MAT 327: Introduction to Topology Instructor: Ahmed Ellithy Midterm Friday, June 23, 2023

Note: Submit by 11:30 AM through Crowdmark. No late submissions will be accepted. You can get up to 58/50 in this test.

Problem 1 [5]

- (a) Define $\mathcal{T} := \{A \subseteq \mathbb{R} \mid 5 \in A\} \cup \{\emptyset\}$. Show that this is a topology on \mathbb{R} , denoted by \mathbb{R}_5 , making it a separable connected topological space.
- (b) Find a sequence in \mathbb{R}_5 that converges to every point. Conclude that \mathbb{R}_5 is not Hausdorff. Is it metrizable?
- (c) *(bonus)*[2] Show that for every topological space X, there exists another topological space X' that is separable and contains X as a subspace.

Hint: Consider adding a new point to X and use \mathbb{R}_5 as an inspiration.

Problem 2 [5]

Let J be an uncountable set. Define $A \subseteq \mathbb{R}^J$ as follows

 $A := \{ (x_{\alpha})_{\alpha \in J} \in \mathbb{R}^{J} \mid x_{\alpha} = 0 \text{ for all but finitely many } \alpha \in J \}$

Show that A is path connected and is dense in \mathbb{R}^J . Conclude that \mathbb{R}^J is connected.

Problem 3 [10]

- (a) Let $\{A_n\}_{n\in\mathbb{N}}$ be a sequence of nonempty closed sets in a topological space X that are nested in the sense that $A_n \supseteq A_{n+1}$ for all $n \in \mathbb{N}$. If one of the A_n 's is compact, show that $\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset$.
- (b) Let X be a compact locally path-connected space. Show that X can be partitioned into a disjoint union of finitely many connected open sets.

Problem 4 [5]

(a) Define the function $f : \mathbb{R} \to \mathbb{R}^{\mathbb{N}}$ by

$$f(t) := (t, t^2, t^3, ...)$$

Determine whether f is continuous when $\mathbb{R}^{\mathbb{N}}$ is equipped with the product, uniform and box topologies.

(b) *(bonus)*[2] It is not true that a function $f : \mathbb{R} \to (\mathbb{R}^{\mathbb{N}}, \mathcal{T}_{unif})$ is continuous if and only if the components $\pi_n \circ f : \mathbb{R} \to \mathbb{R}$ are continuous. Find an example of a function f that illustrates this.

Problem 5 [5]

Let ~ be an equivalence relation on a second countable topological space X such that the natural map $\pi : X \to X/\sim$ is an open map. Suppose that $\Delta := \{(x, y) \in X \times X \mid x \sim y\}$ is closed in $X \times X$. Show that the quotient space X/\sim is Hausdorff and second countable.

Problem 6 [20]

Are the following true or false? Justify your answer briefly. There are 10 questions, 3 marks each; 20 is the maximum mark (excluding the bonus).

- (a) The map $f: [0,1) \to S^1$ defined by $f(t) := (\cos 2\pi t, \sin 2\pi t)$ is a homeomorphism.
- (b) Let $A_{\alpha} \subseteq X_{\alpha}$ for every $\alpha \in J$. Then $\operatorname{Int}(\prod_{\alpha \in J} A_{\alpha}) = \prod_{\alpha \in J} (\operatorname{Int} A_{\alpha})$.
- (c) Let $X = \mathbb{R} \setminus \{0\}$. Then $A \subseteq X$ is compact if and only if it's closed and bounded (with respect to the euclidean metric).
- (d) X is connected if and only if the only subsets with empty boundary are \emptyset and X.
- (e) Let (X, \mathcal{T}) be a topological space. Let d be a metric on X that is continuous as a map from $X \times X$ to \mathbb{R} when X is equipped with \mathcal{T} . Then the metric topology with respect to d is finer than \mathcal{T} .
- (f) Let X be a first countable with a countable dense set A. For each $a \in A$, let \mathcal{N}_a be a countable neighbourhood basis at a. Then $\bigcup_{a \in A} \mathcal{N}_a$ is a basis for X.
- (g) Let $f: S^1 \to \mathbb{R}$ be a continuous function. Then f is not injective.
- (h) Let X be a second countable space with the property that sequences converge to at most one point. Then X is Hausdorff.
- (i) $\{0,1\}^{\mathbb{N}}$ is metrizable where $\{0,1\}$ is equipped with the discrete topology.
- (j) Let $f: X \to Y$ be a surjective continuous function. If X is separable, then Y is too.
- (k) (*bonus* [2]) A space X has k connected components if and only if there exists a surjective continuous function $f : X \to \{1, 2, ..., k\}$ where $\{1, 2, ..., k\}$ is equipped with the discrete topology.

Problem 7: *bonus* [2]

Let $f: X \to Y$ be a surjective continuous map where X is compact and Y is Hausdorff. Define an equivalence relation on X as follows: $x \sim y$ if f(x) = f(y). Show that X/\sim is homeomorphic to Y.

Note: You can get up to 58/50 in this test.