Assignment \#2 Solutions

Jiawei Chen
email: jiaw.chen@mail.utoronto.ca

June 9, 2023

1. a) The forward direction is obvious. Suppose the intersection of A and B is nontrivial. Then for $x \in A \cap B$, we have $0 \leq d(A, B) \leq d(x, x)=0$ implying that $d(A, B)=0$.

For the other direction, consider the following lemmas:
Lemma 1. x is a limit point of A if and only if $d(x, A)=0$.
Proof. By the sequence lemma, x is a limit point of A iff there exists a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ in A that converges to x. In other words, we have

$$
\lim _{n \rightarrow \infty} d\left(x, a_{n}\right)=0
$$

Furthermore, one can always find a sequence in A that converges to $d(x, A)$ by the properties of the infimum. Hence, if $d(x, A)=0, x$ is a limit point. Conversely, if x is a limit point, let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in A converging to x; then

$$
0 \leq d(x, A) \leq \lim _{n \rightarrow \infty} d\left(x, a_{n}\right)=0
$$

implying that $d(x, A)=0$.

Lemma 2. The notion of distance satisfies

$$
d(A, B) \leq d(x, A)+d(x, B)
$$

for any $x \in X$.
Proof. This follows from the triangle inequality of the metric. That is for any $x \in X, a \in A$ and $b \in B$,

$$
d(a, b) \leq d(x, a)+d(x, b)
$$

Take the infimum over all $a \in A$ and all $b \in B$ to obtain the result.
Corollary. If x is a common limit point of A and B, then it follows from the lemmas above that

$$
d(A, B) \leq d(x, A)+d(x, B)=0
$$

So, $d(A, B)=0$.

Now, return to the question. The other direction does not hold in general as disjoint A and B may still have common limit points.
Furthermore, this does not hold even under the assumption that A and B are closed. (The infimum of $d(A, B)$ doesn't need to be attained by a limit point.) Consider the following counterexample in \mathbb{R}^{2} :

$$
A=\{(x, y) \mid y=1 / x\} \quad \text { and } \quad B=\{(x, y) \mid y=0\}
$$

. As x goes to infinity, $y=1 / x$ approaches 0 .
b) Since a set is closed iff it contains all of its limit points, the statement directly follows from Lemma 1.
c) Proof. It is trivial to check \bar{d} and d_{0} are both bounded by 1 . Now, we can check that (for any metric space) the ϵ-balls with radius $\epsilon<1$ form a basis of the metric topology. Since the collection of balls with $\epsilon<1$ is the same for \bar{d} and d, they generate the same topology.
To see that \bar{d} and d_{0} are equivalent, observe that

$$
\frac{1}{2} \bar{d} \leq d_{0} \leq \bar{d}
$$

2. a) Proof. " \Rightarrow ":

Suppose x_{n} converges to x in the product topology. Let U_{α} be an open neighborhood of $\pi_{\alpha}(x)$. Then $\pi_{\alpha}^{-1}\left(U_{\alpha}\right)$ is an open neighborhood of x. By the definition of convergence, there exists N such $\pi_{\alpha}^{-1}\left(U_{\alpha}\right)$ contains all x_{n} for $n \geq N$.
This implies that there exists some N such that U contains all $\pi_{\alpha}\left(x_{n}\right)$ for $n \geq N$, which is exactly what we wanted to show.
" \Leftarrow ":
Suppose $\pi_{\alpha}\left(x_{n}\right)$ converges to $\pi_{\alpha}(x)$ for all $\alpha \in J$. Let U be an open neighborhood of x. Then $\pi_{\alpha}(U)=X_{\alpha}$ for all but finitely many indices. It's trivial that X_{α} contains all $\pi_{\alpha}\left(x_{n}\right)$. So, let's consider the indices for which the projection is not the whole space. Let these indices be $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$, and the corresponding projections be $V_{1}, V_{2}, \ldots, V_{m}$.
For each V_{j}, there exists N_{j} such that $x_{n} \in V_{j}$ for all $n \geq N_{j}$. Taking $N=$ $\max _{1 \leq j \leq m} N_{j}$, we have $x_{n} \in U$ for $n \geq N$. Thus, x_{n} converges to x.

