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1. a) The forward direction is obvious. Suppose the intersection of A and B is non-
trivial. Then for x ∈ A ∩ B, we have 0 ≤ d(A,B) ≤ d(x, x) = 0 implying that
d(A,B) = 0.

For the other direction, consider the following lemmas:

Lemma 1. x is a limit point of A if and only if d(x,A) = 0.

Proof. By the sequence lemma, x is a limit point of A iff there exists a sequence
{an}n∈N in A that converges to x. In other words, we have

lim
n→∞

d(x, an) = 0

Furthermore, one can always find a sequence in A that converges to d(x,A) by the
properties of the infimum. Hence, if d(x,A) = 0, x is a limit point. Conversely,
if x is a limit point, let {an}n∈N be a sequence in A converging to x; then

0 ≤ d(x,A) ≤ lim
n→∞

d(x, an) = 0

implying that d(x,A) = 0.

Lemma 2. The notion of distance satisfies

d(A,B) ≤ d(x,A) + d(x,B)

for any x ∈ X.

Proof. This follows from the triangle inequality of the metric. That is for any
x ∈ X, a ∈ A and b ∈ B,

d(a, b) ≤ d(x, a) + d(x, b)

Take the infimum over all a ∈ A and all b ∈ B to obtain the result.

Corollary. If x is a common limit point of A and B, then it follows from the
lemmas above that

d(A,B) ≤ d(x,A) + d(x,B) = 0

So, d(A,B) = 0.
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Now, return to the question. The other direction does not hold in general as
disjoint A and B may still have common limit points.

Furthermore, this does not hold even under the assumption that A and B are
closed. (The infimum of d(A,B) doesn’t need to be attained by a limit point.)
Consider the following counterexample in R2:

A = {(x, y)|y = 1/x} and B = {(x, y)|y = 0}

. As x goes to infinity, y = 1/x approaches 0.

b) Since a set is closed iff it contains all of its limit points, the statement directly
follows from Lemma 1.

c) Proof. It is trivial to check d̄ and d0 are both bounded by 1. Now, we can check
that (for any metric space) the ε-balls with radius ε < 1 form a basis of the metric
topology. Since the collection of balls with ε < 1 is the same for d̄ and d, they
generate the same topology.

To see that d̄ and d0 are equivalent, observe that

1

2
d̄ ≤ d0 ≤ d̄

2. a) Proof. “⇒”:
Suppose xn converges to x in the product topology. Let Uα be an open neighbor-
hood of πα(x). Then π−1

α (Uα) is an open neighborhood of x. By the definition
of convergence, there exists N such π−1

α (Uα) contains all xn for n ≥ N .

This implies that there exists some N such that U contains all πα(xn) for n ≥ N ,
which is exactly what we wanted to show.

“⇐”:
Suppose πα(xn) converges to πα(x) for all α ∈ J . Let U be an open neighborhood
of x. Then πα(U) = Xα for all but finitely many indices. It’s trivial that Xα

contains all πα(xn). So, let’s consider the indices for which the projection is
not the whole space. Let these indices be β1, β2, ... , βm, and the corresponding
projections be V1, V2, ... , Vm.

For each Vj , there exists Nj such that xn ∈ Vj for all n ≥ Nj . Taking N =
max1≤j≤mNj , we have xn ∈ U for n ≥ N . Thus, xn converges to x.

Since the product topology is coarser than the box topology, convergence in the
product topology is weaker. (As you can notice from the proof above: while the
forward direction still works in the box topology, the backward direction fails as
we don’t have the restriction that πα(U) = Xα for all but finitely many indices.
And Nα does not necessarily have an upper bound.)

b) This directly follows from part (a) by taking Xα = R for all α ∈ J and J = R.
We interpret x ∈ R as an index. We understand the projection πx(fn) as the
function fn evaluated at x. Then fn converging pointwise to f means πx(fn)
converges to πx(f) for all x.

c) Proof. First, check that d̄ satisfies the axioms of metric. (I will omit the details
here.)

Note that the subspace topology is generated by sets of the form B ∩C(R), with

B =
∏
x∈R

Ux

where Ux = R for all but finitely many x.
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Let these x be x1, x2, ... , xm and the corresponding projections V1, V2, ... , Vm.
Since each Vj is open, there exists an interval (cj − rj , cj + rj) ⊂ Vj . As there are
only finitely many Vj , we can take r = min rj .

Let g be a continuous function with the interpolations g(xj) = cj . Then the
r-ball (of the metric d̄) centered at g lies inside of B.

d) Convergence in d̄ means that for all ε > 0, there exists N s.t. d̄(fn, f) < ε for
n > N . Recall that ε-balls with ε < 1 is enough to form a basis. So, we can take
ε < 1 WLOG. In this case, d̄(fn, f) = supx∈R |fn(x) − f(x)|. Observe that the
condition of convergence in d̄ is exactly the same as the condition in the remark
(also assuming ε < 1).

e) Let f be a function in RR, and B a set of the form described in part (c). Same
as before, the projection of B is not the whole space for xj with 1 ≤ j ≤ m. (In
particular, f(xj) lies in the projection.) Using Lagrange interpolation, we can
construct a continuous function g such that g(xj) = f(xj). Indeed, g lies in B.
This shows that every open neighborhood of f intersects C(R). C(R) is dense in
RR.

