Jiawei Chen email: jiaw.chen@mail.utoronto.ca

June 9, 2023

1. a) The forward direction is obvious. Suppose the intersection of A and B is non-trivial. Then for $x \in A \cap B$, we have $0 \le d(A, B) \le d(x, x) = 0$ implying that d(A, B) = 0.

For the other direction, consider the following lemmas: Lemma 1. x is a limit point of A if and only if d(x, A) = 0.

Proof. By the sequence lemma, x is a limit point of A iff there exists a sequence $\{a_n\}_{n\in\mathbb{N}}$ in A that converges to x. In other words, we have

 $\lim_{n \to \infty} d(x, a_n) = 0$

Furthermore, one can always find a sequence in A that converges to d(x, A) by the properties of the infimum. Hence, if d(x, A) = 0, x is a limit point. Conversely, if x is a limit point, let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence in A converging to x; then

$$0 \le d(x, A) \le \lim_{n \to \infty} d(x, a_n) = 0$$

implying that d(x, A) = 0.

Lemma 2. The notion of distance satisfies

$$d(A,B) \le d(x,A) + d(x,B)$$

for any $x \in X$.

Proof. This follows from the triangle inequality of the metric. That is for any $x \in X$, $a \in A$ and $b \in B$,

$$d(a,b) \le d(x,a) + d(x,b)$$

Take the infimum over all $a \in A$ and all $b \in B$ to obtain the result.

Corollary. If x is a common limit point of A and B, then it follows from the lemmas above that

$$d(A,B) \le d(x,A) + d(x,B) = 0$$

So, d(A, B) = 0.

Now, return to the question. The other direction does not hold in general as disjoint A and B may still have common limit points.

Furthermore, this does not hold even under the assumption that A and B are closed. (The infimum of d(A, B) doesn't need to be attained by a limit point.) Consider the following counterexample in \mathbb{R}^2 :

$$A = \{(x, y) | y = 1/x\}$$
 and $B = \{(x, y) | y = 0\}$

. As x goes to infinity, y = 1/x approaches 0.

- b) Since a set is closed iff it contains all of its limit points, the statement directly follows from Lemma 1.
- c) *Proof.* It is trivial to check \bar{d} and d_0 are both bounded by 1. Now, we can check that (for any metric space) the ϵ -balls with radius $\epsilon < 1$ form a basis of the metric topology. Since the collection of balls with $\epsilon < 1$ is the same for \bar{d} and d, they generate the same topology.

To see that \overline{d} and d_0 are equivalent, observe that

$$\frac{1}{2}\bar{d} \le d_0 \le \bar{d}$$

2. a) Proof. " \Rightarrow ":

Suppose x_n converges to x in the product topology. Let U_{α} be an open neighborhood of $\pi_{\alpha}(x)$. Then $\pi_{\alpha}^{-1}(U_{\alpha})$ is an open neighborhood of x. By the definition of convergence, there exists N such $\pi_{\alpha}^{-1}(U_{\alpha})$ contains all x_n for $n \geq N$.

This implies that there exists some N such that U contains all $\pi_{\alpha}(x_n)$ for $n \ge N$, which is exactly what we wanted to show.

"⇐":

Suppose $\pi_{\alpha}(x_n)$ converges to $\pi_{\alpha}(x)$ for all $\alpha \in J$. Let U be an open neighborhood of x. Then $\pi_{\alpha}(U) = X_{\alpha}$ for all but finitely many indices. It's trivial that X_{α} contains all $\pi_{\alpha}(x_n)$. So, let's consider the indices for which the projection is not the whole space. Let these indices be $\beta_1, \beta_2, \ldots, \beta_m$, and the corresponding projections be V_1, V_2, \ldots, V_m .

For each V_j , there exists N_j such that $x_n \in V_j$ for all $n \ge N_j$. Taking $N = \max_{1 \le j \le m} N_j$, we have $x_n \in U$ for $n \ge N$. Thus, x_n converges to x. \Box

Since the product topology is coarser than the box topology, convergence in the product topology is weaker. (As you can notice from the proof above: while the forward direction still works in the box topology, the backward direction fails as we don't have the restriction that $\pi_{\alpha}(U) = X_{\alpha}$ for all but finitely many indices. And N_{α} does not necessarily have an upper bound.)

- b) This directly follows from part (a) by taking $X_{\alpha} = \mathbb{R}$ for all $\alpha \in J$ and $J = \mathbb{R}$. We interpret $x \in \mathbb{R}$ as an index. We understand the projection $\pi_x(f_n)$ as the function f_n evaluated at x. Then f_n converging pointwise to f means $\pi_x(f_n)$ converges to $\pi_x(f)$ for all x.
- c) *Proof.* First, check that \overline{d} satisfies the axioms of metric. (I will omit the details here.)

