MAT 327: Introduction to Topology Assignment #1 Due on Sunday May 21, 2023 by 11:59 pm

Note: This assignment covers material from Week #1 and the Wednesday lecture from Week #2.

Problem 1

If we have two bases \mathcal{B} and \mathcal{B}' for the topologies \mathcal{T} and \mathcal{T}' on a set X, then lemma 13.3 in Munkres's book allows us to compare the topologies \mathcal{T} and \mathcal{T}' by comparing their basis: \mathcal{T}' is finer than \mathcal{T} iff for every basis element $B \in \mathcal{B}$ and for every $x \in B$, there exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

(a) Show that this is equivalent to the following: Every set in \mathcal{B} is a union of sets in \mathcal{B}'

Recall that a norm on \mathbb{R}^n is a map $\|\cdot\| : \mathbb{R}^n \to [0,\infty)$ with the following properties: $\|x\| = 0$ implies x = 0, $\|\lambda x\| = |\lambda| \|x\|$ for every $\lambda \in \mathbb{R}$, and $\|x + y\| \le \|x\| + \|y\|$. Given a norm on \mathbb{R}^n , we can define the metric $d(x, y) := \|x - y\|$. Convince yourself that this is indeed a metric on \mathbb{R}^n as per the definition given in lectures.

A well known fact from analysis is that any two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on \mathbb{R}^n are equivalent in the sense that there exists a constant C > 0 such that for any $x \in \mathbb{R}^n$,

$$\frac{1}{C} \|x\|_1 \le \|x\|_2 \le C \|x\|_1$$

(b) Use the above fact to show that the topology induced by a metric defined using a norm on \mathbb{R}^n does not depend on the norm and is, in particular, the standard topology.

Hint: You can use (a) or lemma 13.3.

(c) Find a metric on \mathbb{R}^n that induces a topology distinct from the standard topology.

Remark: This in particular shows that there are metrics on \mathbb{R}^n that are not defined through a norm.

Problem 2

(a) Show that $\{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\phi, \mathbb{R}\}$ is a topology on \mathbb{R} .

Remark: This is called the ray topology on \mathbb{R} .

(b) Define the collection $\mathcal{C} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{(-\infty, b) \mid b \in \mathbb{R}\}$. Show that the collection of finite intersection of sets in \mathcal{C} forms a basis that generates the standard topology on \mathbb{R} .

Problem 3

You have shown in the post-lecture-practice-questions that the collection of sets of the form [a, b) for $a, b \in \mathbb{R}$ forms a basis for a topology on \mathbb{R} called the lower limit topology, denoted by \mathbb{R}_{ℓ} .

- (a) Show that [a, b) is not open in the standard topology on \mathbb{R} . Conclude whether the standard topology is finer or coarser than the lower limit topology.
- (b) Find the closure and interior of the set A := (0, 1] in both the standard topology and the lower limit topology.

Problem 4

- (a) Show that a sequence $x_n \in \mathbb{R}$ converges to $x \in \mathbb{R}$ in the ray topology iff $x \leq \liminf_{n \to \infty} x_n$. Furthermore, show that a function $f : (\mathbb{R}, \mathcal{T}_{std}) \to (\mathbb{R}, \mathcal{T}_{ray})$ is continuous iff for all $x \in \mathbb{R}$ and for all $\epsilon > 0$, there exists $\delta > 0$ such that $f(x) < f(y) + \epsilon$ for any $y \in (x - \delta, x + \delta)$.
- (b) *(bonus)* Describe what it means for a sequence $x_n \in \mathbb{R}$ to converge to $x \in \mathbb{R}$ in the lower limit topology. Furthermore, describe what it means for a function $f: (\mathbb{R}, \mathcal{T}_{std}) \to \mathbb{R}_{\ell}$ to be continuous.
- (c) Define the following sequences: for $n \in \mathbb{N}$, $a_n := 0$, $b_n := n$, and $c_n := -\frac{1}{n}$. Find, without proof, the closures of $\{a_n \mid n \in \mathbb{N}\}$, $\{b_n \mid n \in \mathbb{N}\}$, and $\{c_n \mid n \in \mathbb{N}\}$ in the standard topology, the lower limit topology, and the ray topology.