However, this does not mean every function is a pointwise limit of continuous
functions. The sequential definition of density only applies to metric spaces. In
this case, RR is not metrizable. The function that is 1 at the rationals and 0
at the irrationals is an example of a function that is not the pointwise limit of
continuous functions, but this is not easy to show. (Read about Baire class 1 and
class 2 functions if you’re interested).

3. a) Proof. Fix m = k, πk(xn) = 1
kn , which converges to 0 as n goes to infinity. It

follows from problem 2(a) that xn convergence to the 0 sequence in the product
topology.

For the box topology, consider

U =
∏
n∈N

(−xnn, xnn)

where xnn := πn(xn). U is open in box topology and it contains the 0 sequence.
However, for each sequence xn, we have xnn 6∈ (−xnn, xnn). This shows that U
contains no member of {xn}n∈N. The sequence does not converge to 0 in the box
topology.

b) (For convenience, I will use bold x to denote the sequence {xn}n∈N)

Claim. R0 is dense in RN with the product topology. (That is, the closure is RN.)

Proof. For any basis open set U , we can construct a sequence in R0 that lies in
U . Basis open sets U is of the form

U =
∏
n∈N

Un

where Un is not the whole space for finitely many indices. Let S ⊂ N be the
collection of such indices. We take xn to lie inside Un when n ∈ S. Otherwise,
take xn = 0. Then x ∈ U as desired.

Claim. R0 is closed in RN with the box topology.

Proof. For any x 6∈ R0, I will show there exists an open neighborhood U that
does not intersect R0. By assumption, for any N , there exists n > N such that
xn 6= 0. Let

U =
∏
n∈N

Un
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If xn 6= 0, take Un to be an open interval that contains xn but not 0. If xn = 0,
take (−1, 1). Since there exists n > N such that Un does not contain 0 for any
N , this set does not intersect R0.

Claim. The closure of R0 is c0, the collection of sequences that converge to 0, in
RN with the uniform topology.

Proof. First, I will show c0 is closed. Suppose x does not converge to 0. Then
there exists an ε that ∀N ∃n > N s.t. |xn| > ε. Take a metric ball centered at x
with radius ε/2. Namely,

Bε/2(x) = {y : sup |xi − yi| < ε/2}

For any y ∈ B, it follows that ∀N ∃n > N s.t. |yn| > ε/2. So, y does not converge
to 0. c0 is indeed closed.

Now, I will show that R0 is dense in c0. Let z be a member of c0 and Bε(z) with
0 < ε < 1 be a ball centered at z. Since z converges to 0, there exists N s.t.
|zn| < ε for all n > N . Define a new sequence z′ such that z′n = zn when n ≤ N ,
and z′ = 0 otherwise. We see that z′ ∈ Bε(z) and z′ is eventually 0. Hence, RN

is dense in c0. This concludes the proof.

c) Proof. First, notice that for any i ∈ N,

|xi − yi|2 ≤
∑
n

|xn − yn|2

Take the supremum of the left side and the inequality still holds. So, we have

ρ̄(x,y)2 ≤ sup |xn − yn|2 ≤
∑
n

|xn − yn|2 = d(x,y)2

Hence, ρ̄(x,y) ≤ d(x,y) and Tunif ⊂ Tl2 .

Now, let x be a square-summable sequence and Bε(x) a ball in l2 metric.

Consider the open set of the box topology,

U =
∏
n

(xn − 2−n/2ε, xn + 2−n/2ε)

For y ∈ U , we have

d(x,y) =

√√√√ ∞∑
n=1

|xn − yn|2 <

√√√√ε2
∞∑
n=1

2−n = ε

Hence, U ⊂ Bε(x) and Tl2 ⊂ Tbox
d) Proof. Since sequences in R0 have finitely many non-zero terms, they are indeed

square-summable.

i) Tl2 and Tbox are distinct on R0:
Consider

A = R0 ∩
∏
n

(−1/n, 1/n)

which is open in the box topology. However, no matter how small ε is, we
can always choose a small enough k ∈ N so that 1/k < ε/2, and

x = (0, 0, ..., xk = ε/2, ..., 0, ...)

is inside the Bdε (0) but outside A. This shows that A is not open in the l2

topology.
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ii) Tunif and Tl2 are distinct on R0:
Consider

Bl
2

1 (0) =

{
x ∈ R0 :

(∑
n

|xn|2
)1/2

< 1

}
No matter how small we choose ε to be. There is always some k ∈ N such
that kε2/4 > 1 and

x = (ε/2, ε/2, ..., ε/2, 0, 0, ...)

is inside Bρ̄ε (0) but outside Bl
2

1 (0). This shows that Bl
2

1 (0) is not open in
the uniform topology.

iii) Tprod and Tunif are distinct on R0:
Consider

Bρ̄1(0) = {x ∈ R0 : sup |xn| < 1}

Let U be an open neighborhood of 0 in the product topology

U =
∏
n

Un

where Un is the whole space for all but finitely many indices. Let k be a
index such that Uk is the whole space, then

x = (0, 0, ..., xk = 2, ..., 0, ...)

is inside U but outside Bρ̄1(0). This shows that Bρ̄1(0) is not open in the
product topology.

In conclusion, all four topologies are distinct on R0.

e) See example 1 on Munkres p.132.
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