Note that the subspace topology is generated by sets of the form $B \cap C(\mathbb{R})$, with

$$B=\prod_{x\in\mathbb{R}}U_z$$

where $U_x = \mathbb{R}$ for all but finitely many x.

Let these x be x_1, x_2, \ldots, x_m and the corresponding projections V_1, V_2, \ldots, V_m . Since each V_j is open, there exists an interval $(c_j - r_j, c_j + r_j) \subset V_j$. As there are only finitely many V_j , we can take $r = \min r_j$.

Let g be a continuous function with the interpolations $g(x_j) = c_j$. Then the r-ball (of the metric \bar{d}) centered at g lies inside of B.

- d) Convergence in d means that for all $\epsilon > 0$, there exists N s.t. $d(f_n, f) < \epsilon$ for n > N. Recall that ϵ -balls with $\epsilon < 1$ is enough to form a basis. So, we can take $\epsilon < 1$ WLOG. In this case, $\bar{d}(f_n, f) = \sup_{x \in \mathbb{R}} |f_n(x) f(x)|$. Observe that the condition of convergence in \bar{d} is exactly the same as the condition in the remark (also assuming $\epsilon < 1$).
- e) Let f be a function in $\mathbb{R}^{\mathbb{R}}$, and B a set of the form described in part (c). Same as before, the projection of B is not the whole space for x_j with $1 \leq j \leq m$. (In particular, $f(x_j)$ lies in the projection.) Using Lagrange interpolation, we can construct a continuous function g such that $g(x_j) = f(x_j)$. Indeed, g lies in B. This shows that every open neighborhood of f intersects $C(\mathbb{R})$. $C(\mathbb{R})$ is dense in $\mathbb{R}^{\mathbb{R}}$.

However, this does not mean every function is a pointwise limit of continuous functions. The sequential definition of density only applies to metric spaces. In this case, $\mathbb{R}^{\mathbb{R}}$ is not metrizable. The function that is 1 at the rationals and 0 at the irrationals is an example of a function that is not the pointwise limit of continuous functions, but this is not easy to show. (Read about Baire class 1 and class 2 functions if you're interested).

3. a) *Proof.* Fix m = k, $\pi_k(x_n) = \frac{1}{kn}$, which converges to 0 as n goes to infinity. It follows from problem 2(a) that x_n convergence to the 0 sequence in the product topology.

For the box topology, consider

$$U = \prod_{n \in \mathbb{N}} (-x_{nn}, x_{nn})$$

where $x_{nn} := \pi_n(x_n)$. U is open in box topology and it contains the 0 sequence. However, for each sequence x_n , we have $x_{nn} \notin (-x_{nn}, x_{nn})$. This shows that U contains no member of $\{x_n\}_{n \in \mathbb{N}}$. The sequence does not converge to 0 in the box topology.

b) (For convenience, I will use bold **x** to denote the sequence $\{x_n\}_{n\in\mathbb{N}}$)

Claim. \mathbb{R}_0 is dense in $\mathbb{R}^{\mathbb{N}}$ with the product topology. (That is, the closure is $\mathbb{R}^{\mathbb{N}}$.)

Proof. For any basis open set U, we can construct a sequence in \mathbb{R}_0 that lies in U. Basis open sets U is of the form

$$U = \prod_{n \in \mathbb{N}} U_n$$

where U_n is not the whole space for finitely many indices. Let $S \subset \mathbb{N}$ be the collection of such indices. We take x_n to lie inside U_n when $n \in S$. Otherwise, take $x_n = 0$. Then $\mathbf{x} \in U$ as desired.

Claim. \mathbb{R}_0 is closed in $\mathbb{R}^{\mathbb{N}}$ with the box topology.

Proof. For any $\mathbf{x} \notin \mathbb{R}_0$, I will show there exists an open neighborhood U that does not intersect \mathbb{R}_0 . By assumption, for any N, there exists n > N such that $x_n \neq 0$. Let

$$U = \prod_{n \in \mathbb{N}} U_n$$

If $x_n \neq 0$, take U_n to be an open interval that contains x_n but not 0. If $x_n = 0$, take (-1, 1). Since there exists n > N such that U_n does not contain 0 for any N, this set does not intersect \mathbb{R}_0 .

Claim. The closure of \mathbb{R}_0 is c_0 , the collection of sequences that converge to 0, in $\mathbb{R}^{\mathbb{N}}$ with the uniform topology.

