Jiawei Chen

June 1, 2023

1. a) Proof. " \Rightarrow ":

Let B be a basis element in \mathcal{B} . For every $x \in B$, there exists $B'_x \in \mathcal{B}'$ such that $x \in B'_x \subset B$. We can write B as a union of sets in \mathcal{B}' ,

$$B = \bigcup_{x \in B} B'_x$$

"⇐":

Let B be a basis element in \mathcal{B} , and $\{B'_j\}_{j \in J}$, indexed by J, be a collection of sets in \mathcal{B}' such that

$$B = \bigcup_{j \in J} B'_j$$

Indeed, for any $x \in B$, there exists some $j \in J$ such that $x \in B'_j \subset B$. \Box b) *Proof.* Let $\|\cdot\|, \|\cdot\|'$ be two norms on \mathbb{R}^n . It is provided that they satisfy

$$\frac{1}{C}\|x\|' \le \|x\| \le C\|x\|'$$

for some constant C > 0.

It follows that for any radius r > 0 and center x, we have the following relation for the open balls

$$B_{r/C}(x) \subset B'_r(x) \tag{1}$$

Indeed, for any $y \in B_{r/C}(x)$, we have

$$||x - y||' \le C||x - y|| < r$$

That is, y is in $B_r(x)$ as well. Moreover, for any $z \in B'_r(x)$, we can choose radius $l \le r - ||x - z||'$ so that

$$B_l'(z) \subset B_r'(x) \tag{2}$$

Combining (1) and (2), we have

$$B_{l/C}(z) \subset B'_l(z) \subset B'_r(x)$$

Thus, it follows from lemma 1.33 that the topology of $\|\cdot\|$ is finer than that of $\|\cdot\|'.$

To obtain the reverse containment, observe that,

$$\frac{1}{C}\|x\|' \le \|x\| \le C\|x\|'$$

implies

$$\frac{1}{C}\|x\| \le \|x\|' \le C\|x\|$$

c) For example, the following metric

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$
(3)

generates the discrete topology on \mathbb{R}^n .

- 2. a) *Proof.* Verify the axioms for $\mathcal{T} = \{(a, \infty | a \in \mathbb{R})\} \cup \{\emptyset, \mathbb{R}\}\}$:
 - 1) Contains \emptyset and \mathbb{R} : trivial
 - 2) Closure under unions:
 - Let $\{a_j\}_{j\in J}$ be a collection of real numbers, then

$$\bigcup_{j\in J} (a_j, \infty) = (\inf_{j\in J} a_j, \infty) \in \mathcal{T}$$

3) Closure under finite intersections: For a finite collection of reals $a_1 \leq a_2 \leq ..., \leq a_n$,

$$\bigcap_{i=1}^{n} (a_i, \infty) = (a_n, \infty) \in \mathcal{T}$$

- b) *Proof.* It's relatively easy to see that the collection of finite intersections in C is $\mathcal{B} := \mathcal{C} \cup \mathcal{B}_{std} \cup \{\emptyset\}$, where $\mathcal{B}_{std} := \{(a, b) \mid a < b\}$ is the standard basis for \mathbb{R} . To see that \mathcal{B} forms a basis for a topology, we show that it satisfies the two axioms in the definition of a basis:
 - 1. The union of all sets in \mathcal{B} is clearly \mathbb{R} .
 - 2. If $B_1, B_2 \in \mathcal{B}$, then they are finite intersections of sets in \mathcal{C} . In particular, $B_1 \cap B_2$ is also a finite intersection of sets in \mathcal{C} and so $B_1 \cup B_2 \in \mathcal{B}$.

Let \mathcal{T} be the topology generated by \mathcal{B} and let \mathcal{T}_{std} be the standard topology on \mathbb{R} . Since $\mathcal{B}_{std} \subseteq \mathcal{B}$, it follows that $\mathcal{T}_{std} \subseteq \mathcal{T}$.

Since sets of the form (a, ∞) and $(-\infty, a)$ for $a \in \mathbb{R}$ are clearly a union of open intervals and so are in \mathcal{T}_{std} , it follows that $\mathcal{B} \subseteq \mathcal{T}_{std}$. This implies that $\mathcal{T} \subseteq \mathcal{T}_{std}$ and hence $\mathcal{T} = \mathcal{T}_{std}$.

