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1. a) Proof. Let V be an arbitrary subset of Y . I claim that the preimage f−1(V ) is
open in X.
For any x ∈ f−1(V ), there exists an open neighborhood U on which f is constant.
In particular, f(U) = {f(x)} ⊂ V , and U ⊂ f−1(V ). This shows that f−1(V ) is
open as desired.
Now, let x0 be an element of X and y0 = f(x0). By the claim above, f−1(y0)
is open. Furthermore, its complement f−1(y0)c = f−1(Y − {y0}) is open. This
shows that f−1(y0) is clopen and non-empty subset of X. Since X is connected,
we must have f−1(y0) = X. In other words, f is constant.

b) Proof. Plugging in x = 1, we get in particular that [x2f ′(x)]′ is positive at x = 1
and hence positive on [1, 1 + ε) for some ε > 0 by continuity of the function
x 7→ x2f ′(x). This implies that the function x 7→ x2f ′(x) is increasing on [1, 1+ε)
which implies that f ′(x) > 0 on (1, 1 + ε). Since f(1) = 1 and f is increasing on
(1, 1 + ε), it follows that (1, 1 + ε) ⊆ A and so A is nonempty.

By virtue of the continuity of f ′ and f , A is open. Now suppose there exists a
limit point of A that is not in A, then b := sup{x > 1 | (1, x) ⊆ A} < ∞. Since
f ′(x) > 0 and f(x) > 1 for all x < b, it follows that f ′(b) ≥ 0 and f ′(b) ≥ 1.
Since f ′(b) ≥ 1, it follows from the ODE that [x2f ′(x)]′ is positive at x = b and
so the same holds on (b − δ, b + δ) for some δ > 0. Since x2f ′(x) is positive for
x < b and x2f ′(x) is increasing on (b − δ, b + δ), it follows that x2f ′(x) as well
as f ′(x) is positive on (b− δ, b+ δ). Since f(x) > 1 for x < b and f is increasing
on (b − δ, b + δ), it follows that f(x) > 1 on (b − δ, b + δ), which implies that
(b− δ, b+ δ) ⊆ A, contradicting the definition of b.

We conclude that A is a nonempty clopen subset of (1,∞) and hence is equal to
(1,∞). In particular, f is increasing as desired.

c) Proof. Let S be a collection of disjoint open sets in a separable space X, and
D be a countable dense subset of X. For each open set U ∈ S, the intersection
U ∩D is non-empty. Then for every open set U in S, we can pick a point xU in
U ∩D. We see that U 7→ xU is injective as the sets in S are disjoint. This shows
that |S| ≤ |D|, and thus S is countable.

Let f be an increasing function, and a be a discontinuity. We have f(x) < f(a) for
all x < a. Since an increasing sequence bounded from above must be convergent,
the left limit limx→a− f(x) exists. Similarly, the right limit limx→a+ f(x) exists,
and

lim
x→a−

f(x) ≤ f(a) ≤ lim
x→a+

f(x)

By assumption, a is a discontinuity. So,

lim
x→a−

f(x) < lim
x→a+

f(x)
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Observe that Ia := (limx→a− f(x), limx→a+ f(x)) lies outside the image of f .
Moreover, Ia and Ib are disjoint for distinct discontinuities a and b. It follows
from the result above that f can have at most countably many discontinuities.
The proof is similar for a decreasing function.

d) Proof. Let p be a cut-point ofX and h : X → Y a homeomorphism. By definition,
there exists disjoint open sets U and V open in the subspace X \ {p} such that
X \ {p} = U ∪ V . We have

h(X \ {p}) = Y \ {h(p)} = h(U) ∪ h(V )

The restriction of h to X−{p} (as a function from X−{p} to its image Y −{h(p)})
is also a homeomorphism. So, h(U) and h(V ) are disjoint open sets that cover
Y \ {h(p)}. Therefore h(p) is a cut-point for Y and so h defines a bijection of
cut-points. The number of cut-points is a topological invariant.

Observe that all points in R are cut-points. However, if we remove 0 from [0,∞),
we are left with (0,∞) which is still connected. All other points of [0,∞) are
cut-points. And Rn has no cut points. It’s impossible to establish a bijection of
cut-points between any of the two spaces discussed above.

e) Proof. Recall that non-empty open sets of the co-finite (or co-countable) topology
are sets whose complements are finite (resp. countable). If U and U c are both
non-empty and open in the co-finite topology, then U and U c are both finite
(resp. countable). But this is impossible because R is uncountable.

