP? = (R*\ {0})/ ~2)/ ~3= 8%/ ~3

Let 7; denotes the projection corresponding to ~;. Let i denotes the inclusion
map from S2, to S?. We see that 73 04 is a continuous function constant on
equivalence classes of ~1 (i.e. pairs of antipodal points on the equator). By part
(b), this induces a continuous function f : $2,/ ~1— RP? such that

m3o0i= fom

Note that f maps the equator of 52,/ ~1 to the equator of S?/ ~3. For each
x not on the equator, it maps x to the antipodal pair {x, —x}, and —z is in the
lower hemisphere. It’s relatively easy to see that f is bijective.

Lastly, argue that f is a bijective continuous function from a compact space to a

Hausdorff space, so it is a homeomorphism.
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