# Assignment \#3 Solutions 

Jiawei Chen<br>email: jiaw.chen@mail.utoronto.ca

1. a) Proof. Let $V$ be an arbitrary subset of $Y$. I claim that the preimage $f^{-1}(V)$ is open in $X$.
For any $x \in f^{-1}(V)$, there exists an open neighborhood $U$ on which $f$ is constant. In particular, $f(U)=\{f(x)\} \subset V$, and $U \subset f^{-1}(V)$. This shows that $f^{-1}(V)$ is open as desired.
Now, let $x_{0}$ be an element of $X$ and $y_{0}=f\left(x_{0}\right)$. By the claim above, $f^{-1}\left(y_{0}\right)$ is open. Furthermore, its complement $f^{-1}\left(y_{0}\right)^{c}=f^{-1}\left(Y-\left\{y_{0}\right\}\right)$ is open. This shows that $f^{-1}\left(y_{0}\right)$ is clopen and non-empty subset of $X$. Since $X$ is connected, we must have $f^{-1}\left(y_{0}\right)=X$. In other words, $f$ is constant.
b) Proof. Plugging in $x=1$, we get in particular that $\left[x^{2} f^{\prime}(x)\right]^{\prime}$ is positive at $x=1$ and hence positive on $[1,1+\epsilon)$ for some $\epsilon>0$ by continuity of the function $x \mapsto x^{2} f^{\prime}(x)$. This implies that the function $x \mapsto x^{2} f^{\prime}(x)$ is increasing on $[1,1+\epsilon)$ which implies that $f^{\prime}(x)>0$ on $(1,1+\epsilon)$. Since $f(1)=1$ and $f$ is increasing on $(1,1+\epsilon)$, it follows that $(1,1+\epsilon) \subseteq A$ and so $A$ is nonempty.

By virtue of the continuity of $f^{\prime}$ and $f, A$ is open. Now suppose there exists a limit point of $A$ that is not in $A$, then $b:=\sup \{x>1 \mid(1, x) \subseteq A\}<\infty$. Since $f^{\prime}(x)>0$ and $f(x)>1$ for all $x<b$, it follows that $f^{\prime}(b) \geq 0$ and $f^{\prime}(b) \geq 1$. Since $f^{\prime}(b) \geq 1$, it follows from the ODE that $\left[x^{2} f^{\prime}(x)\right]^{\prime}$ is positive at $x=b$ and so the same holds on $(b-\delta, b+\delta)$ for some $\delta>0$. Since $x^{2} f^{\prime}(x)$ is positive for $x<b$ and $x^{2} f^{\prime}(x)$ is increasing on $(b-\delta, b+\delta)$, it follows that $x^{2} f^{\prime}(x)$ as well as $f^{\prime}(x)$ is positive on $(b-\delta, b+\delta)$. Since $f(x)>1$ for $x<b$ and $f$ is increasing on ( $b-\delta, b+\delta$ ), it follows that $f(x)>1$ on $(b-\delta, b+\delta)$, which implies that $(b-\delta, b+\delta) \subseteq A$, contradicting the definition of $b$.

We conclude that $A$ is a nonempty clopen subset of $(1, \infty)$ and hence is equal to $(1, \infty)$. In particular, $f$ is increasing as desired.
c) Proof. Let $S$ be a collection of disjoint open sets in a separable space $X$, and $D$ be a countable dense subset of $X$. For each open set $U \in S$, the intersection $U \cap D$ is non-empty. Then for every open set $U$ in $S$, we can pick a point $x_{U}$ in $U \cap D$. We see that $U \mapsto x_{U}$ is injective as the sets in $S$ are disjoint. This shows that $|S| \leq|D|$, and thus $S$ is countable.

Let $f$ be an increasing function, and $a$ be a discontinuity. We have $f(x)<f(a)$ for all $x<a$. Since an increasing sequence bounded from above must be convergent, the left limit $\lim _{x \rightarrow a^{-}} f(x)$ exists. Similarly, the right $\operatorname{limit}^{\lim } x_{x \rightarrow a^{+}} f(x)$ exists, and

$$
\lim _{x \rightarrow a^{-}} f(x) \leq f(a) \leq \lim _{x \rightarrow a^{+}} f(x)
$$