Note that the proof above only relies on the space being uncountable. Since R
minus a point is still uncountable, it is connected by the same proof. Hence,
Rco−finite and Rco−countable do not have cut-points.
For the topologist’s sine curve, points in {(x, sin(1/x)) | 0 < x < 1)} are cutpoints.
On the other hand, the right endpoint (1, sin 1) is clearly not a cutpoint. Points
in the interval {0} × [−1, 1] are also not cutpoints since any set B satisfying
A ⊆ B ⊆ A is connected, where A := {(x, sin(1/x)) | 0 < x < 1)} and A is the
topologist’s sine curve.

2. a) Proof. Let D be the collection of all step functions with finitely many steps,
rational step heights, and whose steps are all on rational intervals. It’s clear that
D is countable as the cartesian product of countable sets is countable.
Let U be an arbitrary open set, then U =

∏
x∈R Ux, where Ux 6= R for finitely

many x. We can find a function from D with step heights f(x) ∈ Ux for these
x’s. Therefore D is dense in RR.
Recall from 1(c) that a separable space has at most countably many disjoint open
sets. In the box topology, however, we can construct an uncountable collection
of disjoint open sets {Ux}x∈R with

πα(Ux) = (δxα − 1, δxα)

where δxα is 1 when x = α and 0 otherwise. We can check that for x 6= y,

Ux ∩ Uy =
∏
α∈R

πα(Ux ∩ Uy) =
∏
α∈R

πα(Ux) ∩ πα(Uy)

However, for α = x,

πx(Ux) ∩ πx(Uy) = (0, 1) ∩ (−1, 0) = ∅

So, Ux and Uy are disjoint.

b) Proof. Suppose a subset B ⊂ A is countable. It suffices to show that B is not
dense in A.
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For a function g ∈ A, define Dg := {x ∈ R | g(x) 6= f(x)}. By the definition of A,
Dg is countable. Then,

D :=
⋃
g∈B

Dg

A countable union of countable sets is, again, countable. But R is uncountable,
so D 6= R. Take a ∈ R−D. It satisfies that f(a) = g(a) for all g ∈ B.
Let U have πa(U) = R − {f(a)}, and πx(U) = R for all x 6= a. Then U is an
open set that doesn’t intersect B. This shows that B is not dense.

c) Proof. Suppose there exists a dense subset A ⊂ RJ . Consider a set π−1α (R>0)
open in the product topology for α ∈ J .
Define f : J → P(A) to be

f(α) = A ∩ π−1α (R>0)

That is, f(α) contains all u ∈ A that satisfies u(α) > 0. Since A is dense, f(α) is
non-empty.
Now, we verify that f is injective. That is, f(α) 6= f(β) whenever α 6= β.
For α 6= β, consider the nonempty open set π−1α (R>0)∩ π−1β (R<0), which, by the
density of A, contains u ∈ A that satisfies u(α) > 0 and u(β) < 0. So there exists
u ∈ A such that u ∈ f(α) but u /∈ f(β) implying that f(α) 6= f(β). This verifies
that f is injective.
However, this implies |J | ≤ |P(A)| = |P(N)| = |R|, which contradicts the as-
sumption.

3. a) Note that P2 ⇒ P1 and P4 ⇒ P3. We have

(P2 but not P3) ⇒ (P1 but not P3)⇒ (P1 but not P4)

and
(P2 but not P3) ⇒ (P2 but not P4)

So, it suffices to find a space that is P2 but not P3 (path-connected but not locally
connected), and this space will satisfy all four cases of Pi but not Pj . We will see
that the topologist’s comb has this property.

It’s clearly path-connected. However, it’s not locally path-connected. Consider
x = (0, 1/2). Every element of the local basis of x contains infinitely many
disconnected segments of “comb teeth”.

Similarly, for the cases of Pj but not Pi, we have

(P4 but not P1) ⇒ (P3 but not P1)⇒ (P3 but not P2)

and
(P4 but not P1) ⇒ (P4 but not P2)

So, it suffices to find a space that is P4 but not P1 (locally path-connected but
not connected).
For example, (0, 1)∪ (2, 3). It’s obviously not connected. To see that it is locally
path-connected, take a small enough neighborhood so that it only intersects one
of the two intervals.

b) Proof. Note that path-connectedness always implies connectedness. So, it suffices
to show that a connected and locally path-connected space X is path-connected.
Let p be an arbitrary point of X. Define Up to be the set of all points that can
be connected to p by a path (so Up is the path-connected component containing
p). Since there is a path-connected local basis of p, Up is certainly not empty.
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We will show that Up is also clopen.
To see that it is open, consider q ∈ Up. By local path-connectedness, there exists
an open neighborhood V of q that is path-connected. By connecting paths, points
in V can also be connected to p by paths. Hence V ⊂ Up.
To see that it is closed, consider a limit point l of Up. By definition, there every
neighborhood of l intersects Up. We may choose the neighborhood to be path-
connected. Again, by connecting paths, we see that l ∈ Up.
Since X is connected and Up is a non-empty clopen subset, we have Up = X.