Since the product topology is coarser than the box topology, convergence in the product topology is weaker. (As you can notice from the proof above: while the forward direction still works in the box topology, the backward direction fails as we don't have the restriction that $\pi_{\alpha}(U)=X_{\alpha}$ for all but finitely many indices. And N_{α} does not necessarily have an upper bound.)
b) This directly follows from part (a) by taking $X_{\alpha}=\mathbb{R}$ for all $\alpha \in J$ and $J=\mathbb{R}$. We interpret $x \in \mathbb{R}$ as an index. We understand the projection $\pi_{x}\left(f_{n}\right)$ as the function f_{n} evaluated at x. Then f_{n} converging pointwise to f means $\pi_{x}\left(f_{n}\right)$ converges to $\pi_{x}(f)$ for all x.
c) Proof. First, check that \bar{d} satisfies the axioms of metric. (I will omit the details here.)
Note that the subspace topology is generated by sets of the form $B \cap C(\mathbb{R})$, with

$$
B=\prod_{x \in \mathbb{R}} U_{x}
$$

where $U_{x}=\mathbb{R}$ for all but finitely many x.

Let these x be $x_{1}, x_{2}, \ldots, x_{m}$ and the corresponding projections $V_{1}, V_{2}, \ldots, V_{m}$. Since each V_{j} is open, there exists an interval $\left(c_{j}-r_{j}, c_{j}+r_{j}\right) \subset V_{j}$. As there are only finitely many V_{j}, we can take $r=\min r_{j}$.
Let g be a continuous function with the interpolations $g\left(x_{j}\right)=c_{j}$. Then the r-ball (of the metric \bar{d}) centered at g lies inside of B.
d) Convergence in \bar{d} means that for all $\epsilon>0$, there exists N s.t. $\bar{d}\left(f_{n}, f\right)<\epsilon$ for $n>N$. Recall that ϵ-balls with $\epsilon<1$ is enough to form a basis. So, we can take $\epsilon<1$ WLOG. In this case, $\bar{d}\left(f_{n}, f\right)=\sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right|$. Observe that the condition of convergence in \bar{d} is exactly the same as the condition in the remark (also assuming $\epsilon<1$).
e) Let f be a function in $\mathbb{R}^{\mathbb{R}}$, and B a set of the form described in part (c). Same as before, the projection of B is not the whole space for x_{j} with $1 \leq j \leq m$. (In particular, $f\left(x_{j}\right)$ lies in the projection.) Using Lagrange interpolation, we can construct a continuous function g such that $g\left(x_{j}\right)=f\left(x_{j}\right)$. Indeed, g lies in B. This shows that every open neighborhood of f intersects $C(\mathbb{R}) . C(\mathbb{R})$ is dense in $\mathbb{R}^{\mathbb{R}}$.
However, this does not mean every function is a pointwise limit of continuous functions. The sequential definition of density only applies to metric spaces. In this case, $\mathbb{R}^{\mathbb{R}}$ is not metrizable. The function that is 1 at the rationals and 0 at the irrationals is an example of a function that is not the pointwise limit of continuous functions, but this is not easy to show. (Read about Baire class 1 and class 2 functions if you're interested).
3. a) Proof. Fix $m=k, \pi_{k}\left(x_{n}\right)=\frac{1}{k n}$, which converges to 0 as n goes to infinity. It follows from problem 2(a) that x_{n} convergence to the 0 sequence in the product topology.
For the box topology, consider

$$
U=\prod_{n \in \mathbb{N}}\left(-x_{n n}, x_{n n}\right)
$$

where $x_{n n}:=\pi_{n}\left(x_{n}\right) . U$ is open in box topology and it contains the 0 sequence. However, for each sequence x_{n}, we have $x_{n n} \notin\left(-x_{n n}, x_{n n}\right)$. This shows that U contains no member of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$. The sequence does not converge to 0 in the box topology.
b) (For convenience, I will use bold \mathbf{x} to denote the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$)