By assumption, $a$ is a discontinuity. So,

$$
\lim _{x \rightarrow a^{-}} f(x)<\lim _{x \rightarrow a^{+}} f(x)
$$

Observe that $I_{a}:=\left(\lim _{x \rightarrow a^{-}} f(x), \lim _{x \rightarrow a^{+}} f(x)\right)$ lies outside the image of $f$. Moreover, $I_{a}$ and $I_{b}$ are disjoint for distinct discontinuities $a$ and $b$. It follows from the result above that $f$ can have at most countably many discontinuities. The proof is similar for a decreasing function.
d) Proof. Let $p$ be a cut-point of $X$ and $h: X \rightarrow Y$ a homeomorphism. By definition, there exists disjoint open sets $U$ and $V$ open in the subspace $X \backslash\{p\}$ such that $X \backslash\{p\}=U \cup V$. We have

$$
h(X \backslash\{p\})=Y \backslash\{h(p)\}=h(U) \cup h(V)
$$

The restriction of $h$ to $X-\{p\}$ (as a function from $X-\{p\}$ to its image $Y-\{h(p)\}$ ) is also a homeomorphism. So, $h(U)$ and $h(V)$ are disjoint open sets that cover $Y \backslash\{h(p)\}$. Therefore $h(p)$ is a cut-point for $Y$ and so $h$ defines a bijection of cut-points. The number of cut-points is a topological invariant.
Observe that all points in $\mathbb{R}$ are cut-points. However, if we remove 0 from $[0, \infty)$, we are left with $(0, \infty)$ which is still connected. All other points of $[0, \infty)$ are cut-points. And $\mathbb{R}^{n}$ has no cut points. It's impossible to establish a bijection of cut-points between any of the two spaces discussed above.
e) Proof. Recall that non-empty open sets of the co-finite (or co-countable) topology are sets whose complements are finite (resp. countable). If $U$ and $U^{c}$ are both non-empty and open in the co-finite topology, then $U$ and $U^{c}$ are both finite (resp. countable). But this is impossible because $\mathbb{R}$ is uncountable.
Note that the proof above only relies on the space being uncountable. Since $\mathbb{R}$ minus a point is still uncountable, it is connected by the same proof. Hence, $\mathbb{R}_{\text {co-finite }}$ and $\mathbb{R}_{\text {co-countable }}$ do not have cut-points.
For the topologist's sine curve, points in $\{(x, \sin (1 / x)) \mid 0<x<1)\}$ are cutpoints. On the other hand, the right endpoint $(1, \sin 1)$ is clearly not a cutpoint. Points in the interval $\{0\} \times[-1,1]$ are also not cutpoints since any set $B$ satisfying $A \subseteq B \subseteq \bar{A}$ is connected, where $A:=\{(x, \sin (1 / x)) \mid 0<x<1)\}$ and $\bar{A}$ is the topologist's sine curve.
2. a) Proof. Let $D$ be the collection of all step functions with finitely many steps, rational step heights, and whose steps are all on rational intervals. It's clear that $D$ is countable as the cartesian product of countable sets is countable.
Let $U$ be an arbitrary open set, then $U=\prod_{x \in \mathbb{R}} U_{x}$, where $U_{x} \neq \mathbb{R}$ for finitely many $x$. We can find a function from $D$ with step heights $f(x) \in U_{x}$ for these $x$ 's. Therefore $D$ is dense in $\mathbb{R}^{\mathbb{R}}$.
Recall from $1(c)$ that a separable space has at most countably many disjoint open sets. In the box topology, however, we can construct an uncountable collection of disjoint open sets $\left\{U_{x}\right\}_{x \in \mathbb{R}}$ with

$$
\pi_{\alpha}\left(U_{x}\right)=\left(\delta_{x \alpha}-1, \delta_{x \alpha}\right)
$$

where $\delta_{x \alpha}$ is 1 when $x=\alpha$ and 0 otherwise. We can check that for $x \neq y$,

$$
U_{x} \cap U_{y}=\prod_{\alpha \in \mathbb{R}} \pi_{\alpha}\left(U_{x} \cap U_{y}\right)=\prod_{\alpha \in \mathbb{R}} \pi_{\alpha}\left(U_{x}\right) \cap \pi_{\alpha}\left(U_{y}\right)
$$

However, for $\alpha=x$,

$$
\pi_{x}\left(U_{x}\right) \cap \pi_{x}\left(U_{y}\right)=(0,1) \cap(-1,0)=\varnothing
$$

So, $U_{x}$ and $U_{y}$ are disjoint.
b) Proof. Suppose a subset $B \subset A$ is countable. It suffices to show that $B$ is not dense in $A$.

For a function $g \in A$, define $D_{g}:=\{x \in \mathbb{R} \mid g(x) \neq f(x)\}$. By the definition of $A$, $D_{g}$ is countable. Then,

$$
D:=\bigcup_{g \in B} D_{g}
$$

A countable union of countable sets is, again, countable. But $\mathbb{R}$ is uncountable, so $D \neq \mathbb{R}$. Take $a \in \mathbb{R}-D$. It satisfies that $f(a)=g(a)$ for all $g \in B$.
Let $U$ have $\pi_{a}(U)=\mathbb{R}-\{f(a)\}$, and $\pi_{x}(U)=\mathbb{R}$ for all $x \neq a$. Then $U$ is an open set that doesn't intersect $B$. This shows that $B$ is not dense.
c) Proof. Suppose there exists a dense subset $A \subset \mathbb{R}^{J}$. Consider a set $\pi_{\alpha}^{-1}\left(\mathbb{R}_{>0}\right)$ open in the product topology for $\alpha \in J$.
Define $f: J \rightarrow \mathcal{P}(A)$ to be

