
MAT 327: Introduction to Topology
Assignment #2

Due on Sunday June 4, 2023 by 11:59 pm

Note: This assignment covers material from Week #1-#3 and the Wednesday lecture
from Week #4.

Problem 1

Let (X, d) be a metric space. A notion of distance between points in X gives us a notion
of distance between sets as well as distance between points and sets. Let A,B ⊆ X and
let x ∈ X. We define

d(x,A) := inf{d(x, a) | a ∈ A}

d(A,B) := inf{d(a, b) | a ∈ A, b ∈ B}

Convince yourself that these notions are well defined by observing that we’re taking the
infimum of subsets of R that are bounded from below.

(a) Show that if A∩B 6= φ, then d(A,B) = 0, but the other direction doesn’t hold. Will
the other direction hold if we assume that A and B are closed?

(b) Show that A is closed iff d(x,A) 6= 0 for all x ∈ Ac.

(c) Define d̄, d0 : X ×X → [0,∞) by d̄(x, y) := min{d(x, y), 1} and d0(x, y) := d(x,y)
d(x,y)+1

for x, y ∈ X. Show that d̄ and d0 are bounded metrics on X that generate the same
topology as d.

Problem 2

(a) Let xn be a sequence of points in the product space Πα∈JXα. Show that xn converges
to x iff πα(xn) converges to πα(x) inXα for every α ∈ J . Is convergence in the product
topology stronger or weaker than convergence in the box topology?

(b) Convince yourself that the product space RR is the space of all functions from R to
R. Show that a sequence of functions fn ∈ RR converges to f ∈ RR iff fn converges
pointwise to f .

Remark: This means that fn(x) converges to f(x) in the standard topology on R
for every x ∈ R.



(c) Define C(R) ⊆ RR as the space of continuous functions from R to R. Define the
metric d̄ : C(R)× C(R)→ [0,∞) by

d̄(f, g) := min{1, sup
x∈R
|f(x)− g(x)|}

Show that d̄ is a metric that induces a topology on C(R) that is finer than the
subspace topology.

(d) Show that a sequence of functions fn ∈ C(R) converges to f in (C(R), d̄) iff fn
converges uniformly to f .

Remark: fn converges uniformly to f if for any ε > 0, there exists N ∈ N such that
|fn(x)− f(x)| < ε for all n > N and x ∈ R.

(e) *(bonus)* Show that C(R) is dense in RR. Does that mean that every function is
the pointwise limit of continuous functions?

Problem 3

(a) Define a sequence {xn}n∈N in RN by xn := { 1
nm
}m∈N. Show that xn converges to the

0 sequence in the product topology but not in the box topology.

Hint: Use problem 2a.

(b) Define R0 ⊂ RN to be the collection of sequences that are eventually constantly zero.
Compute the closure of R0 in the product, uniform, and box topology.

A sequence x = {xn}n∈N ∈ RN is square-summable if
∞∑
n=1

x2n < ∞. The collection of all

such sequences is denoted by `2 (pronounced little ell two to differentiate it from L2 ⊆ RR,
which is the space of square integrable functions on R). Define the metric

d(x, y) :=

√√√√ ∞∑
n=1

(xn − yn)2

for sequences x = {xn}n∈N and y = {yn}n∈N in `2 (convince yourself that d is indeed a
metric on `2). This metric defines a topology on `2 called T`2 . We will denote by Tbox,
Tunif and Tprod the subspace topologies that `2 inherits from the box, uniform, and product
topologies on RN, respectively.



(c) Show that Tunif ⊆ T`2 ⊆ Tbox.

Remark: With what we proved in lectures, we then have that Tprod ⊆ Tunif ⊆ T`2 ⊆
Tbox.

(d) Show that R0 ⊆ `2 and that the subspace topologies that R0 inherits from all four
topologies are distinct.

(e) *(bonus)* Show that RN with the box topology is not metrizable.

Problem 4 (optional)

Quotient spaces are spaces that are achieved by cutting, pasting and/or gluing other topo-
logical spaces to make another one. For example, a circle can be obtained from a closed
interval by pasting the end points together.There are many ways one can formally define
or construct quotient spaces. One way is to identify points in a topological space with
each other (that is gluing the points together) to obtain a new smaller one.

Let X be a topological space and let ∼ be an equivalence relation on X. Denote by
X/ ∼ the set of equivalence classes. Define the natural map π : X → X/ ∼ defined by
π(x) := [x]. Equip X/ ∼ with the finest topology that makes π continuous. We will call
this the “quotient topology” on X/ ∼ making it a “quotient space”.

(a) Show that U ⊂ X/ ∼ is open iff π−1(U) is open and that π is an open map.

Remark: A surjective map from a topological space to another topological space
satisfying the above is called a quotient map.

(b) Let Y be a topological space and g : X → Y be a map that is constant on equivalence
classes. Show that there exists a unique map f : X/ ∼→ Y satisfying g = f ◦ π.
Show that f is continuous iff g is continuous.

(c) Let X = [0, 1]. Define an equivalence relation on X such that the quotient space
X/ ∼ is homeomorphic to the circle S1.

Hint: How do you get a circle from a closed interval? You glue the end points
together.

Let X = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 1}. We will glue different parts of X to construct
different topological spaces.

(d) Define an equivalence relation on X such that the quotient space X/ ∼ is homeo-
morphic to the cylinder S1 × R.



Hint: What happens when you glue together the left and right side of the square
X?
Remark: When you glue together the left and right side of the square but in the
opposite orientation, you get what we call the Möbius strip. Can you imagine what
it looks like?

(e) Define an equivalence relation on X such that the quotient space X/ ∼ is homeo-
morphic to the torus S1 × S1.

Hint: After gluing the left and right side of X, consider gluing the top and right side
(which are now circles).
Remark: If you glue the top and right circles in the opposite orientation, you get
what we call the Klein bottle. Can you imagine what it looks like? No you can’t;
it’s a 2 dimensional surface that cannot be visualized (i.e. embedded) in R3.

(f) We now let X = R3 \ {0}. We would like to define the space of all lines passing
through the origin. So we wish to collapse every line to one point. Define an
equivalence relation on X that accomplishes this. The quotient space you get is
called the projective plane and is denoted by RP2.

(g) *(bonus)* Consider the square X in R2 defined above. Glue the left and right
side in the opposite orientation. Then glue the top and right sides in the opposite
orientation. Show that the quotient space you get is RP2.