Claim. \mathbb{R}_{0} is dense in $\mathbb{R}^{\mathbb{N}}$ with the product topology. (That is, the closure is $\mathbb{R}^{\mathbb{N}}$.)
Proof. For any basis open set U, we can construct a sequence in \mathbb{R}_{0} that lies in U. Basis open sets U is of the form

$$
U=\prod_{n \in \mathbb{N}} U_{n}
$$

where U_{n} is not the whole space for finitely many indices. Let $S \subset \mathbb{N}$ be the collection of such indices. We take x_{n} to lie inside U_{n} when $n \in S$. Otherwise, take $x_{n}=0$. Then $\mathbf{x} \in U$ as desired.

Claim. \mathbb{R}_{0} is closed in $\mathbb{R}^{\mathbb{N}}$ with the box topology.
Proof. For any $\mathbf{x} \notin \mathbb{R}_{0}$, I will show there exists an open neighborhood U that does not intersect \mathbb{R}_{0}. By assumption, for any N, there exists $n>N$ such that $x_{n} \neq 0$. Let

$$
U=\prod_{n \in \mathbb{N}} U_{n}
$$

If $x_{n} \neq 0$, take U_{n} to be an open interval that contains x_{n} but not 0 . If $x_{n}=0$, take $(-1,1)$. Since there exists $n>N$ such that U_{n} does not contain 0 for any N, this set does not intersect \mathbb{R}_{0}.

Claim. The closure of \mathbb{R}_{0} is c_{0}, the collection of sequences that converge to 0 , in $\mathbb{R}^{\mathbb{N}}$ with the uniform topology.

Proof. First, I will show c_{0} is closed. Suppose \mathbf{x} does not converge to 0 . Then there exists an ϵ that $\forall N \exists n>N$ s.t. $\left|x_{n}\right|>\epsilon$. Take a metric ball centered at \mathbf{x} with radius $\epsilon / 2$. Namely,

$$
B_{\epsilon / 2}(\mathbf{x})=\left\{\mathbf{y}: \sup \left|x_{i}-y_{i}\right|<\epsilon / 2\right\}
$$

For any $\mathbf{y} \in B$, it follows that $\forall N \exists n>N$ s.t. $\left|y_{n}\right|>\epsilon / 2$. So, \mathbf{y} does not converge to $0 . c_{0}$ is indeed closed.
Now, I will show that \mathbb{R}_{0} is dense in c_{0}. Let \mathbf{z} be a member of c_{0} and $B_{\epsilon}(\mathbf{z})$ with $0<\epsilon<1$ be a ball centered at \mathbf{z}. Since \mathbf{z} converges to 0 , there exists N s.t. $\left|z_{n}\right|<\epsilon$ for all $n>N$. Define a new sequence \mathbf{z}^{\prime} such that $z_{n}^{\prime}=z_{n}$ when $n \leq N$, and $z^{\prime}=0$ otherwise. We see that $\mathbf{z}^{\prime} \in B_{\epsilon}(\mathbf{z})$ and z^{\prime} is eventually 0 . Hence, $\mathbb{R}^{\mathbb{N}}$ is dense in c_{0}. This concludes the proof.
c) Proof. First, notice that for any $i \in \mathbb{N}$,

$$
\left|x_{i}-y_{i}\right|^{2} \leq \sum_{n}\left|x_{n}-y_{n}\right|^{2}
$$

Take the supremum of the left side and the inequality still holds. So, we have

$$
\bar{\rho}(\mathbf{x}, \mathbf{y})^{2} \leq \sup \left|x_{n}-y_{n}\right|^{2} \leq \sum_{n}\left|x_{n}-y_{n}\right|^{2}=d(\mathbf{x}, \mathbf{y})^{2}
$$