4. a) Proof. By definition, the quotient topology is the finest topology that makes π
continuous (i.e. U ⊂ X/ ∼ is open implies π−1(U) ⊂ X is open).
Define

T = {U ⊂ X/ ∼ |π−1(U) is open in X}

(i.e. U is open iff π−1(U) is open.)
If T is a topology, then it is the clearly the finest among all topologies that makes
π continuous. So, it suffices to check that T is indeed a topology.
For ∅ and X/ ∼,

π−1(∅) = ∅

π−1(X/ ∼) = X

Also, preimage of a finite intersection (resp. arbitrary union) is a finite intersec-
tion (resp. union) of preimages.

π−1
( n⋂
i=1

Un

)
=

n⋂
i=1

π−1(Uj)

π−1
( ⋃
j∈J

Un

)
=
⋃
j∈J

π−1(Uj)

In conclusion, this shows that T is the quotient topology. By the definition of T ,
it satisfies the statement in the question.

b) Proof. Note that if g = f ◦ π, then, more explicitly,

g(x) = (f ◦ π)(x) = f([x])

Using f([x]) = g(x) as the definition of f , it is indeed unique. This is well-defined
as g(x) = g(y) for all y ∈ [x] (i.e. the definition doesn’t depend on the choice of
representative element x).
If f is continuous, then g = f ◦ π is a composition of continuous functions and is
thus continuous.
Now suppose g is continuous. Let U be an open set. Then the preimage g−1(U) =
(f ◦ π)−1(U) = π−1(f−1(U)) is open. By part (a), this implies that f−1(U) is
open. Hence, f is continuous.

c) Proof. Define the equivalence relation by letting 0 ∼ 1. Every other point is only
equivalent to itself. Define a function g : [0, 1]→ S1,

g(x) = (cos(2πx), sin(2πx))

We see that g(0) = g(1). So, by part (b), this induces a continuous function
f : [0, 1]/ ∼→ S1.
Since g is bijective from (0, 1) to S1 − {(1, 0)} and g(0) = g(1) = (1, 0), we can
infer that f is bijective.
[0, 1] is compact and π is continuous, so [0, 1]/ ∼= π([0, 1]) is compact. R2 is
Hausdorff, so S1 as a subspace is also Hausdorff. Since f is a bijective continuous
function from a compact space to a Hausdorff space, it is a homeomorphism.
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g) First observe that X/ ∼ is homeomorphic to a disk D2 with an equivalence
relation that identifies every boundary point to its antipodal point (let’ call it
∼1. x ∼1 −x for x ∈ ∂D2 ). And this is homeomorphic to a closed upper
hemisphere (i.e. S2

≥0 := {(x1, x2, x3) ∈ S2 |x3 ≥ 0}) with the same equivalence
relation on the equator. See figure 1.

Figure 1

Also note that collapsing every line passing through the origin in R3 \ {0} to one
point is the same as first collapsing every ray to a point (∼2: x ∼2 y if x = λy
for some λ > 0), and then identifying pairs of antipodal points (∼3: x ∼3 −x).
See figure 2.

Figure 2

(R3 \ {0})/ ∼2 is just the 2-sphere S2. So,

RP 2 = ((R3 \ {0})/ ∼2)/ ∼3= S2/ ∼3

Let πj denotes the projection corresponding to ∼j . Let i denotes the inclusion
map from S2

≥0 to S2. We see that π3 ◦ i is a continuous function constant on
equivalence classes of ∼1 (i.e. pairs of antipodal points on the equator). By part
(b), this induces a continuous function f : S2

≥0/ ∼1→ RP 2 such that

π3 ◦ i = f ◦ π1

Note that f maps the equator of S2
≥0/ ∼1 to the equator of S2/ ∼3. For each

x not on the equator, it maps x to the antipodal pair {x,−x}, and −x is in the
lower hemisphere. It’s relatively easy to see that f is bijective.
Lastly, argue that f is a bijective continuous function from a compact space to a
Hausdorff space, so it is a homeomorphism.
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Figure 3
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