$$
f(\alpha)=A \cap \pi_{\alpha}^{-1}\left(\mathbb{R}_{>0}\right)
$$

That is, $f(\alpha)$ contains all $u \in A$ that satisfies $u(\alpha)>0$. Since $A$ is dense, $f(\alpha)$ is non-empty.
Now, we verify that $f$ is injective. That is, $f(\alpha) \neq f(\beta)$ whenever $\alpha \neq \beta$.
For $\alpha \neq \beta$, consider the nonempty open set $\pi_{\alpha}^{-1}\left(\mathbb{R}_{>0}\right) \cap \pi_{\beta}^{-1}\left(\mathbb{R}_{<0}\right)$, which, by the density of $A$, contains $u \in A$ that satisfies $u(\alpha)>0$ and $u(\beta)<0$. So there exists $u \in A$ such that $u \in f(\alpha)$ but $u \notin f(\beta)$ implying that $f(\alpha) \neq f(\beta)$. This verifies that $f$ is injective.
However, this implies $|J| \leq|\mathcal{P}(A)|=|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$, which contradicts the assumption.
3. a) Note that $P_{2} \Rightarrow P_{1}$ and $P_{4} \Rightarrow P_{3}$. We have

$$
\left(P_{2} \text { but not } P_{3}\right) \Rightarrow\left(P_{1} \text { but not } P_{3}\right) \Rightarrow\left(P_{1} \text { but not } P_{4}\right)
$$

and

$$
\left(P_{2} \text { but not } P_{3}\right) \Rightarrow\left(P_{2} \text { but not } P_{4}\right)
$$

So, it suffices to find a space that is $P_{2}$ but not $P_{3}$ (path-connected but not locally connected), and this space will satisfy all four cases of $P_{i}$ but not $P_{j}$. We will see that the topologist's comb has this property.
It's clearly path-connected. However, it's not locally path-connected. Consider $x=(0,1 / 2)$. Every element of the local basis of $x$ contains infinitely many disconnected segments of "comb teeth".

Similarly, for the cases of $P_{j}$ but not $P_{i}$, we have

$$
\left(P_{4} \text { but not } P_{1}\right) \Rightarrow\left(P_{3} \text { but not } P_{1}\right) \Rightarrow\left(P_{3} \text { but not } P_{2}\right)
$$

and

$$
\left(P_{4} \text { but not } P_{1}\right) \Rightarrow\left(P_{4} \text { but not } P_{2}\right)
$$

So, it suffices to find a space that is $P_{4}$ but not $P_{1}$ (locally path-connected but not connected).
For example, $(0,1) \cup(2,3)$. It's obviously not connected. To see that it is locally path-connected, take a small enough neighborhood so that it only intersects one of the two intervals.
b) Proof. Note that path-connectedness always implies connectedness. So, it suffices to show that a connected and locally path-connected space $X$ is path-connected. Let $p$ be an arbitrary point of $X$. Define $U_{p}$ to be the set of all points that can be connected to $p$ by a path (so $U_{p}$ is the path-connected component containing $p)$. Since there is a path-connected local basis of $p, U_{p}$ is certainly not empty.

We will show that $U_{p}$ is also clopen.
To see that it is open, consider $q \in U_{p}$. By local path-connectedness, there exists an open neighborhood $V$ of $q$ that is path-connected. By connecting paths, points in $V$ can also be connected to $p$ by paths. Hence $V \subset U_{p}$.
To see that it is closed, consider a limit point $l$ of $U_{p}$. By definition, there every neighborhood of $l$ intersects $U_{p}$. We may choose the neighborhood to be pathconnected. Again, by connecting paths, we see that $l \in U_{p}$.
Since $X$ is connected and $U_{p}$ is a non-empty clopen subset, we have $U_{p}=X$.
4. a) Proof. By definition, the quotient topology is the finest topology that makes $\pi$ continuous (i.e. $U \subset X / \sim$ is open implies $\pi^{-1}(U) \subset X$ is open).
Define

$$
\mathcal{T}=\left\{U \subset X / \sim \mid \pi^{-1}(U) \text { is open in } X\right\}
$$

(i.e. $U$ is open iff $\pi^{-1}(U)$ is open.)