Proof. First, I will show c_0 is closed. Suppose **x** does not converge to 0. Then there exists an ϵ that $\forall N \exists n > N \text{ s.t. } |x_n| > \epsilon$. Take a metric ball centered at **x** with radius $\epsilon/2$. Namely,

$$B_{\epsilon/2}(\mathbf{x}) = \{\mathbf{y} : \sup |x_i - y_i| < \epsilon/2\}$$

For any $\mathbf{y} \in B$, it follows that $\forall N \exists n > N$ s.t. $|y_n| > \epsilon/2$. So, \mathbf{y} does not converge to 0. c_0 is indeed closed.

Now, I will show that \mathbb{R}_0 is dense in c_0 . Let \mathbf{z} be a member of c_0 and $B_{\epsilon}(\mathbf{z})$ with $0 < \epsilon < 1$ be a ball centered at \mathbf{z} . Since \mathbf{z} converges to 0, there exists N s.t. $|z_n| < \epsilon$ for all n > N. Define a new sequence \mathbf{z}' such that $z'_n = z_n$ when $n \le N$, and z' = 0 otherwise. We see that $\mathbf{z}' \in B_{\epsilon}(\mathbf{z})$ and z' is eventually 0. Hence, $\mathbb{R}^{\mathbb{N}}$ is dense in c_0 . This concludes the proof.

c) *Proof.* First, notice that for any $i \in \mathbb{N}$,

$$|x_i - y_i|^2 \le \sum_n |x_n - y_n|^2$$

Take the supremum of the left side and the inequality still holds. So, we have

$$\bar{\rho}(\mathbf{x}, \mathbf{y})^2 \le \sup |x_n - y_n|^2 \le \sum_n |x_n - y_n|^2 = d(\mathbf{x}, \mathbf{y})^2$$

Hence, $\bar{\rho}(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{y})$ and $\mathcal{T}_{unif} \subset \mathcal{T}_{l^2}$.

Now, let \mathbf{x} be a square-summable sequence and $B_{\epsilon}(\mathbf{x})$ a ball in l^2 metric. Consider the open set of the box topology,

$$U = \prod_{n} (x_n - 2^{-n/2} \epsilon, x_n + 2^{-n/2} \epsilon)$$

For $y \in U$, we have

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{n=1}^{\infty} |x_n - y_n|^2} < \sqrt{\epsilon^2 \sum_{n=1}^{\infty} 2^{-n}} = \epsilon$$

Hence, $U \subset B_{\epsilon}(\mathbf{x})$ and $\mathcal{T}_{l^2} \subset \mathcal{T}_{box}$

d) *Proof.* Since sequences in \mathbb{R}_0 have finitely many non-zero terms, they are indeed square-summable.

i) \mathcal{T}_{l^2} and \mathcal{T}_{box} are distinct on \mathbb{R}_0 : Consider

$$A = \mathbb{R}_0 \cap \prod_n (-1/n, 1/n)$$

which is open in the box topology. However, no matter how small ϵ is, we can always choose a small enough $k \in \mathbb{N}$ so that $1/k < \epsilon/2$, and

$$\mathbf{x} = (0, 0, ..., x_k = \epsilon/2, ..., 0, ...)$$

is inside the $B^d_{\epsilon}(\mathbf{0})$ but outside A. This shows that A is not open in the l^2 topology.

ii) \mathcal{T}_{unif} and \mathcal{T}_{l^2} are distinct on \mathbb{R}_0 : Consider

$$B_1^{l^2}(\mathbf{0}) = \left\{ \mathbf{x} \in \mathbb{R}_0 : \left(\sum_n |x_n|^2 \right)^{1/2} < 1 \right\}$$

No matter how small we choose ϵ to be. There is always some $k\in\mathbb{N}$ such that $k\epsilon^2/4>1$ and

$$\mathbf{x} = (\epsilon/2, \epsilon/2, ..., \epsilon/2, 0, 0, ...)$$

is inside $B_{\epsilon}^{\bar{p}}(\mathbf{0})$ but outside $B_1^{l^2}(\mathbf{0})$. This shows that $B_1^{l^2}(\mathbf{0})$ is not open in the uniform topology.

iii) \mathcal{T}_{prod} and \mathcal{T}_{unif} are distinct on \mathbb{R}_0 : Consider

$$B_1^{\rho}(\mathbf{0}) = \{\mathbf{x} \in \mathbb{R}_0 : \sup |x_n| < 1\}$$

Let U be an open neighborhood of **0** in the product topology

$$U = \prod_{n} U_{n}$$

where U_n is the whole space for all but finitely many indices. Let k be a index such that U_k is the whole space, then

$$\mathbf{x} = (0, 0, ..., x_k = 2, ..., 0, ...)$$

is inside U but outside $B_1^{\bar{\rho}}(\mathbf{0})$. This shows that $B_1^{\bar{\rho}}(\mathbf{0})$ is not open in the product topology.

In conclusion, all four topologies are distinct on \mathbb{R}_0 .

e) See example 1 on Munkres p.132.