Hence, $\bar{\rho}(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{y})$ and $\mathcal{T}_{\text {unif }} \subset \mathcal{T}_{l^{2}}$.
Now, let \mathbf{x} be a square-summable sequence and $B_{\epsilon}(\mathbf{x})$ a ball in l^{2} metric.
Consider the open set of the box topology,

$$
U=\prod_{n}\left(x_{n}-2^{-n / 2} \epsilon, x_{n}+2^{-n / 2} \epsilon\right)
$$

For $y \in U$, we have

$$
d(\mathbf{x}, \mathbf{y})=\sqrt{\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{2}}<\sqrt{\epsilon^{2} \sum_{n=1}^{\infty} 2^{-n}}=\epsilon
$$

Hence, $U \subset B_{\epsilon}(\mathbf{x})$ and $\mathcal{T}_{l^{2}} \subset \mathcal{T}_{\text {box }}$
d) Proof. Since sequences in \mathbb{R}_{0} have finitely many non-zero terms, they are indeed square-summable.
i) $\mathcal{T}_{l^{2}}$ and $\mathcal{T}_{\text {box }}$ are distinct on \mathbb{R}_{0} : Consider

$$
A=\mathbb{R}_{0} \cap \prod_{n}(-1 / n, 1 / n)
$$

which is open in the box topology. However, no matter how small ϵ is, we can always choose a small enough $k \in \mathbb{N}$ so that $1 / k<\epsilon / 2$, and

$$
\mathbf{x}=\left(0,0, \ldots, x_{k}=\epsilon / 2, \ldots, 0, \ldots\right)
$$

is inside the $B_{\epsilon}^{d}(\mathbf{0})$ but outside A. This shows that A is not open in the l^{2} topology.
ii) $\mathcal{T}_{\text {unif }}$ and $\mathcal{T}_{l^{2}}$ are distinct on \mathbb{R}_{0} :

Consider

$$
B_{1}^{l^{2}}(\mathbf{0})=\left\{\mathbf{x} \in \mathbb{R}_{0}:\left(\sum_{n}\left|x_{n}\right|^{2}\right)^{1 / 2}<1\right\}
$$

No matter how small we choose ϵ to be. There is always some $k \in \mathbb{N}$ such that $k \epsilon^{2} / 4>1$ and

$$
\mathbf{x}=(\epsilon / 2, \epsilon / 2, \ldots, \epsilon / 2,0,0, \ldots)
$$

is inside $B_{\epsilon}^{\bar{\rho}}(\mathbf{0})$ but outside $B_{1}^{l^{2}}(\mathbf{0})$. This shows that $B_{1}^{l^{2}}(\mathbf{0})$ is not open in the uniform topology.
iii) $\mathcal{T}_{\text {prod }}$ and $\mathcal{T}_{\text {unif }}$ are distinct on \mathbb{R}_{0} :

Consider

$$
B_{1}^{\bar{\rho}}(\mathbf{0})=\left\{\mathbf{x} \in \mathbb{R}_{0}: \sup \left|x_{n}\right|<1\right\}
$$

Let U be an open neighborhood of $\mathbf{0}$ in the product topology

$$
U=\prod_{n} U_{n}
$$

where U_{n} is the whole space for all but finitely many indices. Let k be a index such that U_{k} is the whole space, then

$$
\mathbf{x}=\left(0,0, \ldots, x_{k}=2, \ldots, 0, \ldots\right)
$$

is inside U but outside $B_{1}^{\bar{\rho}}(\mathbf{0})$. This shows that $B_{1}^{\bar{\rho}}(\mathbf{0})$ is not open in the product topology.
In conclusion, all four topologies are distinct on \mathbb{R}_{0}.
e) See example 1 on Munkres p. 132 .