3. a) *Proof.* Observe that there is no r > 0 that satisfies $(a - r, a + r) \subset [a, b)$. So, [a, b) is not open in the standard topology.

However, for any basis element of the standard topology (a, b), we can write

$$(a,b) = \bigcup_{c \in (a,b)} [c,b)$$

It follows from part (a) of problem 1 that the lower limit topology is finer than the standard topology. $\hfill \Box$

b) In the standard topology, the interior of A is (0,1) and the closure is [0,1]. In the lower limit topology, I claim that the interior and closure are, again, (0,1)

and [0, 1], respectively.

Interior: It follows from part (a) that (0,1) is open in \mathbb{R}_l . However, no basis element containing 1 lies completely inside A, so A is not open. Therefore the largest open set containing (0,1] is (0,1).

Closure: We can check that any basis element containing 0 would intersect A. This shows that 0 is a limit point of A.

 $A \cup \{0\} = [0, 1]$ is closed in the standard topology, so it is also closed in \mathbb{R}_l . We deduce that [0, 1] is the smallest closed set containing A.

4. a) *Proof.* Recall that convergence of sequence means that for every open neighborhood U of x, there exists some N such that $x_n \in U$ for all n > N. For the ray topology, open neighborhoods of x are of the form $(x - \epsilon, \infty)$ with $\epsilon > 0$. So, we can restate the above as

$$\forall \epsilon > 0 \exists N \in \mathbb{N} \text{ s.t. } x_n > x - \epsilon \text{ for all } n > N.$$

Recall (from tutorial 1) that this is exactly what $x \leq \liminf x_n$ means.

"f continuous $\Rightarrow \epsilon - \delta$ condition":

Since f is continuous, the preimage of $(f(x) - \epsilon, \infty)$ is open for every $x \in \mathbb{R}$. In particular, there exists some δ -ball $B_{\delta}(x)$ such that $f(B_{\delta}(x)) \subset (f(x) - \epsilon, \infty)$, which is precisely the $\epsilon - \delta$ condition provided in the question.

"f continuous $\Leftarrow \epsilon - \delta$ condition":

Let (a, ∞) be a basis element of the ray topology. Consider its preimage $f^{-1}((a, \infty))$. Suppose $x \in f^{-1}((a, \infty))$, then f(x) > a. Choose $\epsilon < f(x) - a$. Then, the $\epsilon - \delta$ condition gives an $\delta > 0$ such that $f(y) > f(x) - \epsilon > a$ for all $y \in B_{\delta}(x)$. So, $f(B_{\delta}(x)) \subset (a, \infty)$ (i.e. $B_{\delta}(x) \subset f^{-1}((a, \infty))$). In other words, there exists a δ -ball around x that lies inside $f^{-1}((a, \infty))$. This shows that $f^{-1}((a, \infty))$ is open, and hence f is continuous.

b) $x_n \to x$ in the lower limit topology means that $x_n \to x$ in the usual sense and $x_n \ge x$ except for finitely many terms.

The only continuous functions from \mathbb{R}_{std} to \mathbb{R}_l are the constant functions. To see this, suppose the image of f contains two distinct values a and b (assume a < b). Take a number c such that a < c < b. Observe that $(-\infty, c)$ and $[c, \infty)$ are open (in \mathbb{R}_l), disjoint sets whose union is \mathbb{R} . Their preimages must also be open (in \mathbb{R}_{std}), disjoint sets whose union is \mathbb{R} . This can only be true if they are \mathbb{R} and \emptyset . But this is a contradiction as $a \in (-\infty, c)$ and $b \in [c, \infty)$, the preimages should both be non-empty.

	\mathbb{R}_{std}	\mathbb{R}_l	\mathbb{R}_{ray}
$a_n = 0$	{0}	{0}	$(-\infty,0]$
$b_n = n$	$\{b_n\}$	$\{b_n\}$	\mathbb{R}
$c_n = -\frac{1}{n}$	$\{c_n\} \cup \{0\}$	$\{c_n\}$	$(-\infty, 0]$

c)