If $\mathcal{T}$ is a topology, then it is the clearly the finest among all topologies that makes $\pi$ continuous. So, it suffices to check that $\mathcal{T}$ is indeed a topology.
For $\varnothing$ and $X / \sim$,

$$
\begin{gathered}
\pi^{-1}(\varnothing)=\varnothing \\
\pi^{-1}(X / \sim)=X
\end{gathered}
$$

Also, preimage of a finite intersection (resp. arbitrary union) is a finite intersection (resp. union) of preimages.

$$
\begin{aligned}
& \pi^{-1}\left(\bigcap_{i=1}^{n} U_{n}\right)=\bigcap_{i=1}^{n} \pi^{-1}\left(U_{j}\right) \\
& \pi^{-1}\left(\bigcup_{j \in J} U_{n}\right)=\bigcup_{j \in J} \pi^{-1}\left(U_{j}\right)
\end{aligned}
$$

In conclusion, this shows that $\mathcal{T}$ is the quotient topology. By the definition of $\mathcal{T}$, it satisfies the statement in the question.
b) Proof. Note that if $g=f \circ \pi$, then, more explicitly,

$$
g(x)=(f \circ \pi)(x)=f([x])
$$

Using $f([x])=g(x)$ as the definition of $f$, it is indeed unique. This is well-defined as $g(x)=g(y)$ for all $y \in[x]$ (i.e. the definition doesn't depend on the choice of representative element $x$ ).
If $f$ is continuous, then $g=f \circ \pi$ is a composition of continuous functions and is thus continuous.
Now suppose $g$ is continuous. Let $U$ be an open set. Then the preimage $g^{-1}(U)=$ $(f \circ \pi)^{-1}(U)=\pi^{-1}\left(f^{-1}(U)\right)$ is open. By part (a), this implies that $f^{-1}(U)$ is open. Hence, $f$ is continuous.
c) Proof. Define the equivalence relation by letting $0 \sim 1$. Every other point is only equivalent to itself. Define a function $g:[0,1] \rightarrow S^{1}$,

$$
g(x)=(\cos (2 \pi x), \sin (2 \pi x))
$$

We see that $g(0)=g(1)$. So, by part (b), this induces a continuous function $f:[0,1] / \sim \rightarrow S^{1}$.
Since $g$ is bijective from $(0,1)$ to $S^{1}-\{(1,0)\}$ and $g(0)=g(1)=(1,0)$, we can infer that $f$ is bijective.
$[0,1]$ is compact and $\pi$ is continuous, so $[0,1] / \sim=\pi([0,1])$ is compact. $\mathbb{R}^{2}$ is Hausdorff, so $S^{1}$ as a subspace is also Hausdorff. Since $f$ is a bijective continuous function from a compact space to a Hausdorff space, it is a homeomorphism.
g) First observe that $X / \sim$ is homeomorphic to a disk $D^{2}$ with an equivalence relation that identifies every boundary point to its antipodal point (let' call it $\sim_{1}$. $x \sim_{1}-x$ for $\left.x \in \partial D^{2}\right)$. And this is homeomorphic to a closed upper hemisphere (i.e. $S_{\geq 0}^{2}:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in S^{2} \mid x_{3} \geq 0\right\}$ ) with the same equivalence relation on the equator. See figure 1 .


Figure 1
Also note that collapsing every line passing through the origin in $\mathbb{R}^{3} \backslash\{0\}$ to one point is the same as first collapsing every ray to a point $\left(\sim_{2}: x \sim_{2} y\right.$ if $x=\lambda y$ for some $\lambda>0$ ), and then identifying pairs of antipodal points ( $\left.\sim_{3}: x \sim_{3}-x\right)$. See figure 2 .


Figure 2
$\left(\mathbb{R}^{3} \backslash\{0\}\right) / \sim_{2}$ is just the 2-sphere $S^{2}$. So,

$$
\mathbb{R} P^{2}=\left(\left(\mathbb{R}^{3} \backslash\{0\}\right) / \sim_{2}\right) / \sim_{3}=S^{2} / \sim_{3}
$$

Let $\pi_{j}$ denotes the projection corresponding to $\sim_{j}$. Let $i$ denotes the inclusion map from $S_{\geq 0}^{2}$ to $S^{2}$. We see that $\pi_{3} \circ i$ is a continuous function constant on equivalence classes of $\sim_{1}$ (i.e. pairs of antipodal points on the equator). By part (b), this induces a continuous function $f: S_{\geq 0}^{2} / \sim_{1} \rightarrow \mathbb{R} P^{2}$ such that

$$
\pi_{3} \circ i=f \circ \pi_{1}
$$

Note that $f$ maps the equator of $S_{\geq 0}^{2} / \sim_{1}$ to the equator of $S^{2} / \sim_{3}$. For each $x$ not on the equator, it maps $x$ to the antipodal pair $\{x,-x\}$, and $-x$ is in the lower hemisphere. It's relatively easy to see that $f$ is bijective.
Lastly, argue that $f$ is a bijective continuous function from a compact space to a Hausdorff space, so it is a homeomorphism.


Figure 3

